The present invention relates to a method of manufacturing a seamless pipe or tube, and more specifically, to a method of manufacturing a seamless pipe or tube by piercing and rolling a billet using a piercing mill.
The seamless pipe or tube in general is produced by piercing and rolling a solid round billet using a piercing mill. The piercing mill includes a pusher provided along a pass line on the inlet side, a plug provided along the pass line on the outlet side, and a plurality of inclined rolls arranged opposed to one another with the plug therebetween.
A billet heated in a heating furnace is arranged on the pass line. Then, the billet has its rear end pushed by the pusher and is transported toward between the plurality of inclined rolls along the pass line. In other words, the pusher serves to transport the billet. When the billet is caught between the plurality of inclined rolls, the pusher stops its operation. The billet engaged between the plurality of inclined rolls is pierced and rolled as it helically advances, and formed into a hollow shell.
In the above-described piercing and rolling, leaf-, fin-, or lap-shaped defects (hereinafter referred to as “inner surface defects”) are generated at the inner surface of the hollow shell after the piercing and rolling because of the rotary forging effect and additional shear deformation. Therefore, measures to reduce the inner surface defects have been studied.
Methods of restraining such inner surface defects during the piercing and rolling are disclosed by JP 2000-246311 A (hereinafter as “Patent Document 1”), JP 2001-162306 A (hereinafter as “Patent Document 2”) and Japanese Patent No. 3503552 (hereinafter as Patent Document 3”). In the disclosure of these documents, the piercing and rolling may be carried out with a smaller rolling reduction than in the conventional case in order to restrain inner surface defects. If the rolling reduction is reduced during the piercing and rolling, the billet is less stably caught between the inclined rolls but such defective entry is prevented when the pusher pushes the billet from behind according to the disclosure. In short, according to these documents, the pusher is used in order to improve the defective entry of the billet that could be caused because of the reduced rolling reduction.
More specifically, as shown in
According to the piercing and rolling method, as shown in
However, if a billet is formed into a hollow shell by piercing and rolling by the disclosed methods, a greater number of inner surface defects are generated at the tip end part of the hollow shell than at the central part of the hollow shell. The tip end part with the inner surface defects may be cut off using a cutter and a reduced number of inner surface defects would remain in the seamless pipe, while the yield is lowered for the removed part. Therefore, it is preferable to reduce generation of inner surface defects at the tip end part itself rather than simply cutting off the tip end part with the inner surface defects.
It is an object of the invention to provide a method of manufacturing a seamless pipe or tube that allows inner surface defects at the tip end of a pierced and rolled hollow shell to be reduced.
The inventors measured the advancing speed of the billet (the speed in the rolling direction) during piercing and rolling and the rotation speed of the billet in the circumferential direction during the piercing and rolling in order to examine the cause for a larger number of inner surface defects generated at the tip end part than at the central part.
A S45C solid round billet having an outer diameter of 70 mm was prepared as a test material. The prepared billet was heated to 1200° C. and then the heated billet was pierced and rolled by a piercing mill. More specifically, the billet was pierced and rolled under the conditions in which the inclination angle of the inclined rolls was 10°, the roll interval between the gorge parts of the inclined rolls was 61 mm, and the plug advanced amount representing the axial distance from the gorge parts of the inclined rolls to the plug tip end was 38 mm. In this way, the billet was formed into a hollow shell having an outer diameter of 75 mm and a thickness of 6 mm. In this case, the billet was not pushed using the pusher.
The advancing speed of the billet during the piercing and rolling was measured by the following method. A scale plate was provided along the pass line on the inlet side of the piercing mill. During the piercing and rolling, the rear end of the billet and the scale plate were taken using a video camera so that the moving distance of the rear end of the billet per unit time was obtained according to the scale plate. The advancing speed of the billet was calculated based on the obtained image data.
The rotation speed of the billet during the piercing and rolling was measured by the following method. A pin to serve as a mark was attached near the outer circumference of the rear end surface of the billet and the movement of the pin at the rear end surface of the billet in the process of piercing and rolling was taken using a video camera. The amount of movement of the pin in the circumferential direction per unit time was obtained based on the obtained image data and the rotation speed of the billet was calculated.
