This invention generally relates to the provision of tamper-evident features in reclosable packaging. In particular, the invention relates to tamper-evident features for use in reclosable packaging of a type having a slider-operated string zipper.
Reclosable bags are finding ever-growing acceptance as primary packaging, particularly as packaging for foodstuffs such as cereal, fresh vegetables, snacks and the like. Such bags provide the consumer with the ability to readily store, in a closed, if not sealed, package any unused portion of the packaged product even after the package is initially opened.
Reclosable bags typically comprise a receptacle having a mouth with a zipper for opening and closing the mouth. In recent years, many zippers have been designed to operate with a slider mounted thereto. As the slider is moved in an opening direction, the slider causes the zipper sections it passes over to open. Conversely, as the slider is moved in a closing direction, the slider causes the zipper sections it passes over to close. Typically, a zipper for a reclosable bag includes a pair of interengageable profiled closure strips that are joined at opposite ends of the bag mouth. The profiles of interengageable plastic zipper strips can take on various configurations, e.g. interlocking rib and groove elements having so-called male and female profiles, interlocking alternating hook-shaped closure elements, interlocking ball-shaped closure elements, etc. Reclosable bags having slider-operated zippers are generally more desirable to consumers than bags having zippers without sliders because the slider eliminates the need for the consumer to align the interengageable zipper profiles before causing those profiles to engage.
In one type of slider-operated zipper assembly, the slider straddles the zipper and has a separating finger at one end that is inserted between the profiles to force them apart as the slider is moved along the zipper in an opening direction. The other end of the slider is sufficiently narrow to force the profiles into engagement and close the zipper when the slider is moved along the zipper in a closing direction.
In the past, many interlocking closure strips were formed integrally with the bag making film, for example, by extruding the bag making film with the closure strips formed on the film. Such constructions, however, were limited by the conditions required to extrude both the film and zipper together. To avoid such limitations, many bag designs entail separate extrusion of the closure strips, which are subsequently joined to the bag-making film, for example, by conduction heat sealing. These separate closure strips typically have flanges extending therefrom in such a way that the flanges can be joined to bag-making film in order to attach the closure strips to the film. Many previous slider-operated, separately extruded zippers used flange-type constructions.
An alternative zipper design is the so-called flangeless or string zipper, which has substantially no flange portion above or below the interengageable closure profiles. In the case of a string zipper, the bag-making film is joined to the backs of the bases of the closure strips. String zippers can be produced at much greater speeds, allow much greater footage to be wound on a spool, thereby requiring less set-up time, and use less material than flanged zippers, enabling a substantial reduction in the cost of manufacture and processing.
Various additions to reclosable bags have been made to provide tamper-evident seals or indicators that will reveal when the bag has been opened or otherwise tampered with prior to purchase by the consumer. It is known to provide a reclosable package construction that is designed to undergo some permanent change in the package appearance when the package is opened for the first time. For example, it is known to provide a reclosable package with a tamper-evident, non-reclosable peel seal that gives a positive indication of having been broken when a package is first opened. It is also known to shroud the zipper (with or without slider) inside an enclosed header on the top of the bag. Another type of tamper-evident feature is the provision of a membrane on the product side of the zipper that partitions the interior volume in an airtight manner.
U.S. Pat. No. 6,347,885 discloses a reclosable package having a slider-operated flanged zipper shrouded by a tamper-evident structure. An opening in one or both walls of the tamper-evident structure provides a view of the slider. Optionally, the openings may encircle the slider, with the perimeters of the openings serving to block movement of the slider in the opening direction. Additional tamper-evident structure may be provided in the form of a peel seal (between the bag panels or between the zipper flanges) or in the form of a web that, in effect, connects the zipper flanges to form a membrane, each of these optional features serving to block access to the product even after the zipper has been opened. U.S. Pat. No. 6,347,885 is silent regarding providing tamper-evident features on a reclosable package having a slider-operated string (i.e., flangeless) zipper.
There is a need for new designs for slider-operated string-zippered reclosable packages with tamper-evident features that can be manufactured at low cost.
