1. Field of the Invention
The present invention relates to a tandem color electrophotographic machine, and, more particularly, to plane-to-plane registration in an electrophotographic machine.
2. Description of the Related Art
Tandem color printing enables color electrophotographic printing to be performed by a printer at the same speed as black-and-white (mono color) electrophotographic printing. Such a tandem process utilizes four separate imaging devices to simultaneously create four separate latent images on four different photoconductive surfaces. Thus, all four colors can be imaged, developed, and transferred to the desired media at the same speed as a single color could be printed. Single color printers all implement techniques to align the top of the page, left margin, line length, and page length. In a tandem configuration, an additional difficult problem arises in registering each color image plane accurately relative to all the other color image planes. Manufacturers have been hesitant to produce tandem color laser printers because of the difficulty in maintaining alignment and plane-to-plane registration due to manufacturing tolerances.
What is needed in the art is a method of aligning the registration of all color planes in both the process direction (media direction of travel) and the scan direction (cross process direction).
The present invention provides a method of setting the margins and plane-to-plane registration at factory calibration and in field adjustments. The present invention utilizes print element (PEL) slice insertion, mirror motor synchronization, and additional techniques to achieve the desired initial registration.
The invention comprises, in one form thereof, a method of setting a plurality of margins in an electrophotographic machine. A top margin for a reference color black is set by establishing a first time delay between a vertical synchronization signal and a first line. A right margin or a left margin for the reference color black is set by establishing a second time delay between a horizontal synchronization signal and a start of printing. The other of the right margin and the left margin is set by adjusting a scan speed of a laser beam across a photoconductive element and adjusting a process speed in the cross-scan direction including speed of the photoconductive element, image accumulation member, and print medium. A bottom margin for the reference color black is set by adjusting the process speed. The other three colors, cyan, magenta, and yellow, are then registered to the reference color black.
An advantage of the present invention is that margins and plane-to-plane registration can be set at factory calibration and in field adjustments in order to compensate for manufacturing tolerances.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings and, more particularly, to
Each of laser print heads 12, 14, 16 and 18 projects a respective laser beam 38, 40, 42, 44 off of a respective one of polygon mirrors 46, 48, 50 and 52. As each of polygon mirrors 46, 48, 50 and 52 rotates, it scans a respective one of reflected laser beams 38, 40, 42 and 44 in a scan direction, perpendicular to the plane of
The toner in each of toner cartridges 20, 22, 24 and 26 is negatively charged and is transported upon the surface of a developer roll biased to approximately −600 volts. Thus, when the toner from cartridges 20, 22, 24 and 26 is brought into contact with a respective one of photoconductive drums 28, 30, 32 and 34, the toner is attracted to and adheres to the portions of the peripheral surfaces of the drums that have been discharged to −300 volts by the laser beams. As belt 36 rotates in the direction indicated by arrow 56, the toner from each of drums 28, 30, 32 and 34 is transferred to the outside surface of belt 36. As a print medium, such as paper, travels along path 58, the toner is transferred to the surface of the print medium in nip 62.
In one embodiment of the method of the present invention, printer registration adjustments are made at the end of the manufacturing line to register the black plane to the paper, and set the plane-to-plane registration of the cyan, magenta, and yellow planes (CMY) to the black (K) plane. The alignment process can be performed with the engine in 600 dots per inch (dpi) mode. Targets are placed on the top, bottom, left hand side and right hand side of the page (
Printheads 12, 14, 16 and 18 are mechanically aligned and adjusted for skew using a calibration fixture prior to making any margin adjustments. Also, the initial setting for the right margin can be downloaded to printer 10 during the same process used to align the printheads 12, 14, 16, 18 to eliminate skew.
The skew for all four printheads is adjusted first mechanically using a calibration system that includes an alignment fixture with CCD cameras and LVDT sensors connected through a computer system. Second, further fine skew adjustment for the magenta, cyan and yellow printheads is accomplished digitally using black as the reference. The fine skew adjustment has a range of +/−0.2117 mm in +/−10 increments of one printing element (PEL) each, with each PEL having a resolution of 1200 dots per inch (dpi). After completing the coarse mechanical skew adjustment, the calibration system then measures the residual skew, calculates the desired adjustments for magenta, cyan, and yellow planes, and downloads the values to the machine where they are stored in NVRAM.
