This application claims priority to Japanese Patent Application No. 2014-262735 filed on Dec. 25, 2014, the contents of which are hereby incorporated by reference into the present application.
The present invention relates to a method of manufacturing a reactor in which a ring core and a bobbin are covered by a plastic cover.
A reactor in which a ring core, a bobbin, and a coil are covered by a plastic cover is known. Japanese Patent Application Publication No. 2010-118611 discloses an example of such a reactor. The ring core includes a pair of straight portions. Each of the pair of cylinder portions provided on the bobbin cover the corresponding straight portion of the ring core. The pair of cylinder portions are connected to each other by their ends. A coil is disposed on each cylinder portion. The plastic cover is formed by pouring molten resin into a mold in which a subassembly of the ring core, the bobbin, and the coil is contained. According to Japanese Patent Application Publication No. 2010-118611, the resin is poured into the mold while pressing the ring core from its both sides within the mold. Hereinbelow, the cylinder portions of the bobbin may simply be termed bobbin cylinder portions
In resin molding in general, injection is carried out in a closed mold by applying pressure on molten resin. In a case of a reactor including a bobbin and a ring core, in which ends of a pair of cylinder portions are connected, there is a risk that edges of openings of the bobbin cylinder portions and an inner circumferential surface of the ring core are displaced and thus make contact with each other when the ring core is pressed from both sides. When highly pressurized resin is injected in a state where the edges of the openings of the bobbin cylinder portions and the inner circumferential surface of the ring core are displaced and making contact, stress is concentrated on the edges of the openings, and a core or the bobbin may thereby break. The present description provides a suitable method of manufacturing a reactor in which a ring core and a bobbin are covered by a plastic cover. Especially, it provides a technique that prevents the edges of the openings of the bobbin and the inner circumferential surface of the ring core from being displaced and making contact, and prevents the ring core or bobbin from breaking upon injecting the molten resin.
A reactor disclosed herein comprises a ring core, a bobbin, a pair of coils, and a plastic cover. The ring core comprises a pair of straight portions extending in parallel. The bobbin includes a pair of cylinder portions and a pair of connecting portions. Each of the pair of cylinder portions has ends, and covers the corresponding straight portion of the ring core. Each of the connecting portions connects the corresponding ends. Each of the pair of coils is wound on the corresponding cylinder portion. Further, the plastic cover covers the ring core, the bobbin, and the pair of coils.
In a method of manufacturing a reactor disclosed herein, protrusions are provided on the bobbin for preventing breakage of the ring core or the bobbin upon the injection molding of the plastic cover. These protrusions are termed “first protrusions”. The first protrusions are provided on each of the connecting portions of the bobbin at outer sides along a cylinder axis direction. The first protrusions are provided to be in contact with an inner circumferential surface of the ring core. Further, protrusions are also provided on a cavity surface of a mold in which a subassembly of the ring core, the bobbin, and the coils is to be contained and then the plastic cover is to be formed by resin injection. The protrusions provided on the mold are termed “second protrusions”. Each of the second protrusions is provided at a position facing the corresponding first protrusion across the ring core. The method of manufacturing a reactor disclosed herein comprises forming the plastic cover by injecting molten resin into the mold while clamping the ring core by the first and second protrusions.
According to the method of manufacturing a reactor disclosed herein, the ring core is clamped by the first protrusions and the second protrusions that face each other, so the ring core is supported firmly within the mold. Further, the first protrusions at the both ends of the bobbin cylinder portions make contact with the inner circumferential surface of the ring core, and the bobbin is also supported firmly thereby. Due to this, edges of openings of the bobbin cylinder portions are prevented from being displaced and making contact with the inner circumferential surface of the ring core. As a result of this, the breakage of the ring core or the bobbin upon the injection molding of the molten resin can be prevented. Further details and improvements of the technique disclosed herein will be described below in the “Detailed Description of Invention”.
A method of manufacturing a reactor according to an embodiment will be described with reference to the drawings. A structure of the reactor will be described first, before explaining the manufacturing method thereof. The reactor of the present embodiment is used in a boosting converter that boosts a battery voltage in a driving system of an electric vehicle, for example. A traction motor for the electric vehicle can output power of several ten kilowatts, and a current flowing from the battery can be as large as several ten amperes. With such a large current flowing through the reactor, a flat rectangular wire with a small internal resistance is used as coils therefor.