The present invention is directed to methods of manufacturing reclosable packages comprising a slider-operated string zipper covered by a tamper-evident shroud having an opening that at least partially exposes the slider.
One aspect of the invention is a method of manufacture comprising the following steps: (a) placing first and second portions of a length of a first web on opposing sides of a volume of space; (b) prior or subsequent to the performance of step (a), joining the first portion of the length of the first web to a back of a length of a first flangeless zipper strip having a first closure profile on its front, thereby forming a first zone of first joinder; (c) prior or subsequent to the performance of step (a), joining the second portion of the length of the first web to a back of a length of a second flangeless zipper strip having a second closure profile on its front, thereby forming a second zone of joinder, respective major portions of the first and second closure profiles of the respective lengths of the first and second zipper strips being interlockable with each other; (d) inserting a slider onto the lengths of the first and second flangeless zipper strips, the first portion of the length of the first web passing between the back of the length of the first flangeless zipper strip and a first sidewall of the slider, and the second portion of the length of the first web passing between the back of the length of the second flangeless zipper strip and a second sidewall of the slider; (e) subsequent to the performance of steps (a) through (d), joining a first portion of a length of a second web to a third portion of the length of the first web disposed lower than the first portion of the length of the first web, thereby forming a third zone of joinder; (f) subsequent to the performance of steps (a) through (d), joining a second portion of the length of the second web to a fourth portion of the length of the first web disposed lower than the second portion of the length of the first web, thereby forming a fourth zone of joinder; and (g) prior or subsequent to the performance of step (e), removing a third portion of the length of the second web to form an opening that is situated so that at least a portion of the slider is exposed through the opening after steps (a) through (f) have been performed.
Another aspect of the invention is a method of manufacture comprising the following steps: (a) placing first and second portions of a length of a first web on opposing sides of a volume of space; (b) before or after step (a), joining a back of a length of a first flangeless zipper strip to the first portion of the length of the first web, the length of the first flangeless zipper strip being substantially the same as the length of the first web; (c) before or after step (a), joining a back of a length of a second flangeless zipper strip to a second portion of the length of the first web, the length of the second flangeless zipper strip being substantially the same as the length of the first web; (d) inserting a slider on the lengths of the first and second flangeless zipper strips after completion of steps (a) through (c); (e) joining third and fourth portions of the length of the first web to each other along a first band-shaped zone of joinder that is substantially transverse to the length of the first flangeless zipper strip; (f) joining fifth and sixth portions of the length of the first web to each other along a second band-shaped zone of joinder that is substantially parallel to the first band-shaped zone of joinder, the first and second band-shaped zones of joinder forming side boundaries of a pocket; (g) loading product into the pocket; (h) joining a first portion of a length of a second web to a seventh portion of the length of the first web along a third band-shaped zone of joinder that is substantially parallel to and disposed lower than the length of the first flangeless zipper strip; (i) joining a second portion of the length of the second web to an eighth portion of the length of the first web along a fourth band-shaped zone of joinder that is substantially parallel to and disposed lower than the length of the second flangeless zipper strip; and (j) prior or subsequent to the performance of step (h), removing a third portion of the length of the second web to form an opening that is situated so that at least a portion of the slider is exposed through the first opening after steps (a) through (j) have been performed.
A further aspect of the invention is a method of manufacture comprising the following steps: (a) folding a length of a web having first and second parallel edges along first, second and third folds that are substantially parallel to the first and second edges, the folded web comprising a first portion extending from the first fold to the second fold, a second portion extending from the second fold to the third fold, the first and second portions confronting each other, a third portion extending from the first fold, and a fourth portion extending from the third fold, wherein no portion of the third and fourth portions is disposed between the first and second portions; (b) joining a back of a length of a first flangeless zipper strip and a portion of the third portion of the length of the web that is near or adjacent the first fold to an intervening portion of the first portion of the length of the web that is near or adjacent the first fold, thereby forming a first double-layer seal; (c) joining a back of a length of a second flangeless zipper strip and a portion of the fourth portion of the length of the web that is near or adjacent the third fold to an intervening portion of the second portion of the length of the web that is near or adjacent the third fold, thereby forming a second double-layer seal; (d) inserting a slider onto the lengths of the first and second flangeless zipper strips, the first double-layer seal passing between the back of the length of the first flangeless zipper strip and a first sidewall of the slider, and the second double-layer seal passing between the back of the length of the second flangeless zipper strip and a second sidewall of the slider; (e) joining respective distal portions of the third and fourth portions of the length of the web to each other to form a shroud that covers the first and second flangeless zipper strips and the slider; and (f) prior or subsequent to the performance of step (e), forming an opening in the third portion of the length of the web that is situated so that the slider is exposed through the opening after steps (a) through (f) have been performed.