The printable area is aligned on the page, as illustrated in
The embodiment of the present invention described herein includes first setting the margins for the black plane and then aligning the color planes to black. However, it is to be understood that the sequence is not limited to this order. Additionally, where operations are described as being performed manually by an operator, it is to be understood that the same operations can be performed in an automated fashion using a scanner and settings communicated electronically to the printer controller. In the illustrated embodiment, the image is scanned from the right margin to the left margin.
The margins can be aligned in the following order. First, in order to align the black (K) top margin, the raster image processor (RIP) controller in controller 37 sets the delay from the vertical synchronization signal (Vsync) to the first line that is printed on the page. Second, to align the K right margin, the raster image processor (RIP) controller sets the time delay from the K horizontal synchronization signal (Hsync). Third, to align the K left margin, the raster image processor (RIP).controller adjusts the speed of a motor driving polygon mirror 46, and an engine controller within controller 37 adjusts the process speed of the page in process direction 54. Fourth, the engine controller also adjusts the process speed to align the K bottom margin.
The black top margin is adjusted by changing the number of scan lines between the Vertical synchronization signal (Vsync) and the first writing line. The printed page consists of a logical page, physical page, and printable area.
The logical page has a total of 6825 scan lines for a 279.4 mm (11 inch) page. This logical page is separated into a beginning buffer with a possible range of 125 scan lines (from the Vsync signal going low to the top of the physical page), the 6600 scan lines for the physical page, and an ending buffer with a possible range of 100 scan lines at the end of the physical page. The top margin is adjusted by changing the size of the beginning and ending buffer (keeping the total of these two buffers equal to 6825−6600=225 scan lines) so that the physical page starts earlier or later in time relative to Vsync. This causes the printable area to move towards the top or bottom of the page respectively. The black top margin adjustment has a range of +/−100 scan lines in +/−25 increments with each increment corresponding to four 600 dpi scans. Four scans at 600 dpi represents 0.0067 inch or 0.1693 mm in the process direction 54.
The black top margin is set by first running a registration page (
The panel range for the right margin is +/−12 increments. Each increment corresponds to four pels at a 600 dpi scan rate. Four pels at 600 dpi represents 0.0067 inch or 0.1693 mm in scan direction 64. Each pel is divided into a number of side-by-side slices (12 in this embodiment) extending in scan direction 64. The raster image processor (RIP) controls the right margin by adjusting the delay from the horizontal synchronization signal, Hsync, to the first PEL. The right margin delay (RMD), expressed in slices, is calculated by the following Equation (1):
RMD=RMO*4 pels/increment*12 slices/pel+RBL,
wherein RMO is a right margin offset expressed in increments, and RBL is a right baseline number of slices determined to be the nominal delay. The factory calibration station transfers the RMO value to the raster image processor (RIP) at setup time.
At the factory calibration station, a factory calibration fixture 68 (
Laser printhead 12 produces a scanning laser beam 38 that reflects off of a folding mirror 72 onto an Hsync sensor 74. As printhead 12 scans laser beam 38 in scan direction 64, two sensors 76, 78 in the form of charge coupled device (CCD) cameras sense a spot of laser beam 38 as laser beam 38 travels across the active areas of cameras 76, 78. The calibration system then calculates the center of the laser spot to determine where the spot is located as-referenced to fixture 68 relative to frame 70. The printer controller starts by turning on from PEL one through PEL 5100 with some nominal value loaded into the right margin delay (RMD) register (the printer scans from right margin to left margin). The printer controller 37 communicates to the calibration system for feedback as to the location of the first PEL on first camera 76. The controller 37 increments or decrements the right margin offset (RMO) value until the spot is at some predetermined location in the viewing area of first camera 76. The controller 37 then stores this as the right RMO value in NVRAM.
