The present application is based on, and claims priority from JP Application Serial Number 2020-014100, filed Jan. 30, 2020, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a method of manufacturing a vibrator device.
For example, in JP-A-2009-232376 (Document 1), as a method of adjusting the frequency of a tuning-fork vibrator element, there is described a method of removing a part of a metal film provided to a tip part of a vibrating arm by irradiating the part with a laser beam.
However, in the frequency adjustment method in Document 1, the metal film a part of which is removed by the irradiation with the laser beam has a removed part where the part of the metal film is removed and an unremoved area part which is an area not irradiated with the laser beam, and in which the metal film is not removed, and the boundary between these parts is provided with a step having a vertical surface. Further, the unremoved part is reattached with the metal material evaporated by the irradiation with the laser beam to thereby be provided with dross (a droplet). The dross is easily separated from the metal film, and by the dross being separated from the metal film, the mass of the vibrating arm varies, and thus, there is a possibility that the frequency of the tuning-fork vibrator element varies.
A method of manufacturing a vibrator device according to the present application example includes preparing a vibrator element including a vibrating arm and a weight provided to the vibrating arm, and irradiating the weight with a laser beam to remove apart of the weight, wherein in the step of irradiating the weight with the laser beam to remove the part of the weight, the part of the weight is irradiated with the laser beam to thereby provide the weight with a removed area where the part of the weight is removed, and an unremoved area where the weight is not removed, and in an area close to the unremoved area in the removed area, an amount of irradiation with the laser beam is gradually increased in a direction from the unremoved area side toward the removed area.
A method of manufacturing a vibrator device according to the present disclosure will hereinafter be described in detail based on some embodiments shown in the accompanying drawings.
It should be noted that in each of the drawings except
The vibrator device 1 shown in
Such a vibrator device 1 has a package 3, a vibrator element 4 housed in the package 3, and a circuit element 6.
As shown in
For example, the base 31 can be formed of ceramics such as alumina, and the lid 32 can be formed of a metal material such as kovar. It should be noted that the constituent material of each of the base 31 and the lid 32 is not particularly limited. For example, the lid 32 can be formed of a glass material having a light transmissive property.
Further, the internal space S is airtightly sealed, and is set in a reduced-pressure state, and is preferably set in a state more approximate to a vacuum state. Thus, the viscosity resistance reduces and the vibration characteristics of the vibrator element 4 are improved. It should be noted that the atmosphere in the internal space S is not particularly limited, but can be an atmosphere filled with an inert gas such as nitrogen or Ar, or can be in the atmospheric pressure state or a pressurized state instead of the reduced-pressure state.
Further, the recessed part 311 has a recessed part 311a, a recessed part 311b, and a recessed part 311c wherein the recessed part 311a opens in the upper surface of the base 31, the recessed part 311b opens in a bottom surface of the recessed part 311a and is smaller in opening width than the recessed part 311a, and the recessed part 311c opens in a bottom surface of the recessed part 311b and is smaller in opening width than the recessed part 311b. Further, to the bottom surface of the recessed part 311a, there is fixed the vibrator element 4 via bonding members 2 each having electrical conductivity, and to the bottom surface of the recessed part 311c, there is bonded the circuit element 6.
Further, on the bottom surface of the recessed part 311a, there is disposed a plurality of internal terminals 341, on the bottom surface of the recessed part 311b, there is disposed a plurality of internal terminals 342, and on the lower surface of the base 31, there are disposed external terminals 343. Some of the internal terminals 342 are electrically coupled to the internal terminals 341 via internal interconnections not shown formed inside the base 31, and the rest of the internal terminals 342 are electrically coupled to the external terminal 343 via the internal interconnections described above. Further, each of the internal terminals 342 is electrically coupled to the circuit element 6 via a bonding wire BW.