Other aspects of the invention are disclosed and claimed below.
Reference will now be made to the drawings in which similar elements in different drawings bear the same reference numerals.
A known reclosable package comprising a receptacle 2 and a flexible plastic string zipper 4 operated by manipulation of a slider 10 is shown in
The receptacle 2 may be made from any suitable film material, including thermoplastic film materials such as low-density polyethylene, substantially linear copolymers of ethylene and a C3-C8 alpha-olefin, polypropylene, polyvinylidene chloride, mixtures of two or more of these polymers, or mixtures of one of these polymers with another thermoplastic polymer. The person skilled in the art will recognize that this list of suitable materials is not exhaustive. The thickness of the film is preferably 2 mils or less. The receptacle 2 comprises opposing walls (only the front panel 12 is visible in
At its top end, the receptacle 2 has an openable mouth, on the inside of which is an extruded plastic string zipper 4. The string zipper 4 comprises a pair of interengageable zipper strips. One zipper strip 6 is visible in
The string zipper is operated by sliding the slider 10 along the zipper strips. As the slider moves across the zipper, the zipper is opened or closed. As shown in
The slider may be made in multiple parts and welded together or the parts may be constructed to be snapped together. The slider may also be of one-piece construction. The slider can be made using any desired method, such as injection molding. The slider can be molded from any suitable plastic, such as nylon, polypropylene, polystyrene, acetal, polyketone, polybutylene terephthalate, high-density polyethylene, polycarbonate, or ABS.
The package shown in
A string zipper design in accordance with one embodiment of the present invention is depicted in
One embodiment of a string zipper suitable for use in the present invention is seen in
Still referring to
In a typical zipper, the profile of each male member has a stem flanked by shoulders or teeth, and a tip of the profile points toward the opposing female profile, the tip being the point of the male member furthest away from the base of the profiled structure. Each female profile comprises a pair of gripper jaws extending from a base or root of the female profile. Each jaw comprises a wall and a hook integrally formed at the distal end of the respective wall. The hooks are inclined and generally directed toward each other, the distal ends of the hooks defining a mouth that communicates with a groove defined by the walls and root of the female profile. To open the closed zipper, the zipper parts 6 and 8 are pried apart with sufficient force to pull the heads of the male members out of the female profiles. When the shoulders of the male members clear the hooks of the outwardly flexed gripper jaws, the male and female members are no longer interlocked and the zipper is open.
Numerous configurations for the interlockable male and female members are known in the art. The present invention is not limited to use with male members having an arrow-shaped head. Male members having expanded heads with other shapes may be used. For example, instead of an expanded head having a pointed tip, the front face of the expanded head may be rounded. In other words, the head could have a semicircular profile instead of a triangular profile. Alternatively, the expanded head of the male member could have a trapezoidal profile.
As seen in
The slider 10 also comprises a plow or divider 42 that depends downward from a central portion of the top wall 32 to an elevation below the lowermost portions of each sidewalls. The plow is disposed between opposing sections of the zipper parts that pass through the tunnel. In the embodiment shown in
The plow 42 comprises a beam having a cross-sectional shape that is a rectangle with rounded corners. The axis of the beam is generally perpendicular to the top wall of the slider. As the slider is moved in the opening direction (i.e., with the closing end leading), the plow 42 pries the impinging sections of zipper parts 6 and 8 apart. The plow 42 divides the closing end of the slider tunnel into respective passages for the separated zipper parts to pass through.
