This disclosure relates to a method of manufacturing a pipe with different diameters along a longitudinal direction and, in particular, relates to a manufacturing method using press forming and to a press forming die for the pipe with different diameters along a longitudinal direction (refers to a pipe having a portion where the pipe diameter varies in the pipe axis direction), which has high dimensional accuracy and is manufactured at high productivity by press forming a blank made of a metal sheet (for example, a high-strength steel sheet having a tensile strength (TS) of equal to or more than 300 Mpa).
The blank refers to a material for forming, which is a single flat sheet cut from an original sheet and has a shape corresponding to the shape of the pipe having undergone the forming.
Pipes (having a circular section) having good rigidity and good collision strength are used for some automative parts. Also, many parts having a varying diameter are used from the viewpoint of joining to other parts. As a manufacturing process to obtain pipes with different diameters along a longitudinal direction, there are methods in which metal pipes manufactured by a process such as a UOE process or roll forming are subjected to secondary processing for pipes such as reducing, flaring, or hydroforming (these methods are referred to as “related art I”). There also is related-art regarding a method of manufacturing the pipe with different diameters along a longitudinal direction formed by press forming. According to this known forming method (see Japanese Patent No. 4713471; referred to as “related art II”), to suppress defects such as wrinkling and reduction of the sheet thickness after forming, the shape of the blank is improved and O-shape forming is performed after a U-shape forming has been performed.
With the related art I, pipes having been formed are subjected to secondary processing such as reducing, flaring, or tube forming. Thus, dedicated processing apparatuses are required. This may reduce productivity and lead to an increase in the cost. Furthermore, reducing and flaring are performed on limited positions in many cases, that is, mainly on positions near ends of pipes. Thus, there is a problem with versatility in these methods. With tube hydroforming, the sectional shape can be arbitrarily changed in the longitudinal direction. However, the sheet thickness of a protruding portion is significantly reduced. Thus, it is difficult to obtain a component having a uniform thickness. In addition, since the time required to form is long, there is a problem with productivity.
In the related art II, vertical wall portions of a U-shaped formed part are inserted into an upper die during O-shape forming. This requires a core referred to as a guide blade. A step in which end portions of the blank are bent inwardly is also required before U-shape forming is performed. Furthermore, in the related art I, accuracy in sectional dimensions in a formed product is not described. Accuracy in sectional dimensions is important when a formed product is used as an automative part from the viewpoint of the performance of the part such as rigidity and for assembly. That is, there are problems with the manufacturing cost and the accuracy in product dimensions in the related art II.
That is, with the related art, there is a problem in that a pipe with different diameters along a longitudinal direction, which is manufactured at high productivity and a low cost and with good accuracy in product dimensions, cannot be provided.
We found that in a pipe having a small diameter portion, a large diameter portion, and a diameter-changing portion provided therebetween, by setting the ratios of the sheet thickness of the material to the diameter of a forming die set corresponding to the small diameter portion and to the diameter of the forming die set corresponding to the large diameter portion in an adequate range, local variation in sheet thickness and wrinkling occurring in a part having been formed can be prevented. Furthermore, by introducing compressive strain in the circumferential direction during forming, the circularity of the part can be improved. Furthermore, after the U-shape forming has been performed, in a die set used for manufacturing in a forming step of circular cross section, wrinkling can be suppressed by increasing a vertical wall length of the U-shape forming die, and forming can be performed without an additional step or a core by using a circular cross section forming die set with die mating lines downwardly inclined.
We thus provide:
(1) A method of manufacturing a pipe with different diameters along a longitudinal direction that has a small diameter portion, a large diameter portion, and a diameter-changing portion provided between the small diameter portion and the large diameter portion and is formed by press forming a blank made of a metal sheet. The method includes a step of press forming the blank with a U-shape forming die into a U-shaped formed part and press forming the U-shaped formed part with an O-shape forming die set into a circular cross section formed part. A length of a vertical wall of the U-shape forming die is longer than a length of a vertical wall portion of the U-shaped formed part. In the O-shape forming die set, a die mating line is inclined downwardly, a ratio t/D of a sheet thickness t of the blank to a diameter D, which represents a diameter of a portion of the O-shape forming die set corresponding to the small diameter portion and a diameter of a portion of the O-shape forming die set corresponding to the large diameter portion, is 0.010≦t/D≦0.080, and a circumferential compressive strain given by the following expression (1) is equal to or more than 0.5%.
Circumferential compressive strain=(blank width in sheet width direction that becomes pipe circumferential direction−perimeter of die set)/perimeter of die set×100(%) (1).
(2) The method of manufacturing the pipe with different diameters along a longitudinal direction according to (1) described above, in which, in the U-shape forming, a bent shape is provided between the large diameter portion and the diameter-changing portion.
(3) The method of manufacturing the pipe with different diameters along a longitudinal direction according to (1) or (2) described above, in which a slot is provided at a top of an arc portion of an upper die of the O-shape forming die set, and a ratio W/t of a slot width W of the slot to the sheet thickness t of the blank is from 2.0 to 3.0.
(4) A forming die sets, which is used in the method of manufacturing according to any one of (1) to (3) described above, includes the U-shape forming die to be initially used and the O-shape forming die set to be used after the U-shape forming die has been used.