Firstly, the reactor 10 will be described schematically using
Next, a structure of the subassembly 10a will be described with reference to the disassembled view of
The bobbin 20 is configured of a bobbin main body 22 and a flange part 21. Both the bobbin main body 22 and the flange part 21 are made of resin. The bobbin main body 22 has a structure in which a pair of cylinder portions 23 is connected by a flange part 25 so as to be aligned in parallel. The cylinder portions 23 extend along the X-axis in the drawings. Due to this, the X-axis will be termed the cylinder axis direction. The block core parts 30c and the gap plates 30d as mentioned earlier are housed within each of the cylinder portions 23. That is, each of the pair of cylinder portions 23 covers the corresponding one of the pair of block core parts 30c (straight portions) of the ring core 30. The cylinder portions 23 have a rectangular cross section, and projections 24 are provided on each of such rectangular planes. The projections 24 extend along the cylinder axis direction (X-axis direction in the drawings). Further, the flange part 25 includes lead slits 25a for passing lead portions 31 (coil lead wires) of the coil 3 therethrough.
The flange part 21 is provided with holes 21a through which the cylinder portions 23 are to be passed. Further, as seen along the cylinder axis direction (X-axis direction in the drawings), a protrusion 21c is provided between two cylinder portions 23. The protrusion 21c is provided on an outer side of the flange part 21 in the cylinder axis direction. Seen along the cylinder axis direction, the protrusion 21c extends so as to set two cylinder portions 23 apart from each other. Further, a protrusion 25c is provided similarly on the flange part 25 of the bobbin main body 22 on an outer side in the cylinder axis direction. The protrusion 25c has an identical shape as the protrusion 21c. The pair of protrusions 21c, 25c is provided at both ends of the bobbin 20 by respectively being directed outwardly in the cylinder axis direction. To distinguish them from mold-side protrusions to be described later, the protrusions 21c, 25c provided on the bobbin 20 will herein be termed bobbin protrusions 21c, 25c.
Each of the pair of cylinder portions 23 fits into the corresponding one of the pair of holes 21a of the flange part 21. The pair of cylinder portions 23 has their ends on one side connected by the flange part 25, and ends on the other side connected by the flange part 21. The flange part 25 and the flange part 21 both correspond to connecting portions that connect the ends of the pair of cylinder portions 23. The bobbin protrusions 21c, 25c are provided on the outer sides of the respective connecting portions (flange part 25 and flange part 21) in the cylinder axis direction. The bobbin protrusions 21c, 25c are provided so as to protect the ring core 30 (U core parts 30b) from breakage upon injection molding the plastic cover 16, to be described later. A method of manufacturing the plastic cover 16 will be described later.
An order of assembly of the subassembly 10a will be described. The block core parts 30c are inserted to centers of insides of the cylinder portions 23 respectively. The gap plates 30d. are arranged on both sides of each of the block core parts 30c. U-shaped legs of the U core parts 30a are inserted into the cylinder portions 23 from a flange part 25 side of the bobbin main body 22. A gap is secured between the block core part 30c and the U core part 30a within each of the cylinder portions 23 by the gap plate 30d. The coils 3a, 3b in which the flat rectangular wire is wound edgewise are arranged on outer sides of the cylinder portions 23. As is clearly shown in
As shown in the perspective view of
The reactor 10 is completed by forming the plastic cover 16 on the subassembly 10a. The plastic cover 16 is formed by injection molding so as to cover substantially an entirety of the subassembly 10a contained in the mold, however, the plastic cover 16 is not formed underneath the subassembly 10a. The plastic cover 16 covers the ring core 30 and upper surfaces and side surfaces of the coils 3a, 3b wound on the bobbin 20, but does not cover lower surfaces of the coils 3a, 3b. The coil lower surfaces that are exposed from the plastic cover 16 make contact with a cooler upon when the reactor 10 is assembled in a power converter and the like. The coil lower surfaces are exposed from the plastic cover 16 so that heat from the coil 3 upon its use can efficiently be cooled by the cooler.
The plastic cover 16 is formed by injecting molten resin with high pressure in a cavity that is defined and formed within the mold in which the subassembly 10a is contained.
The mold 50 is configured of the first mold 51 and the second mold 52. When the subassembly 10a is installed and the first mold 51 and the second mold 52 are closed, a closed space (cavity Ca) is formed therein. The molten resin is injected at high pressure into the cavity Ca, and as a result of this the plastic cover 16 is formed.