As shown in
The vibrating body 41 is a tuning-fork type quartz crystal vibrator element. The vibrating body 41 is formed of a Z-cut quartz crystal plate, and has spread in an X-Y plane defined by the X axis as an electrical axis and the Y axis as a mechanical axis, the electrical axis and the mechanical axis being crystal axes of quartz crystal, and has a thickness in the Z-axis direction as an optical axis.
It should be noted that the constituent material of the vibrating body 41 is not particularly limited, but there can be used a variety of piezoelectric materials such as lithium niobate (LiNbO3), lithium tantalate (LiTaO3), lead zirconium titanate (PZT), lithium tetraborate (Li2B4O7), langasite (La3Ga5SiO14), potassium niobate (KNbO3), gallium phosphate (GaPO4), gallium arsenide (GaAs), aluminum nitride (AlN), zinc oxide (ZnO, Zn2O3), barium titanate (BaTiO3), lead titanate (PbTiO3), sodium potassium niobate ((K, Na)NbO3), bismuth ferrite (BiFe03), sodium niobate (NaNbO3), bismuth titanate (Bi4Ti3O12) , bismuth sodium titanate (Na0.5Bi0.5TiO3), or there can be used other materials than the piezoelectric material such as a silicon substrate.
Further, the vibrating body 41 has a base part 42, and a pair of vibrating arms 43, 44 extending toward the positive side in the Y-axis direction from the base part 42. Further, in the base part 42, the vibrating body 41 is fixed to the base 31 via the pair of bonding members 2.
Further, as shown in
Further, as shown in
Further, as shown in
The weight 46 after the first frequency adjustment process has been completed, namely in the state in which a part of the weight 46 is irradiated with the laser beam L to thereby be removed, is made to have a configuration shown in
Further, the removed area 461 and the unremoved area 462 are arranged side by side in the Y-axis direction as a longitudinal direction of the vibrating arms 43, 44, wherein the removed area 461 is located at the tip side of the vibrating arms 43, 44, namely the positive side in the Y-axis direction, with respect to the unremoved area 462. By disposing the removed area 461 as an area to be processed with the laser beam L closer to the tip side of the vibrating arms 43, 44 than the unremoved area 462, in other words, by removing the tip side of the weight 46, in such a manner, the frequency variation per unit mass of the weight 46 thus removed can be made larger. Therefore, it is possible to ensure a sufficient frequency adjustment range in the first frequency adjustment process. It should be noted that the arrangement of the removed area 461 and the unremoved area 462 is not particularly limited, but it is possible for the removed area 461 to be located at the negative side in the Y-axis direction of the unremoved area 462, or it is possible for the unremoved area 462 to be located at both sides in the Y-axis direction of the removed area 461.
Further, the removed area 461 has a thin film part 463 having the film thickness T which is thinner than that of the unremoved area 462 and is substantially constant, and a connection part 464 which is located between the thin film part 463 and the unremoved area 462 to connect the thin film part 463 and the unremoved area 462 to each other. The connection part 464 is tilted with respect to the upper surfaces of the vibrating arms 43, 44, and has a taper shape in which the film thickness T gradually decreases in a direction from the unremoved area 462 side toward the thin film part 463, namely from the negative side toward the positive side in the Y-axis direction. By providing the connection part 464 with the taper shape as described above, it is possible to prevent a step having a vertical surface, namely a rectangular step, from being formed on the boundary between the unremoved area 462 and the thin film part 463. Therefore, it is possible to effectively prevent the involuntary separation of the weight 46 stating from that part.
The film thickness T of the unremoved area 462, in other words, the film thickness T of the weight 46 not yet irradiated with the laser beam L in the first frequency adjustment process, is not particularly limited, but is preferably, for example, no thinner than 3 μm and no thicker than 10 μm, is more preferably no thinner than 4 μm and no thicker than 6 μm. Thus, it is possible to ensure a sufficient frequency adjustment range in the first frequency adjustment process. Further, the film thickness T of the thin film part 463, in other words, the film thickness T of the thin film part 463 having been irradiated with the laser beam L in the first frequency adjustment process, is not particularly limited, but is thinner than the film thickness of the unremoved area 462, and is preferably, for example, no thinner than 0.5 μm, and is more preferably no thinner than 1 μm. Thus, it is possible to effectively prevent the thin film part 463 from becoming excessively thin to deteriorate the adhesiveness between the vibrating arms 43, 44.