The measurement result of the advancing speed of the billet is given in
The rotation speed of the billet was substantially the same after the billet contacted the inclined rolls until the piercing and rolling attained a steady state and then ended.
From the foregoing examination results, the inventors made the following findings. During the period after the billet is caught between the inclined rolls and starts to be pierced by the plug until the piercing and rolling reaches a steady state, in other words, between distance LE1 and distance LE2 in
Based on the above-described findings, the inventors considered that the advancing speed of the billet until a steady state is obtained should be greater than in the conventional case. If the advancing speed is increased, the moving amount of the billet per one rotation increases, which reduces the number of rotary forging. Consequently, the rotary forging effect is restrained, so that inner surface defects can be reduced. Furthermore, they also considered that if the advancing speed of the billet before piercing and rolling reaches a steady state is not less than the. advancing speed in the steady state, the amount of inner surface defects at the tip end of the hollow shell can be reduced to a level equal to or less than the level at the central and rear end parts of the hollow shell.
Based on the above-described ideas, the inventors have completed the following invention.
A method of manufacturing a seamless pipe or tube according to the invention pierces and rolls a solid billet using a piercing mill including a pusher provided on the inlet side along a pass line, a plug provided on the outlet side along the pass line, and a plurality of inclined rolls provided opposed to one another with the plug therebetween. The method of manufacturing a seamless pipe or tube according to the invention includes the steps of placing the billet on the pass line between the pusher and the plug, advancing the billet to be caught between the plurality of inclined rolls, and pushing the billet forward by the pusher so that at least between when the caught billet contacts the plug and when the piercing and rolling reaches a steady state, the advancing speed of the billet is at least equal to the advancing speed of the billet when piercing and rolling is carried out without pushing the billet forward by the pusher in the steady state.
Here, the steady state refers to the state in the period after the tip end of a pierced and rolled billet comes out from between the inclined rolls until the rear end of the billet contacts the inclined rolls.
In the method of manufacturing a seamless pipe according to the invention, the billet is pushed forward at least during the period between when the billet is caught between the inclined rolls and contacts the plug and when the piercing and rolling reaches a steady state (hereinafter referred to as a non-steady state). More specifically, the pusher is pushed forward at least until the piercing and rolling reaches a steady state after the billet is stably caught between the inclined rolls. At the time, the advancing speed of the billet in the non-steady state is not less than the advancing speed of the billet in the steady state when the piercing and rolling is carried out without pushing the billet forward by the pusher (hereinafter as piercing without using the pusher). Therefore, the effect of rotary forging on the tip end of the hollow shell is equal to or lower than the rotary forging effect on the center and rear end of the hollow shell. Therefore, inner surface defects at the tip end of the hollow shell can be restrained.
Here, the advancing speed of the billet in the non-steady state is for example the average advancing speed of the billet in the non-steady state. The advancing speed in the steady state is for example the average advancing speed of the billet in the steady state in the piercing without using the pusher.
Preferably, in the step of pushing forward, the billet is pushed forward by the pusher so that thrust load acting on the plug at least between when the caught billet contacts the plug and when the piercing and rolling reaches a steady state is at least equal to thrust load acting on the plug when piercing and rolling is carried out without pushing the billet forward by the pusher in the steady state.
Here, the thrust load of the plug refers to the load acting on the plug in the axial direction (so-called plug load).
In this way, the advancing speed of the billet in the non-steady state is not less than the advancing speed of the billet in the steady state in the piercing without using the pusher. Therefore, the number of rotary forging in the non-steady state can be smaller than that of the conventional case. Consequently, inner surface defects at the tip end of the hollow shell can be reduced.
Preferably, the method of manufacturing a seamless pipe further includes the step of setting the position of the inclined rolls before the piercing and rolling so that Expressions (1) and (2) are satisfied.