After determining the black right margin offset (RMO), the calibration system then looks for the end-of-scan PEL on the second camera 78 to set the left margin using the black plane as the reference. The left margin adjustment range is +/−48 PELs in +/−12 increments with each increment corresponding to four 600 dpi PELs. The black left margin is adjusted by changing the rotation speed of the printhead polygonal mirror motor with the RIP controller and using the engine to compensate the process speed proportionally. The nominal mirror motor speed is 19500 RPM. At the nominal mirror motor speed the time for the laser beam to complete one scan (facet-to-facet) is 384.6 microseconds. This yields a nominal laser beam velocity of 0.833 mm/microsecond. The time from the first to the end-of-scan PEL is constant for a given operating point and is calculated to be 215.9 mm/0.833 mm/microsecond or 259.2 microseconds. For the nominal scan time of 384.6 microseconds the process speed needs to be set so that 6600 scan lines can be written on an 279.4 mm (11 inch) page at 600 dpi. Therefore the nominal process speed is calculated using the following equation:
Page Length/(Number of scan lines per page*scan time)
279.4/(6600*0.0003846)=110.067 mm/second.
If the calibration system determines that the black left margin needs to be smaller which will increase the line length, then the calibration system calculates the change in the left margin offset (LMO) to obtain the correct line length. The calibration system will then instruct the RIP controller to increment the left margin offset (LMO) by that value. The RIP controller will then increase the mirror motor speed accordingly. The increased mirror motor speed causes the scan time to decrease, which in turn increases the line length. The line length increases because the laser beam's velocity increases. The calibration system will then check the line length to determine if further adjustments are needed. This process is iterated until the last PEL is within tolerance for the left margin and the calibration system communicates to the RIP controller to save the LMO in NVRAM.
Since the scan time has changed, the process speed needs to be adjusted so that the image will travel 279.4 mm in the time required to scan 6600 scan lines. The RIP controller will communicate to the engine controller the value for the LMO so that the engine controller can compensate the process speed accordingly.
A reference clock for controlling the speed of the mirror motors and the process motors is generated by an ASIC in controller 37 using a counter and a system clock. A reference clock signal is generated by counting a predetermined number of system clock cycles and then toggling the output state of the reference clock after having counted the predetermined number of system clock cycles.
A mirror motor count (MMCOUNT) is defined as the number of cycles of the system clock that are to be counted before toggling the output of the reference clock that determines the speed of the mirror motor. A new mirror motor count (MMCOUNT) is calculated using a mirror motor count (BLMMCOUNT) at a baseline (nominal) line length and a baseline (nominal) operating speed, as well as a left margin offset (LMO) expressed in increments. In the preferred embodiment, it has been determined that incrementing the mirror motor count by four causes the line length to change by approximately four pels. Then, by using a lookup table, the print engine can change the process speed such that the number of scans between stations remains constant. The new mirror motor count (MMCOUNT) is given by the following Equation (2):
MMCOUNT=BLMMCOUNT+(LMO*4 counts/increment).
A brushless direct current motor drives intermediate transfer belt 36 and determines the speed of belt 36. A second reference clock generates a signal which determines the speed of the motor that drives belt 36. The cycling of the second reference clock is governed by a belt motor count (BMCOUNT) defined as the number of cycles of the system clock that are to be counted before toggling the output of the second reference clock. The belt motor count (BMCOUNT) is given by the following Equation (3):
BMCOUNT=BLBMCOUNT+LMOBCOUNT,
wherein BLBMCOUNT represents a baseline belt motor count between the toggling of the state of the reference clock, and LMOBCOUNT represents a left margin offset belt motor count corresponding to the left margin offset LMO. The left margin offset belt motor count (LMOBCOUNT) is obtained from a lookup table which provides an offset value for every possible value of left margin offset LMO, i.e., +/−12.
Similarly, a second brushless direct current motor drives photoconductive drum 28 and determines the speed of photoconductive drum 28. A third reference clock generates a signal which determines the speed of the motor that drives photoconductive drum 28. The cycling of the third reference clock is governed by a drum motor count (DMCOUNT) defined as the number of cycles of the system clock that are to be counted before toggling the output of the third reference clock. The drum motor count (DMCOUNT) is given by the following Equation (4):
DMCOUNT=BLDMCOUNT+LMODCOUNT,
wherein BLBDCOUNT represents a baseline drum motor count between the toggling of the state of its reference clock, and LMODCOUNT represents a left margin offset drum count corresponding to the left margin offset LMO. The count (LMODCOUNT) is obtained from a lookup table which provides a LMODCOUNT value for every possible value of left margin offset LMO, i.e., +/−12.