Further, an average value of the taper angle θ of the connection part 464, namely the tilt with respect to the upper surface of the vibrating arms 43, 44, is not particularly limited, but is preferably, for example, no larger than 60°, more preferably no larger than 55°, and further more preferably no larger than 50°. Thus, the advantage described above, namely the separation prevention effect of the weight 46, becomes more conspicuous. On the other hand, the lower limit value of the taper angle θ is not particularly limited, but is preferably no smaller than 20°, more preferably no smaller than 25°, and further more preferably no smaller than 35°. Thus, it is possible to suppress the length in the Y-axis direction of the connection part 464. Further, accordingly, the area of the thin film part 463 can be ensured to sufficiently be large, and it is possible to ensure a sufficient frequency adjustment range in the first frequency adjustment process.
Here, although the taper angle θ is described as constant in the Y-axis direction in
In the present embodiment, the upper surface of the connection part 464 is formed of a tilted plane, and the decrement rate of the film thickness T is constant along the Y-axis direction, but this is not a limitation. For example, it is possible that the upper surface of the connection part 464 is formed of a convexly curved surface, and the decrement rate of the film thickness T gradually increase toward the positive side in the Y-axis direction, and on the contrary, it is possible that the upper surface of the connection part 464 is formed of a concavely curved surface, and the decrement rate of the thickness T gradually decreases toward the positive side in the Y-axis direction. Further, it is possible to adopt a configuration in which a plurality of planes different in tilt angle from each other is arranged side by side in the Y-axis direction instead of the convexly curved surface or the concavely curved surface.
As shown in
The configuration of the vibrator device 1 is hereinabove described. Then, a method of manufacturing the vibrator device 1 will be described. As shown in
First, as shown in
Then, the resonance frequency of the vibrator element 4 is adjusted on the quartz crystal wafer 40. Specifically, as shown in
The laser beam L is not particularly limited, but there can be used a pulsed laser beam such as YAG, YVO4, or excimer laser, or a continuous oscillation laser beam such as carbon dioxide laser beam. It should be noted that in the present embodiment, the pulsed laser beam is used as the laser beam L. Specifically, by continuously irradiating the weights 46 with the laser beam L converged like a spot to thereby process the weights 46. By using the pulsed laser beam as the laser beam L in such a manner to thereby change the irradiation time or the irradiation pitch while keeping the intensity of the laser beam L without changing the intensity, it is possible to control an amount of irradiation, namely an amount of energy, of the laser beam L per unit area to the weights 46. Therefore, the laser beam L is stabilized, and it is possible to accurately perform the present process.
The spot diameter of the laser beam L is not particularly limited, but is preferably, for example, no larger than 20 μm, and is more preferably no larger than 15 μm. Thus, sufficient microfabrication on the weights 46 becomes possible.
Further, the laser beam L is not particularly limited, but is preferably a picosecond laser beam. It should be noted that the picosecond laser beam is what is obtained by shortening the pulse width of the laser beam L to the picosecond level. By using the picosecond laser, it is possible to evaporate the weights 46 with higher peak power compared to, for example, a typical YAG laser. Therefore, processing low in thermal influence becomes possible. Further, it is possible to effectively prevent reattachment of the weight material having been evaporated to a surface of the weights 46, and thus, it is possible to effectively prevent dross from being attached to the surface of the weights 46. Therefore, it is possible to effectively prevent the dross from being separated from the weights 46, and accordingly, the resonance frequency of the vibrator element 4 from varying. Therefore, the reliability of the vibrator element 4 is improved.