Dg/d≦4.5 (1)
−0.01053EL+0.8768≦DFT≦−0.01765EL+0.9717 (2)
where Dg is the roll diameter (mm) of the gorge part of the inclined roll, d is the outer diameter (mm) of the billet, DFT is the gorge draft ratio, EL is the piercing and rolling ratio in Expression (2), and the ratios are defined by Expressions (3) and (4):
DFT=Rg/d (3)
EL=L1/L0 (4)
where Rg is the roll interval (mm) that is minimized at the gorge part, L0 is the length (mm) of the billet, and L1 is the length (mm) of the hollow shell produced by piercing and rolling.
In this way, Expression (2) is satisfied, so that the advancing efficiency of the billet in the steady state can be restrained from being lowered. Therefore, the billet can be prevented from slipping and stopping during piercing and rolling and the billet rear end can be prevented from being clogged between the inclined rolls, or a so-called tailing-off failure can be prevented. Furthermore, since the slipping in the steady state can be prevented, the rotary forging effect caused by the slipping can be reduced, so that inner surface defects in steady state can be restrained.
Preferably, the method of manufacturing a seamless pipe according to the invention includes the step of stopping pushing the billet forward by the pusher when the piercing and rolling reaches a steady state.
In this way, once the attainment of a steady state is determined, the pusher operation is stopped, so that the plug and the billet in the process of piercing and rolling can be prevented from being continuously provided with excessive load by the pusher.
Preferably, the piercing mill further includes a detector provided on the outlet side to detect whether the tip end of the hollow shell passes between the rear ends of the inclined rolls. In the stopping step, the pushing forward of the billet by the pusher is stopped when the detector detects the tip end of the hollow shell passing between the rear ends of the inclined rolls.
As described in conjunction with
However, according to the invention, the steady state cannot be determined according to the above-described method. This is because the thrust load of the plug in the non-steady state is not less than the thrust load in the steady state during the piercing without using the pusher.
Therefore, according to the invention, it is determined based on whether the tip end of the material in the process of piercing and rolling has passed the rear ends of the inclined rolls. If the tip end of a material has passed the rear ends of the inclined rolls, the piercing and rolling has already attained a steady state. After the attainment of the steady state is determined, the pusher operation is stopped, so that the plug and the billet in the process of piercing and rolling can be prevented from being continuously provided with excessive load by the pusher.
Now, embodiments of the invention will be described in conjunction with the accompanying drawings, in which the same or corresponding portions are denoted by the same reference characters and their description is not repeated.
Piercing Mill
With reference to
The two inclined rolls 1 are provided opposed to each other with the pass line X-X therebetween. Each of the inclined rolls 1 has an inclination angle δ and crossed axes angle γ with respect to the pass line X-X. The plug 2 is between the two inclined rolls 1 and provided on the pass line X-X. The mandrel 3 is provided along the pass line X-X on the outlet side of the piercing mill 10 and its tip end is connected to the rear end of the plug 2.
The pusher 4 is provided in the front of the inlet side of the piercing mill 10 and along the pass line X-X. The pusher 4 includes a cylinder main body 41, a cylinder shaft 42, a connection member 43, and a billet pushing rod 44. The billet pushing rod 44 is coupled with the cylinder shaft 42 by the connection member 43 so that it can rotate in the circumferential direction. The cylinder main body 41 is a hydraulic or electromotive type device and advances/withdraws the cylinder shaft 42. The pusher 4 pushes a billet 20 from behind as the pusher has the tip end surface of the billet pushing rod 44 abutted against the rear end surface of the billet 20 and advances the cylinder shaft 42 and the billet pushing rod 44 by the cylinder main body 41.
The pusher 4 pushes the billet 20 forward in the rolling direction and has the billet caught between the inclined rolls 1. The pusher 4 further continues to push the billet 20 at least after the caught billet 20 contacts the tip end of the plug 2 until the piercing and rolling reaches a steady state, in other words, during the period in a non-steady state.