The slider 10 further comprises a retaining projection or ledge 38 that projects inward from the side wall 34 and a retaining projection or ledge 40 that projects inward from the side wall 36. The ledges 38 and 40 project toward each other, forming respective latches for latching the slider onto the zipper. The ledges 38 and 40 have substantially coplanar, generally horizontal upper surfaces on which the bottom edges of the zipper profiles can sit, thereby effectively latching the slider under the bottom edges of the zipper parts to increase slider pull-off resistance. The ledges 38 and 40 further comprise respective inclined bottom surfaces 46 and 48 that serve to guide the respective zipper parts 6 and 8 into the slider tunnel during automated insertion of the slider onto the zipper.
To reduce the cost of manufacture, the slider may be designed to reduce the amount of material used and to increase the speed with which such sliders can be injection molded. Suitable injection-molded slider designs are fully disclosed in U.S. Patent Application Publ No. 2004/0161169.
In accordance with one embodiment of the present invention shown in
In accordance with the embodiment shown in
An individual package can be separated from the rest of the work in process by cutting along the vertical lines indicated by dashed lines C in
In accordance with one embodiment, the cross seals 64 are formed in two stages. In the first operation (performed before the receptacle is filled with product and after the string zipper has been attached), the walls 12 and 14 are joined to each in the portion of the cross seal 64 that extends from the string zipper to the bottom fold. In the second operation (performed after the receptacle has been filled with product and after the shroud 68 has been attached to the walls 12 and 14), the walls of the shroud are joined to each other in the portion of the cross seal 64 that extends above the string zipper and are joined to the receptacle walls in the portion of the cross seal 64 that extends from the top of the string zipper to the zone of joinder 70. Each cross seal 64 is bisected along a respective cut line C to form the left side seam 16 of one package and the right side seam 18 of an adjacent package.
The reclosable package depicted in
The web with attached string zipper along one edge is then pulled by a pair of side rollers past a folding board. The side rollers may be provided with grooves to provide clearance for the string zipper. The folding board folds the web to form two folded sides interconnected by a folded section and disposed substantially vertical, with the folded section at the bottom. During folding, the string zipper and the marginal portion of the web that is not yet joined to the zipper are guided by conventional means into respective positions such that the string zipper and that marginal portion of the web confront each other.
Immediately after the web is folded, the flangeless zipper strips are joined to each other at spaced intervals (i.e., zones of zipper fusion having centerlines separated by a distance equal to one package length) by any conventional means, such as an ultrasonic welding assembly comprising an anvil and a reciprocatable horn that transmits ultrasound wave energy into the zipper material. The horn and anvil can be designed to shape the thermoplastic zipper material into a structure that will also serve as respective slider end stops on two separate packages when the shaped area is later bisected during severance of a package. During the same operation, a confronting portion of the marginal portion of web not yet attached to the string zipper is joined to the adjoining second zipper strip in the same region.
At the next station, the two sides of the folded web are joined to each other at the location of the end seals, e.g., by conventional heat sealing using reciprocatable vertical sealing bars. One or both of the vertical sealing bars are heated. The heated sealing bar applies heat in a band-shaped zone having a centerline that is oriented substantially perpendicular to string zipper. When the web material cools, it fuses to form a cross seal indicated by the hatched zone 64 in
After product has been loaded into a pocket, the top of the pocket is released from its fully open state by turning off the suction to the vacuum cups to release the two sides of the folded web. The filled pocket is then advanced to a second sealing station where the confronting portion of the unattached marginal portion of the web is joined to the second zipper strip. This can be accomplished, e.g., by conventional heat sealing using reciprocatable horizontal sealing bars. The sealing bar that confronts the second zipper strip is heated, while the opposing sealing bar that confronts the first zipper strip need not be heated. The horizontal sealing bars in their extended positions will press the unattached marginal portion of the web against the back of the second zipper strip, producing a band-shaped zone of zipper/web joinder after the melted or softened thermoplastic material of the zipper and/or web has fused. At this juncture, the filled pocket is closed.