Further, the pulse width of the laser beam L is not particularly limited, but is preferably shorter than collisional relaxation time as the time for the lattice ion temperature of the constituent material of the weights 46 to be raised to the melting point. Thus, the advantage described above becomes more conspicuous. In the present embodiment, the weights 46 are formed of Au (gold), and the collisional relaxation time of Au is about 25 picoseconds. Therefore, the pulse width of the laser beam L is preferably no more than 25 picoseconds, more preferably no more than 20 picoseconds, and further more preferably no more than 10 picoseconds.
Further, as shown in
Further, in the present process, the weights 46 is irradiated with the laser beam L in the order shown in
It should be noted that as described above, since it is necessary to provide the weight 46 with the unremoved area 462, and the removed area 461 located at the tip side of the unremoved area 462, the line L1 fails to overlap the base end of the weight 46, but is located closer to the tip than the base end. By performing the sub-scanning with the laser beam L from the unremoved area 462 side toward the removed area 461 in such a manner, in other words, by irradiating the weight 46 with the laser beam L in sequence from a near side to the unremoved area 462 toward a far side therefrom, it becomes difficult for the evaporated weight material to adhere to the unremoved area 462, and it is possible to effectively prevent the dross from adhering to the unremoved area 462.
Further, on this occasion, in the thin film part 463 of the removed area 461, an amount of irradiation with the laser beam L to each part is made equal. Thus, it is possible to make the film thickness T of the thin film part 463 constant. On the other hand, in the connection part 464, the amount of irradiation with the laser beam L is gradually increased in a direction from the unremoved area 462 side toward the removed area 461, namely from the negative side toward the positive side in the Y-axis direction. The “amount of irradiation” described above can be reworded as an amount of irradiation per unit area, namely an amount of energy. Thus, an amount of removal of the weight 46 gradually increases in a direction from the unremoved area 462 side toward the thin film part 463, and thus, the connection part 464 having a taper shape is formed. Further, since the closer to the unremoved area 462 an area is, the smaller the amount of removal of the weight 46 in that area becomes, it is possible to effectively prevent the dross from adhering to the unremoved area 462.
Then, there will be described some methods of gradually increasing an amount of irradiation with the laser beam L in the direction from the unremoved area 462 side toward the removed area 461 in the connection part 464. It should be noted that it is hereinafter assumed that the connection part 464 is formed by performing the irradiation with the laser beam L along the lines L1, L2, L3, and L4 for the sake of convenience of explanation.
As a first method, there can be cited a method of making the irradiation pitch with the laser beam L shorter at the removed area 461 side than at the unremoved area 462 side, in particular, a method of gradually reducing the irradiation pitch with the laser beam L in the direction from the unremoved area 462 side toward the removed area 461. Specifically, the intensity and the pulse width of the laser beam L are made constant, and the moving speed of the laser beam L on the lines L1, L2, L3, and L4 is made constant, and further, as shown in
It should be noted that the separation distances D1, D2, and D3 are each smaller than the diameter of the spot SP of the laser beam L, the spot SP on the line L2 overlaps the spot SP on the line L1, the spot SP on the line L3 overlaps the spot SP on the line L2, and a part of the spot SP on the line L4 overlaps the spot SP on the line L3. Further, on each of the lines L1, L2, L3, and L4, the spots SP adjacent in the X-axis direction to each other overlap each other. By performing the processing so that the spots SP adjacent to each other in both of the Y-axis direction and the X-axis direction overlap each other in such a manner, the accurate processing becomes possible.