The HMD 51 as a detector is provided in the vicinity of the rear ends of the inclined rolls 1 on the outlet side of the piercing mill 10. The HMD 51 detects whether the tip end of a hollow shell after piercing and rolling has passed between the inclined rolls 1. If it is determined based on the detection result by the HMD 51 that the tip end of the hollow shell has passed between the inclined rolls 1, the pusher 4 stops pushing the billet 20.
Method of Manufacturing Seamless Pipe or Tube
Now, a method of manufacturing a seamless pipe or tube using the above-described piercing mill 10 will be described.
First Process
To start with, inclined rolls 1 having a gorge part with a roll diameter that satisfies the following Expression (1) is prepared.
Dg/d≧4.5 (1)
where Dg is the roll diameter (mm) of the gorge part and d is the outer diameter (mm) of a billet 20 to be pierced and rolled.
If Dg/d is less than 4.5, the entering angle in the rotation direction (billet circumferential direction) when the billet 20 is engaged between the inclined rolls 1 is large, and therefore slipping is more likely to be caused. Here, the entering angle refers to the angle formed by a segment connecting the point on the inclined roll surface that starts to contact the billet 20 and a point on the central axis of the inclined roll and a segment connecting a point on the pass line X-X and a point on the central axis of the inclined roll in a cross section normal to the pass line X-X including the point on the inclined roll 1 that contacts the billet first. In order to reduce slipping caused by increase in the entering angle, the inclined rolls 1 that satisfy Expression (1) are prepared and the prepared inclined rolls 1 are provided at the piercing mill 10.
Second Process
Then, the position of the two inclined rolls 1 is set. With reference to
−0.01053EL+0.8768≦DFT≦−0.01765EL+0.9717 (2)
In Expression (2), DFT represents the gorge draft ratio, EL represents the piercing and rolling ratio, and they are defined by the following Expressions (3) and (4), respectively.
DFT=Rg/d (3)
EL=L1/L0 (4)
where L0 is the length (mm) of the billet 20 yet to be pierced and L1 is the length (mm) of a hollow shell produced by piercing and rolling the billet 20. If the outer diameter d (mm) and the length L0 (mm) of the billet 20 and the outer diameter and the thickness of the hollow shell after piercing are determined, the length L1 (mm) of the hollow shell can be produced by calculation.
As Expression (2) is satisfied, the advancing efficiency of the billet 20 can be restrained from being lowered between the attainment of a steady state of the piercing and rolling and the end of the piercing and rolling. Therefore, the rotary forging effect can be prevented in the steady state, and inner surface defects can be restrained in the steady state. In short, inner surface defects at the center and rear end of the billet 20 can be reduced. Now, this will be described in detail.
As the gorge draft ratio DFT decreases, the roll interval Rg decreases. Therefore, the billet 20 in the process of piercing has a cross sectional shape with increased ellipticity, and the entering angle in the rotation direction of the inclined rolls 1 increases. The increase in the entering angle causes the billet 20 to slip.
On the other hand, as the gorge draft ratio DFT increases, the roll interval Rg increases, and the contact area between the inclined rolls 1 and the billet 20 decreases, which gives rise to slipping. Therefore, the gorge draft ratio must be set to an appropriate value in consideration of the entering angle and the contact area.
As the piercing and rolling ratio EL increases, the contact area between the billet being pierced and rolled and the plug 2 increases. The increase in the contact area increases the reaction received from the plug 2 and slipping is more likely to happen. This is because in order to increase the piercing and rolling ratio EL, the outer diameter of the plug 2 must be increased and the thickness of the hollow shell must be reduced.
As in the foregoing, during the period between the steady state and the end of the piercing and rolling, the gorge draft ratio DFT and the piercing and rolling ratio EL are related to slipping of the billet 20. Therefore, during the period between the attainment of the steady state and the end of the piercing and rolling, the gorge draft ratio DFT must be set in consideration of the piercing and rolling ratio EL in order to prevent the advancing efficiency of the billet 20 from being dropped.