A pipe with different diameters along a longitudinal direction having a high circularity can thus be manufactured in a minimum number of press forming steps.
Regarding the shape of the pipe with different diameters along a longitudinal direction 1, to reduce wrinkling and reliably obtain a good circularity, it is important to control the following i) and ii) to appropriate values:
i) the ratios (t/D) of the blank thickness (t) to the diameter (D), which represents diameters of portions of the die set corresponding to the small diameter portion and the large diameter portion (D represents Db for the diameter of the small diameter portion and Da for the diameter of the large diameter portion), and
ii) compressive strain in the circumferential direction.
Circularity is a parameter indicating the deviation from a target diameter and is calculated as follows. That is, the outer diameter of the pipe with different diameters along a longitudinal direction is measured at least eight angularly equally spaced positions, and the circularity is calculated with the following expression: (maximum outer diameter−minimum outer diameter)/diameter of die set×100(%). The compressive strain in the circumferential direction is a value calculated with the aforementioned expression (1).
The ratio (t/D) is a parameter that affects the circularity and buckling during forming.
When t/D is excessively small, that is, the sheet thickness is excessively small or the diameter is excessively large, buckling tends to occur in a circular cross section forming step, which will be described later and, furthermore, sufficient compressive strain in the circumferential direction cannot be applied, thereby the circularity is degraded. To address this, t/D is specified to be equal to or more than 0.010. When t/D is excessively large, that is, the sheet thickness is excessively large or the diameter is excessively small, the blank fails to sufficiently conform to the shape of the die set during circular cross section forming, thereby the circularity is degraded. To address this, t/D is specified to be equal to or less than 0.080. Both the above-described Db and Da is represented by D.
From the viewpoint of reduction of wrinkling in forming near butting portion between the large diameter portion and the diameter-changing portion, an angle θ (inclination angle) formed between portions of the die set corresponding to the large diameter portion and the diameter-changing portion is preferably equal to or smaller than 30 degrees.
Compressive strain in a pipe circumferential direction is an important parameter in reducing the distance between edges of the butting portions and reliably obtaining the circularity in the cross section of a formed product. With the compressive strain in the pipe circumferential direction applied, the blank is brought into tight contact with the dies at a last stage of the circular cross section forming step. This improves circularity. Furthermore, since the circular cross section is formed by compressive bending, springback deformation after removal from the dies is reduced and the distance between edges of the butting portions is reduced. Since the butting portions are joined to each other by, for example, welding after forming, as the distance between edges is reduced, accuracy in butting during joining is improved, and accordingly, the joining work is facilitated. The compressive strain in the pipe circumferential direction is specified to be equal to or more than 0.5% to obtain the circularity of 2.0% or less. When the compressive strain in the pipe circumferential direction is large, there may be biting of the material on the die mating surfaces or an increase in a forming load. For this reason, the compressive strain in the pipe circumferential direction is preferably equal to or less than 5%. When the sheet thickness is small and the diameter is large, increasing the compressive strain leads to buckling. Thus, when the t/D is equal to or less than 0.020, the compressive strain is preferably equal to or less than 2.0%.
The pipe with different diameters along a longitudinal direction is manufactured by, for example, as illustrated in
A U-shaped forming illustrated in
Furthermore, as can be seen in an example of the U-shape forming die set illustrated in
In a circular cross section forming die set illustrated in
As mentioned before, in the above-described manufacturing method, the butting portions need to be joined. Examples of a joining method include welding such as laser welding, arc welding, and spot welding. At this time, when the blank is a thin material, joining is difficult in some cases due to problems such as burn-through. With flanges, joining is easily performed. As illustrated in
The circular cross section formed parts having an entire length of 1400 mm and the shape illustrated in
Circularity (in %)=maximum outer diameter−minimum outer diameter)/diameter of die set×100.
The results of the evaluation are shown in Table 2. Nos. 1, 2, 4, 6, and 7 to 10, which are our examples, are formed in the step illustrated in
0.8
Wrin-
kling
0.8
Wrin-
kling
0.007
2.1
Buck-
ling
0.090
3.0
0.0
3.5
Number | Date | Country | Kind |
---|---|---|---|
2012-121474 | May 2012 | JP | national |
2013-082046 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/003309 | 5/24/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/179628 | 12/5/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1879077 | Carlsen | Sep 1932 | A |
1879078 | Carlsen | Sep 1932 | A |
2077336 | Lemming | Apr 1937 | A |
4148426 | Midzutani | Apr 1979 | A |
5924316 | Streubel | Jul 1999 | A |
7350386 | Streubel | Apr 2008 | B2 |
7418849 | Hauger | Sep 2008 | B2 |
7637135 | Homig | Dec 2009 | B2 |
20050126241 | Ooyauchi | Jun 2005 | A1 |
20070131015 | Matsumura | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
3-291115 | Dec 1991 | JP |
5-123741 | May 1993 | JP |
4713471 | Apr 2011 | JP |
Entry |
---|
Supplementary European Search Report dated May 22, 2015 of corresponding European Application No. 13798156.9. |
Korean Office Action dated Jan. 18, 2016 of corresponding Korean Application No. 2014-7034519 along with a Concise Statement of Relevance of Office Action in English. |
Number | Date | Country | |
---|---|---|---|
20150165503 A1 | Jun 2015 | US |