As a second method, there can be cited a method of making the moving speed of the laser beam L lower at the removed area 461 side than at the unremoved area 462 side, in particular, a method of gradually lowering the moving speed of the laser beam L in the direction from the unremoved area 462 side toward the removed area 461. Specifically, the intensity and the pulse width of the laser beam L are made constant, and further, as shown in
The moving speed S1 can be reworded as a pitch of the spots SP on the line L1, the moving speed S2 can be reworded as a pitch of the spots SP on the line L2, the moving speed S3 can be reworded as a pitch of the spots SP on the line L3, and the moving speed S4 can be reworded as a pitch of the spots SP on the line L4. Further, the moving speeds S1, S2, S3, and S4 are set so that the pitch on each of the lines L1, L2, L3, and L4 is smaller than the diameter of the spot SP, and the spots SP adjacent in the X-axis direction to each other overlap each other on each of the lines L1, L2, L3, and L4.
As a third method, there can be cited a method of making the number of times of irradiation with the laser beam L larger at the removed area 461 side than at the unremoved area 462 side, in particular, a method of gradually increasing the number of times of irradiation with the laser beam L in the direction from the unremoved area 462 side toward the removed area 461. In particular, the intensity and the pulse width of the laser beam L are made constant, the moving speeds S1, S2, S3, and S4 of the laser beam L on the lines L1, L2, L3, and L4 are made constant, and the separation distances D1, D2, and D3 are made equal to each other, and further, as shown in
In this method, for example, as shown in
As a fourth method, there can be cited a method of making the intensity of the laser beam L higher at the removed area 461 side than at the unremoved area 462 side, in particular, a method of gradually raising the intensity of the laser beam L in the direction from the unremoved area 462 side toward the removed area 461. Specifically, the moving speeds S1, S2, S3, and S4 of the laser beam L on the lines L1, L2, L3, and L4 are made constant, and the separation distances D1, D2, and D3 are made equal to each other, and further, as shown in
By adjusting the frequency on the quartz crystal wafer 40, namely before mounting the vibrator element 4 on the base 31, in such a manner, it is possible to prevent the harmful influence due to the weight 46 evaporated when performing the adjustment adhering to the base 31.
It should be noted that in, for example, the method shown in
Then, the vibrator element 4 is broken off from the quartz crystal wafer 40, and then the vibrator element 4 thus broken off is bonded to the base 31.
There is a possibility that by fixing the vibrator element 4 to the base 31 in the mounting process described above, the resonance frequency of the vibrator element 4 varies from the resonance frequency on the quartz crystal wafer 40. Therefore, in the present process, a part of the weight 46 is removed using an ion beam to adjust the resonance frequency of the vibrator element 4. Specifically, a vacuum state is set, and as shown in
Then, in the vacuum state, for example, the lid 32 is seam welded to an upper surface of the base 31 via the bonding member 33 made of a seam ring. Thus, the internal space S is airtightly sealed, and the vibrator device 1 is obtained.
The method of manufacturing the vibrator device 1 is hereinabove described. As described above, such a method of manufacturing the vibrator device 1 includes the preparation process as a process of preparing the vibrator element 4 having the vibrating arms 43, 44 and the weights 46 provided to the vibrating arms 43, 44, and the first frequency adjustment process as a process of irradiating the weights 46 with the laser beam L to remove a part of each of the weights 46. Further, in the first frequency adjustment process, by irradiating the part of each of the weights 46 with the laser beam L, the removed area 461 where the part of the weight 46 is removed, and the unremoved area 462 where the weight 46 is not removed are provided to the weight 46. Further, in the connection part 464 as an area close to the unremoved area 462 in the removed area 461, the amount of irradiation with the laser beam L is gradually increased in the direction from the unremoved area 462 side toward the removed area 461. According to such a manufacturing method, since the closer to the unremoved area 462 an area is, the smaller the amount of removal of the weight 46 in that area becomes, it is possible to effectively prevent the dross from adhering to the unremoved area 462.
Further, as described above, in the first frequency adjustment process, the scanning with the laser beam L is performed in the direction from the unremoved area 462 side toward the removed area 461. Thus, it is possible to effectively prevent the dross from adhering to the unremoved area 462.