An example of the above-described calculations using actual numbers is now provided in order to facilitate understanding. Assume that the system clock operates at a frequency of 16 MHz and that a reference clock for driving the drum motor is to have a baseline frequency of 839.735 Hz. The baseline drum motor count (BLDMCOUNT) for one half the reference clock period can then be calculated as follows:
BLDMCOUNT=16 MHz/(839.735 Hz*2)=9527 counts.
Thus, as shown in
Further assume the following additional nominal settings at a resolution of 600 dpi:
Right baseline value (RBL)=2835 slices;
Baseline mirror motor count (BLMMCOUNT)=5045 counts; and
Baseline belt motor count (BLBMCOUNT)=10179 counts.
Then, if the right margin offset (RMO) equals eight increments, and the left margin offset (LMO) equals ten increments, then the following values can be calculated:
Right margin delay (RMD)=8 increments*4 pels/increment*12 slices/pel+2835=3219 slices
Mirror motor count (MMCOUNT)=5045+(4*10)=5085 counts
Belt motor count (BMCOUNT)=10179+116=10295 counts
Drum motor count (DMCOUNT)=9527+126=9653 counts
The values 116 and 126 from the previous two equations represent the left margin offset belt count (LMOBCOUNT) and the left margin offset drum count (LMODCOUNT), respectively, and are obtained from the lookup table (
The panel range for the bottom margin is +/−25 increments. The full range of adjustment causes approximately a +/−2.5% change in the speed of the paper along the path. Therefore, with a page length of 279.4 mm, each increment causes a 0.1% change in paper speed and an approximate 0.2794 mm shift in the bottom margin. This shift is accomplished by changing the process speed for the belt motor, the drum motor and the paper feed motor. Here, the paper feed motor speed is adjusted to feed the print media in accordance with a speed change of the image accumulator belt. The count of the reference clock is increased by 0.1% per increment for the drum motor and for the belt motor, as indicated by the following Equations (5) and (6):
BMCOUNT=BLBMCOUNT+LMOBCOUNT+BMO*BLBMCOUNT*0.001
DMCOUNT=BLDMCOUNT+LMODCOUNT+BMO*BLBMCOUNT*0.001,
wherein BMO is a bottom margin offset expressed in increments. BMO is obtained from the registration page shown in
It has been determined that by using the above incremental values, the print engine can keep track of the number of scan lines between stations with a simple equation using only integer math, as shown in Equation (7) below. In order to maintain the plane-to-plane registration, it is imperative that the print engine know the number of scan lines between the color stations.
SL=BLSL+2*LMO,
wherein SL is the spacing in scan lines between color stations, and BLSL is the baseline or nominal spacing in scan lines between color stations.
Correction of the plane-to plane registration includes the process of adjusting the three colors, CMY, to black. This can be performed partially with the calibration system and then completed by printing calibration patterns and measuring the difference between the planes. As described earlier, the black plane is registered to the paper and then CMY is registered to the black plane. The calibration system can set the right and left margins but the top and bottom margins are adjusted using the calibration page shown in
To adjust the CMY to the black plane a different calibration page shown in
The top margin has a coarse adjustment range of +/−127 increments of one 600 dpi scan line per increment and a fine adjustment of +8 increments of ⅛ 600 dpi scan line per increment. The top writing line is adjusted by changing the delay between when the images are started relative to the first plane that is imaged in the tandem process. For reference, the planes are imaged in the following order: yellow, cyan, magenta, and black. The nominal distance between the imaging stations is 101 mm or 2385.8 600 dpi scan lines. Initially the planes are imaged at a nominal delay of 2385 scan lines as shown in
If, for example, the calibration system measures the distance between the black and yellow stations to be 303.5 mm, then the calibration system will determine that the distance is equal to 7169.3 scan lines. The nominal distance of 303 mm requires 7157.5 scan lines. Since the process speed is constant, this increased distance would cause the yellow top line to be late when it arrives at the black transfer point. To get the yellow to arrive on time, the yellow image needs to start earlier by the difference between the number of scan lines for the nominal distance minus the number of scan lines for the measured distance. Also, since the fine adjustment is always positive, if the measured distance is greater than the nominal distance, a count of one should be added to the measured distance. Therefore the CTMO is 7157.5−7170.3 or −12.8 scan lines. The CTMO will be adjusted by −12 and the FTMO will be 0.8*8 or 6.