If DFT satisfies Expression (2), the advancing efficiency of the billet 20 can be prevented from being reduced, and inner surface defects can be reduced during the period between the start of the steady state and the end of the piercing and rolling. If DFT is outside the range defined by Expression (2), the billet 20. is more likely to slip, which reduces the advancing efficiency. Therefore, the billet 20 in the process of piercing and rolling could slip or suffer from a tailing-off failure. The slipping could cause inner surface defects to be more easily generated.
Third Process
After the positioning of the inclined rolls 1 is adjusted, the billet 20 is transported and provided between the pusher 4 and the plug 2.
Then, the provided billet 20 is pierced and rolled. The pusher 4 pushes forward the billet 20 to between the inclined rolls 1 and has the billet 20 caught between the two inclined rolls 1. More specifically, the pusher 4 has the tip end surface of the billet pushing rod 44 abutted against the rear end surface of the billet 20, so that the driving force of the cylinder main body 41 advances the billet pushing rod 44 toward the inlet side of the piercing mill 10.
Fourth Process
The billet 20 is caught between the inclined rolls 1 and the piercing and rolling is started. Here, between the contact of the tip end of the engaged billet 20 with the tip end of the plug 2 and the attainment of a steady state, in other words, in a non-steady state, the pusher 4 pushes the billet 20 forward so that the advancing speed of the billet 20 in the non-steady state is not less than the advancing speed of the billet in the steady state during piercing without using the pusher. Here, the advancing speed in the non-steady state is the average advancing speed of the billet 20 in the non-steady state, and the advancing speed of the billet during the piercing without using the pusher is the average advancing speed of the billet of the same steel kind having substantially the same outer diameter as the billet 20 in the steady state.
Preferably, the pusher 4 pushes the billet 20 forward with such pushing force that the thrust load acting upon the plug 2 in the non-steady state is not less than the thrust load acting on the plug 2 in the steady sate without using the pusher.
In this way, the billet 20 can be prevented from slipping. The advancing speed of the billet 20 in the non-steady state is higher than the advancing speed in a conventional non-steady state, and therefore the rotary forging effect in the non-steady state is reduced from the conventional one. Therefore, inner surface defects at the tip end part of the hollow shell can be reduced.
The advancing speed of the billet 20 in the non-steady state is not less than its advancing speed in the steady state, and therefore the rotary forging effect in the non-steady state can be reduced to about the level of the rotary forging effect in the steady state or less. Therefore, inner surface defects at the tip end of the hollow shell can be reduced.
The thrust load of the plug in the steady state may be measured in advance or may be obtained by calculation based on various conditions such as the rotation speed of the inclined rolls and the shape of the billet. The pushing force (pusher pressure) acting on the billet by the pusher 4 and the advancing speed of the billet pushing rod 44 are set based on the thrust load in the steady state measured or obtained by calculation.
The billet advancing speed in the steady state during piercing without using the plug may be measured in advance or obtained by calculation based on various conditions such as the rotation speed of the inclined rolls and the shape of the billet. When the billet 20 is pushed forward by the pusher 4 so that the advancing speed of the billet 20 in the non-steady state is not less than the advancing speed in the steady state, the pusher pressure and the advancing speed of the billet pushing rod 44 are set based on the advancing speed of the billet 20 in the steady state that has been measured in advance or calculated.
Fifth Process
When the HMD 51 provided behind the inclined rolls 1 detects the tip end of the hollow shell passing the rear ends of the inclined rolls 1 after the piercing and rolling transits to the steady state, the pusher 4 finishes pushing the billet 20 forward. When the tip end of the hollow shell passes the rear ends of the inclined rolls, the piercing and rolling has moved to the steady state, and therefore the billet is pierced and rolled at a constant speed if the operation of the pusher 4 stops.
In this way, by the method of producing a seamless pipe according to the invention, during the period between the contact of the caught billet 20 with the tip end of the plug 2 and the attainment of the steady state of the piercing and rolling (the non-steady state period), the pusher 4 pushes the billet 20 forward. Therefore, the slipping of the billet 20 in the non-steady state can be restrained, so that the rotary forging effect can be restrained. Consequently, inner surface defects at the tip end of the hollow shell can be reduced.