Further, as described above, in the first frequency adjustment process, irradiation with the laser beam L shaped like a spot is continuously performed. Thus, by changing the irradiation time or the irradiation pitch while keeping the intensity of the laser beam L constant without varying the intensity of the laser beam L, it is possible to control the amount of irradiation with the laser beam L per unit area with respect to the weight 46. Therefore, the laser beam L is stabilized, and it is possible to accurately perform the removal processing of the weights 46.
Further, as described above, it is preferable for the pulse width of the laser beam L to be equal to or shorter than 25 picoseconds. Thus, it is possible to effectively prevent the dross from adhering to the unremoved area 462.
Further, as described above, the intensity of the laser beam L decreases in a direction from the central part of the spot toward the peripheral part thereof. By using the laser beam L having such an intensity distribution, processing in the peripheral part of the spot is prevented, and the processing finer than the spot diameter, namely microfabrication, becomes possible. Further, it is possible to form the tilted surface of the connection part 464 to be smoother.
Further, as described above, in the first frequency adjustment process, the intensity of the laser beam L is made higher at the removed area 461 side than at the unremoved area 462 side in the connection part 464. According to such a method, it is possible to make the amount of irradiation with the laser beam L gradually increase in the direction from the unremoved area 462 side toward the removed area 461 with a simple method.
Further, as described above, in the first frequency adjustment process, the irradiation pitch with the laser beam L is made shorter at the removed area 461 side than at the unremoved area 462 side in the connection part 464. According to such a method, it is possible to make the amount of irradiation with the laser beam L gradually increase in the direction from the unremoved area 462 side toward the removed area 461 with a simple method.
Further, as described above, in the first frequency adjustment process, the moving speed of the laser beam L is made lower at the removed area 461 side than at the unremoved area 462 side in the connection part 464. According to such a method, it is possible to make the amount of irradiation with the laser beam L gradually increase in the direction from the unremoved area 462 side toward the removed area 461 with a simple method.
The vibrator device 1 according to the present embodiment is substantially the same as the vibrator device 1 according to the first embodiment described above except the point that the configuration of the weights 46, specifically the configuration of the removed area 461, is different. It should be noted that in the following description, the vibrator device 1 according to the second embodiment will be described with a focus on the difference from the embodiment described above, and the description of substantially the same issues will be omitted. Further, in
As shown in
Further, in the removed area 461, the connection part 464 having a taper shape is disposed not only at the negative side in the Y-axis direction of the thin film part 463, but also at both sides in the X-axis direction thereof. In other words, the connection part 464 has a first part 464a, a second part 464b, and a third part 464c wherein the first part 464a is located at the negative side in the Y-axis direction of the thin film part 463 to connect the thin film part 463 and the first part 462a of the unremoved area 462 to each other, the second part 464b is located at the positive side in the X-axis direction of the thin film part 463 to connect the thin film part 463 and the second part 462b of the unremoved area 462 to each other, and the third part 464c is located at the negative side in the X-axis direction of the thin film part 463 to connect the thin film part 463 and the third part 462c of the unremoved area 462 to each other. It should be noted that in order to make the description easy, in
For example, when the removed area 461 opens at the both sides in the X-axis direction of the weight 46 as in the first embodiment described above, when a corner part at the negative side in the X-axis direction of the weight 46 on the vibrating arm 43 is irradiated with the laser beam L (L′) as shown in
Therefore, by adopting the configuration in which the unremoved area 462 is also disposed at the both sides in the X-axis direction of the removed area 461 to thereby prevent the corner parts at the both sides in the X-axis direction of the weight 46 from being irradiated with the laser beam L as in the present embodiment, it is possible to effectively prevent the adhesion of the dross described above.