As mentioned earlier, the bobbin protrusion 25c is provided on the outer side of the flange part 25 of the bobbin 20 (outer side in the cylinder axis direction). The bobbin protrusion 25c makes contact with the inner circumferential surface of the ring core 30 (U core part 30a). Notably, a part of the inner circumferential surface of the U core part 30a is flat (flat surface 30a1), and a flat top surface of the bobbin protrusion 25c makes surface contact with the flat surface 30a1 of the inner circumferential surface. A protrusion (mold protrusion 51a) is provided on a cavity surface of the first mold 51. The mold protrusion 51a is provided at a position that faces the bobbin protrusion 25c across the ring core 30 (U core part 30a). An outer circumferential surface (flat surface 30a2) of the ring core 30 (U core part 30a) corresponding to the flat surface 30a1 is also flat. A flat top surface of the mold protrusion 51a makes surface contact with the flat surface 30a2 thereof. The flat surface 30a1 in the inner circumferential surface and the flat surface 30a2 in the outer circumferential surface are parallel to each other. That is, the ring core 30 (U core part 30a) has the bobbin protrusion 25c makes surface contact with the flat surface 30a1 on an inner circumferential side and the mold protrusion 51a makes surface contact with the flat surface 30a2 on an outer circumferential side parallel to the flat surface 30a1. The ring core 30 (U core part 30a) is clamped by the bobbin protrusion 25c and the mold protrusion 51a from both the inner and outer circumferential sides.
The same applies to a side of the flange part 21 and the second mold 52. That is, the bobbin protrusion 21c is provided on the outer side of the flange part 21, and the mold protrusion 52a is provided on a surface of the second mold 52 (cavity surface). The mold protrusion 52a is provided at a position that faces the bobbin protrusion 21c across the ring core 30 (U core part 30b). A part of the inner circumferential surface of the ring core 30 (U core part 30b) and a part of an outer circumferential surface form flat parallel surfaces. A flat surface 30b1 and a flat surface 30b2 shown in
As is clearly shown in
Especially, the pair of bobbin protrusions 21c, 25c is positioned at the center between the pair of cylinder portions 23 as seen along the cylinder axis direction, and press the ring core 30 from the inside toward the outside at the miter sides along the cylinder axis direction than the cylinder portions 23. Due to this positional relationship, the inner circumferential surface of the ring core 30 is prevented from being displaced and making contact with edges of openings of the cylinder portions 23.
The molten resin is injected into the cavity Ca while the U core parts 30a, 30b positioned on the outer sides of the bobbin 20 in the cylinder axis direction are in a state of being clamped respectively by the bobbin protrusions 21c, 25c and the mold protrusions 51a, 52a. The U core parts 30a, 30b, being parts of the ring core 30 are clamped by the bobbin protrusions 21c, 25c and the mold protrusions 51a, 52a, and are firmly retained thereby. The bobbin 20 is also retained within the ring core 30. Due to this, the ring core 30 and the bobbin 20 are prevented from making contact with displacement each other while the highly pressurized molten resin is being injected. For example, if the bobbin protrusions 21c, 25c were not provided, there is a risk that inner circumferential curved portions of the ring core 30 indicated by arrows A1 in the drawings may make contact with the edges of the openings of the cylinder portions 23 of the bobbin 20. If the highly pressurized molten resin is injected in a state where the inner circumferential curved portions A1 and the edges of the openings of the cylinder portions 23 make contact, stress may be concentrated at the contacting portion, as a result of which the ring core 30 or the bobbin 20 may break. The breakage of the ring core 30 or the bobbin 20 can be avoided by a manufacturing step that injects the molten resin while clamping the ring core 30 (U core parts 30a, 30b) from its inner and outer circumferences by the bobbin protrusions 21c, 25c and the mold protrusions 51a, 52a.
The window 16a shown in
The bobbin protrusions 21c, 25c and the mold protrusions 51a, 52a are arranged on a straight line ML that is parallel to axial lines CL of the pair of cylinder portions 23 extending in parallel, and is located in a midst between the two axial lines CL. According to this arrangement, the mold protrusions 51a, 52a can uniformly press the ring core 30 from its both sides along the straight line ML. Further, the bobbin protrusions 21c, 25c respectively facing the mold protrusions 51a, 52a similarly press the ring core 30 from the ring inner side toward the outer side thereof along the straight line ML in the opposite direction from that mentioned above. This structure will also contribute to the prevention of contact of the ring core 30 and the bobbin 20 with displacement.
Some features of the art disclosed in the embodiment will be described. The flange part 25 and the flange part 21 correspond to an example of the connecting portions that connect the ends of the pair of cylinder portions 23. The bobbin protrusions 21c, 25c correspond to an example of first protrusions provided at both ends of the bobbin 20 in the cylinder axis direction. The mold protrusions 51a, 52a correspond to an example of second protrusions.
Specific examples of the present invention have been described in detail, however, these are mere exemplary indications and thus do not limit the scope of the claims. The art described in the claims includes modifications and variations of the specific examples presented above. Technical features described in the description and the drawings may technically be useful alone or in various combinations, and are not limited to the combinations as originally claimed. Further, the art described in the description and the drawings may concurrently achieve a plurality of aims, and technical significance thereof resides in achieving any one of such aims.
Number | Date | Country | Kind |
---|---|---|---|
2014-262735 | Dec 2014 | JP | national |