Downstream from the second sealing station, excess web material that extends beyond the zipper is continuously trimmed by a pair of stationary knives. Each knife trims a respective marginal portion of the web that extends beyond the tops of the zipper. The tips of the knife blades must be positioned so as to not cut the zipper, even as the moving zipper wanders to and fro. The trimmed portions of the web are taken away. Unattached tail portions at the web cut lines may remain after cutting. The presence of unattached tails could interfere with slider insertion during manufacture as well as with slider operation during use of the reclosable package by a consumer. Therefore an additional step is performed of sealing the tails to the respective zipper strips. The tails are sealed by a lip sealer, e.g., of the type disclosed in U.S. Patent Application Publ No. 2005/0043159.
The filled pocket is then advanced to a slider insertion station, where a slider insertion device inserts a slider onto the string zipper. A typical slider insertion device for inserting a slider onto a closed zipper comprises a pusher that pushes a slider onto a section of the string zipper in a slider insertion zone. The pusher displacement is driven by an air cylinder. The pusher is fixed to a distal end of a rod of a piston slidable inside the cylinder. The pusher is alternately extended and retracted by actuation of the air cylinder, which has two separate ports (not shown) for intake of compressed air from separately controlled air lines. The pusher travels along a straight tunnel or channel. One sidewall of the channel has an opening that communicates with the end of a slider track (not shown). A succession of sliders are fed periodically along the track by a conventional pneumatic slider feeding system (not shown). When the pusher is retracted, the next slider must be automatically fed to a pre-insertion position directly in front of the pusher.
Systems for transporting sliders to a slider insertion device are disclosed in U.S. patent application Ser. No. 10/106,687 filed on Mar. 25, 2002 and entitled “System for Transporting Sliders for Zipper Bags”. That application discloses feeding sliders into a slider insertion device by means of a feeder tube that only accepts correctly oriented sliders having an asymmetric profile, i.e., one leg of the slider is longer than the other leg. Similarly, the slider shown in
At the same time that a slider is being inserted as previously described, a slider end stop structure is being formed on the zipper at an ultrasonic stomping station downstream from the slider insertion zone. This slider end stop structure will be bisected later during cutting by a hot knife (not shown) to form two slider end stops, i.e., the end stop at the zipper fully closed slider park position for one package and the end stop at the zipper fully open slider park position for the next package. The end stop structure is typically formed by an ultrasonic stomping assembly comprising a horn and an anvil. The horn transmits sufficient ultrasound wave energy into the plastic zipper material that the material is fused into a structure (e.g., a vertically extending hump) defined by the surfaces of the horn and anvil. The horn and anvil may be of the reciprocating or rotary variety.
After the package has been filled and the slider has been inserted onto the string zipper, a second web of packaging material (narrower than the first web) is drawn from a supply roll and pulled forward in a substantially horizontal plane. The second web is advanced intermittently, each advance being substantially equal to one package length. During each dwell time, a pair of openings are formed in the second web at a fixed station, the openings of each pair being disposed in mirror-image fashion on opposite sides of the centerline of the second web. Each opening is sized and shaped so that a slider will fit inside and be framed by the opening. In the example shown in
The section of the second web with openings formed therein is pulled by a pair of side rollers past a folding board. The folding board folds the second web in half along its centerline to form two folded sides interconnected by a folded section and disposed substantially vertical, with the folded section at the top. During folding, the marginal portions of the second web are guided by conventional means into respective positions such that the marginal portions of the second web and the marginal portions of the first web confront each other. The openings on the second web are situated so that each pair of openings will be aligned with a respective slider on the string zipper. After each section of the second web has been folded with its openings aligned with a slider, the marginal portions of that section of the second web are joined to the respective marginal portions of the corresponding section of the first web by any conventional means, such as horizontal heated sealing bars 84 and 86 depicted in
In the alternative, the openings 74 may be formed after the second web has been attached to the first web to form the shroud 68.