The billet advancing speed ratio of the billet on the ordinate in
Furthermore, as Expressions (1) and (2) are satisfied, the advancing efficiency of the billet 20 in the steady state can be restrained from being lowered, so that the slipping in the steady state can be prevented. Since the slipping can be prevented, inner surface defects can be reduced at the center and rear end part of the hollow shell being pierced and rolled during the period after the piercing and rolling reaches a steady state region until the piercing and rolling ends.
In addition, if the pusher 4 stops pushing the billet 20 after the process proceeds to the steady state, the plug 2 or the inclined rolls 1 can be prevented from being continuously provided with excessive load. In general, if the thrust load acting on the plug 2 during piercing and rolling is monitored, it can be determined whether the piercing and rolling reaches a steady state. This is because the thrust load of the plug 2 gradually increases in the non-steady state and becomes substantially constant in the steady state as shown in
Therefore, according to the invention, the HMD 51 as a detector is provided in the vicinity of the rear ends of the inclined rolls 1 on the outlet side of the piercing mill 10. The HMD 51 determines whether the tip end of the hollow shell pierced and rolled has passed the rear ends of the inclined rolls 1. This is because if the tip end of the hollow shell passes the inclined rolls 1, the piercing and rolling is already in a steady state.
Note that according to the embodiment, the detector is an HMD, but the detector may be any of other devices such as a photo sensor and a laser sensor. It is only necessary that the detector is capable of detecting the tip end of a hollow shell passing the rear ends of the inclined rolls 1.
The embodiment includes the first to fifth processes, while it is only necessary to carry out the third and fourth processes in order to reduce inner surface defects at the tip end of the hollow shell. In the fifth process, the operation of the pusher 4 is stopped in the steady state, while as shown in
The billet 20 may be pushed forward by the pusher 4 before the billet 20 is caught between the inclined rolls 1 or the billet 20 may be pushed forward by the pusher 4 after the billet 20 is caught between the inclined rolls. In short, if the billet 20 is pushed forward by the pusher 4 at least during a period including the non-steady state, inner surface defects at the tip end of the hollow shell can be reduced.
The pusher 4 is provided on a platform (not shown) whose height is adjustable and the position of the pusher 4 (in the vertical and horizontal directions) may be adjusted so that the central axis of the billet pushing rod 44 approximately matches the central axis of the billet. In this way, large pusher pressure can be set, so that the billet can be prevented from being bent if the pushing force upon the billet increases.
The piercing mill 10 may further include a pressing roller on the inlet side that binds the billet so that the central axis of the billet is not shifted from the pass line X-X.
According to the embodiment of the invention, the inclined rolls 1 are cone-type rolls while they may be barrel type rolls.
Note that when a billet with porosity remaining along the central axis such as a billet of steel with low deformability or a billet produced by continuous casting (i.e., so-called round CC billet) is pierced and rolled, the advancing speed and the entering performance in the non-steady state are improved by the method of manufacturing a seamless pipe according to the embodiment.
Piercing and rolling is preferably carried out as the inclined roll interval in the piercing mill is set so that the set number of rotary forging represented by the following Expression (5) is not more than 1.5. In this way, the number of rotary forging after the billet 20 is caught between the inclined rolls 1 until the billet contacts the plug 2 can be reduced, so that inner surface defects at the tip end of the hollow shell can be reduced. Note that even if Expression (5) is not satisfied, the advantage of the invention can be obtained to some extent.
N=Ld/(0.5×Vf×π×d/Vr) (5)
where Ld is the distance (mm) from the position where the tip end of the billet 20 contacts the surface of the inclined rolls to the position where the tip end of the billet 20 reaches the tip end of the plug 2 in the direction of the pass line X-X, Vf is the speed (mm/s) of the billet 20 in the rotation direction and Vr is the speed of the billet 20 in the advancing direction (mm/s).
Piercing and rolling was carried out in various conditions where the thrust load acting on the plug was varied, and the incidence of inner surface defects at the tip end of a hollow shell was examined.