After measuring the top margin, the calibration system then positions the right margin offset (RMO) for the CMY planes. The procedure is similar to the right margin adjustment for the black plane except that the CMY RMO is measured as an error relative to the black plane and therefore is additive to the black plane.
The last adjustment made by the calibration system is the line length or left margin offset (LMO). The CMY line lengths are increased or decreased by inserting PEL slices or removing PEL slices respectively to match the CMY line lengths to the black line length. Since all four mirror motors are operating at the same synchronous speed and the CMY line lengths are measured as an error relative to the black line length, the CMY LMO is additive to the black left margin setting.
There is no adjustment of the bottom margin for colors.
If the margin and plane-to-plane settings need to be modified in the field, then the settings can be modified by putting the printer in a maintenance mode, printing the registration pattern, and following the steps in the procedure that were used in the factory calibration. In the field, however, the service person determines the amount of correction needed by interpreting the printed registration pattern and then entering the correction value by using the front operator panel. This same manual procedure may also be used in the printer manufacturing facility when the calibration tool is not available.
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This is a Divisional of U.S. patent application Ser. No. 10/318,637, filed Dec. 13, 2002, which is a Divisional of U.S. patent application Ser. No. 09/795,768 filed Feb. 28, 2001 (now U.S. Pat. No. 6,549,225 B2).
Number | Name | Date | Kind |
---|---|---|---|
4831420 | Walsh et al. | May 1989 | A |
4903067 | Murayama et al. | Feb 1990 | A |
4920430 | Isono et al. | Apr 1990 | A |
4950889 | Budd et al. | Aug 1990 | A |
4962981 | Murakami et al. | Oct 1990 | A |
5093674 | Storlie | Mar 1992 | A |
5099260 | Sato et al. | Mar 1992 | A |
5117243 | Swanberg et al. | May 1992 | A |
5128858 | Kitabata | Jul 1992 | A |
5278587 | Strauch et al. | Jan 1994 | A |
5287162 | de Jong et al. | Feb 1994 | A |
5291223 | Ogane et al. | Mar 1994 | A |
5294943 | Blanding et al. | Mar 1994 | A |
5303064 | Johnson et al. | Apr 1994 | A |
5361329 | Morita et al. | Nov 1994 | A |
5365074 | Genovese | Nov 1994 | A |
5373355 | Ando et al. | Dec 1994 | A |
5384592 | Wong | Jan 1995 | A |
5436647 | Kasahara | Jul 1995 | A |
5452112 | Wan et al. | Sep 1995 | A |
5457518 | Ashikaga et al. | Oct 1995 | A |
5508826 | Lloyd et al. | Apr 1996 | A |
5510885 | Mori et al. | Apr 1996 | A |
5523823 | Ashikaga et al. | Jun 1996 | A |
5550625 | Takamatsu et al. | Aug 1996 | A |
5555084 | Vetromile et al. | Sep 1996 | A |
5576753 | Kataoka et al. | Nov 1996 | A |
5587771 | Mori et al. | Dec 1996 | A |
5748221 | Castelli et al. | May 1998 | A |
5751462 | Shiraishi et al. | May 1998 | A |
5774249 | Shiraishi et al. | Jun 1998 | A |
5784679 | Schlueter, Jr. et al. | Jul 1998 | A |
5819140 | Iseki et al. | Oct 1998 | A |
5838465 | Satou et al. | Nov 1998 | A |
5877798 | Clarke et al. | Mar 1999 | A |
5899609 | Wang | May 1999 | A |
5909235 | Folkins | Jun 1999 | A |
5930466 | Rademacher | Jul 1999 | A |
5966159 | Ogasawara | Oct 1999 | A |
5966231 | Bush et al. | Oct 1999 | A |
5982408 | Overall et al. | Nov 1999 | A |
5991008 | Li et al. | Nov 1999 | A |
6268876 | Ozaki et al. | Jul 2001 | B1 |
20010028387 | Maeda | Oct 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20050093961 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10318637 | Dec 2002 | US |
Child | 11008361 | US | |
Parent | 09795768 | Feb 2001 | US |
Child | 10318637 | US |