After the shroud is in place, the cross seals 64 are extended to the top of the shroud 68 by heat sealing the two sides of the second web to each other at elevations higher than the slider end stop structure 66 and by heat sealing the two sides of the second web to the first web at lower elevations down to the band-shaped zones of joinder (items 70 and 82 in
Thereafter each cross seal 64 is cut, e.g., along a centerline C (see
Because the openings in the shroud allow anyone to grasp the slider and pull it in the opening direction, preferably means are provided to prevent the slider from being moved in that direction. For example, the relative dimensions of the cross sections of the shroud and the slider may be selected so that it is not possible to fit the slider between the walls of the shroud adjacent the opening end of the parked slider. Alternatively, the shroud walls may be tack sealed together in the area adjacent the cutouts in a manner that again prevents the slider from entering between the shroud walls adjacent the opening end of the parked slider. The slider could also be tack sealed to the shroud.
In accordance with another embodiment of the invention, a reclosable package having openings in the shroud that expose the slider can be manufactured by a method comprising the steps depicted in
As shown in
Referring to
In a horizontal form-fill-seal machine, product can be placed on the web of film material 90 before the web is folded. Alternatively, after the package shown in
Although not shown in
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for members thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
As used in the claims, the verb “joined” means fused, bonded, sealed, adhered, etc., whether by application of heat and/or pressure, application of ultrasonic energy, application of a layer of adhesive material or bonding agent, interposition of an adhesive or bonding strip, etc. As used in the claims, the term “string zipper” means a zipper comprising interengageable zipper strips that have substantially no flange portions. As used in the claims, the term “lower than” is used with reference to an upright reclosable package in which the zipper is higher than the product-filled receptacle. Finally, in the absence of explicit language setting forth the order in which certain steps should be performed, the method claims should not be construed to require that steps be performed in the order in which they are recited.
This application is a divisional of and claims priority from U.S. patent application Ser. No. 11/195,116 filed on Aug. 2, 2005, issued on Mar. 6, 2007 as U.S. Pat. No. 7,185,475, which in turn is a continuation-in-part application of and claims priority from U.S patent application Ser. No. 10/747,849 filed on Dec. 29, 2003, issued on Sep. 13, 2005 as U.S. Pat. No. 6,941,726.
Number | Name | Date | Kind |
---|---|---|---|
4337889 | Moertel | Jul 1982 | A |
4682366 | Ausnit et al. | Jul 1987 | A |
4927271 | Branson | May 1990 | A |
5456928 | Hustad et al. | Oct 1995 | A |
5713669 | Thomas et al. | Feb 1998 | A |
6088887 | Bois | Jul 2000 | A |
6257763 | Stolmeier et al. | Jul 2001 | B1 |
6273607 | Buchman | Aug 2001 | B1 |
6290390 | Buchman | Sep 2001 | B1 |
6347885 | Buchman | Feb 2002 | B1 |
6360513 | Strand et al. | Mar 2002 | B1 |
6474866 | Buchman | Nov 2002 | B2 |
6632021 | Bois et al. | Oct 2003 | B2 |
6799890 | Schneider et al. | Oct 2004 | B2 |
6829873 | Kinigakis et al. | Dec 2004 | B2 |
6884208 | Haws | Apr 2005 | B2 |
6962034 | Thieman | Nov 2005 | B2 |
7107738 | Ausnit et al. | Sep 2006 | B2 |
7114309 | Ausnit | Oct 2006 | B2 |
7178309 | Thomas et al. | Feb 2007 | B2 |
20030041563 | Schneider et al. | Mar 2003 | A1 |
20030145558 | Schneider et al. | Aug 2003 | A1 |
20030208989 | Thomas et al. | Nov 2003 | A1 |
20030235347 | Kinigakis et al. | Dec 2003 | A1 |
20040091178 | Schneider | May 2004 | A1 |
20050008267 | Linton et al. | Jan 2005 | A1 |
20050120678 | Ausnit | Jun 2005 | A1 |
20060003879 | Buchman | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070151210 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11195116 | Aug 2005 | US |
Child | 11714455 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10747849 | Dec 2003 | US |
Child | 11195116 | US |