A solid round billet having an outer diameter of 70 mm was cut from a solid round billet produced by continuous casting, containing 0.2 mass % C (carbon) and having an outer diameter of 225 mm along its central axis. The obtained billet was heated to 1200° C. in a heating furnace.
The heated billet was formed into a hollow shell by piercing and rolling using the piercing mill shown in
Plug load ratio=thrust load PA (t) acting on the plug in a non-steady state/thrust load PB (t) acting on the plug in a steady state during piercing without using the plug (A)
In this example, the average thrust load acting on the plug in the non-steady state is represented as thrust load PA. Some of the billets were pierced and rolled without using the pusher in advance, and the average thrust load acting on the plug in the steady state is represented as thrust load PB.
The pusher pushing force (t) in Table 1 is set pusher force. The non-steady state speed (mm/s) is the average advancing speed of the billet in the non-steady state, and the steady state speed (mm/s) is the average advancing speed of the billet in the steady state without using the pusher.
The conditions other than those in Table 1 are as given in Table 2 and the same for all the test numbers. Note that as given in Table 2, Expressions (1) and (2) were satisfied in this example.
The inner surface was visually examined in the range of 200 mm from the tip end of the produced hollow shell and examined for the presence/absence of inner surface defects. When at least one inner surface defect was present, it was determined that the billet was with an inner surface defect. For examination of the samples with test numbers, the inner surface defect incidence was obtained based on the following Expression (B):
Inner surface defect incidence=the number of billets with inner surface defects/the total number of billets (B)
where the total number of billets is the total number of billets pierced and rolled for each of the test numbers, which is 100 in this example as described above. In this example, it was evaluated that the inner surface defects were restrained when the inner surface defect incidence was less than 5%.
The obtained inner surface defect incidence is given in Table 1.
With reference to Table 1, samples with test Nos. 1 to 4 each had an advancing speed in the non-steady state that was less than the advancing speed in the steady state and outside the range defined by the invention. The plug load ratio was less than 1.0 that was outside the range defined by the invention. Therefore, the inner surface defect incidence was more than 5%.
In contrast, samples with test Nos. 5 to 9 each had a plug load not less than 1.0 and their advancing speeds in the non-steady state were not less than their advancing speeds in the steady state. Therefore, the inner surface defect incidences were significantly lower than those of the samples with test Nos. 1 to 4. Note that when the plug load ratio was raised to 1.08 or higher and the set rotary forging number was not more than 1.0, the inner surface defect incidence was 0%.
Piercing and rolling was carried out while the plug load ratio was kept constant and the gorge draft ratio DFT and the piercing and rolling ratio EL were varied, and it was examined whether the billet in the process of piercing and rolling slipped.
A solid round billet was prepared, its kind of steel was defined as S45C by JIS standards, and its outer diameter was 70 mm. The prepared solid round billet was heated to 1200° C. in a heating furnace, then pierced and rolled using the piercing mill shown in
During the piercing and rolling, each billet was pushed by the pusher, caught between the inclined rolls and continued to be pushed until the piercing and rolling reached a steady state. After the billet was pushed for 300 mm from the position where the billet was caught, the operation of the pusher was stopped.
After the pusher was stopped, it was examined whether slipping was caused during the piercing and rolling. If the billet stopped advancing while it was pierced and rolled or while the rear end of the billet was pierced and rolled (so-called tailing-off failure), it was determined that misroll was caused by slipping.
The examination result is given in
Although the embodiments of the present invention have been described, they are by way of illustration and example only and are not to be taken by way of limitation. The invention may be embodied in various modified forms without departing from the spirit and scope of the invention.
The method of manufacturing a seamless pipe or tube according to the invention is applicable to a method of manufacturing a seamless pipe or tube by piercing and rolling a material into a hollow shell using a piercing mill.
Number | Date | Country | Kind |
---|---|---|---|
2006-098634 | Mar 2006 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2007/057085 | Mar 2007 | US |
Child | 12285033 | US |