According also to such a second embodiment described hereinabove, substantially the same advantages as in the first embodiment described above can be exerted. It should be noted that it is possible to omit the second part 462b and the second part 464b from the weight 46 on the vibrating arm 43, and it is possible to omit the third part 462c and the third part 464c from the weight 46 on the vibrating arm 44.
The vibrator device 1 according to the present embodiment is substantially the same as the vibrator device 1 according to the first embodiment described above except the point that the configuration of the vibrator element 4 is different. It should be noted that in the following description, the vibrator device 1 according to the third embodiment will be described with a focus on the difference from the embodiments described above, and the description of substantially the same issues will be omitted. Further, in
The vibrator element 4 according to the present embodiment is an angular velocity sensor element capable of detecting the angular velocity ωz defining the Z axis as a detection axis as the physical quantity sensor element. As shown in
Further, the vibrating body 41 is formed of a Z-cut quartz crystal substrate, and has a base part 451, a pair of detection arms 452, 453, a pair of coupling arms 454, 455, a pair of drive arms 456, 457, and a pair of drive arms 458, 459, wherein the base part 451 is located in a central portion, the pair of detection arms 452, 453 are the vibrating arms extending toward both sides in the Y-axis direction from the base part 451, the pair of coupling arms 454, 455 extend toward both sides in the X-axis direction from the base part 451, the pair of drive arms 456, 457 are the vibrating arms extending toward both sides in the Y-axis direction from a tip part of the coupling arm 454, and the pair of drive arms 458, 459 are the vibrating arms extending toward the both sides in the Y-axis direction from a tip part of the coupling arm 455.
Further, the electrodes include drive signal electrode 483, drive ground electrodes 484, first detection signal electrodes 485, first detection ground electrodes 486, second detection signal electrodes 487, and second detection ground electrodes 488.
The drive signal electrodes 483 are disposed on the both side surfaces of each of the drive arms 456, 457, and the upper surface and the lower surface of each of the drive arms 458, 459. Meanwhile, the drive ground electrodes 484 are disposed on the upper surface and the lower surface of each of the drive arms 456, 457, and the both side surfaces of each of the drive arms 458, 459.
Further, the first detection signal electrodes 485 are disposed on the upper surface and the lower surface of the detection arm 452, and the first detection ground electrodes 486 are disposed on the both side surfaces of the detection arm 452. Meanwhile, the second detection signal electrodes 487 are disposed on the upper surface and the lower surface of the detection arm 453, and the second detection ground electrodes 488 are disposed on the both side surfaces of the detection arm 453.
Further, the weight 46 is provided to the tip part of each of the drive arms 456, 457, 458, and 459 and the detection arms 452, 453. Further, each of the weights 46 has substantially the same configuration as in the first embodiment described above, and has the removed area 461 and the unremoved area 462.
Such a vibrator element 4 detects the angular velocity ωz in the following manner. First, when applying a drive signal between the drive signal electrodes 483 and the drive ground electrodes 484, the drive arms 456 through 459 flexurally vibrate as represented by the arrows shown in
The circuit element 6 includes an interface section for communicating with, for example, an external host device, a drive circuit for driving the vibrator element 4, and a detection circuit for detecting the angular velocity ωz based on the detection signal from the vibrator element 4.
According also to such a third embodiment as described hereinabove, substantially the same advantages as in the first embodiment described above can be exerted. It should be noted that although the connection part 464 is provided to all of the six weights 46 in the present embodiment, this is not a limitation, but it is sufficient to provide the connection part 464 to at least one weight 46.
Although the method of manufacturing the vibrator device according to the present disclosure is hereinabove described based on the illustrated embodiments, the present disclosure is not limited to these embodiments, but the configuration of each of the components can be replaced with one having substantially the same function and an arbitrary configuration. Further, the present disclosure can also be added with any other constituents. Further, it is also possible to arbitrarily combine any of the embodiments with each other.
Number | Date | Country | Kind |
---|---|---|---|
2020-014100 | Jan 2020 | JP | national |