Method of marking cellulosic products

Information

  • Patent Grant
  • 10519605
  • Patent Number
    10,519,605
  • Date Filed
    Wednesday, March 22, 2017
    7 years ago
  • Date Issued
    Tuesday, December 31, 2019
    5 years ago
Abstract
Methods for marking cellulosic products, including cellulosic fibers such as lyocell and cellulosic films, including methods for marking such products with a detectable nucleic acid marker to identify and validate the origin or authenticity of the products or items manufactured using such products. Detectably-marked cellulosic products marked with nucleic acid markers for authentication, validation and tracking are also provided.
Description
TECHNICAL FIELD

The invention pertains to a method for marking cellulosic products, including cellulosic fibers and cellulosic films, and more particularly to a method for marking such products with a nucleic acid marker to identify and validate the origin or authenticity of the products or items manufactured using such products.


BACKGROUND OF THE INVENTION

Manufacturers have an interest in protecting the integrity and purity of their products that are fabricated from quality components and may be subject to mixing or dilution with less expensive, lower quality materials. Such adulteration and even outright counterfeit substitution of process feed-stocks and production materials, received from suppliers to be processed by the manufacturers, often escapes detection until after the products are manufactured.


Counterfeiting and blending of high-end products in particular, with cheaper material, has become a major liability problem for many companies. The International Chamber of Commerce (ICC) reported that in 2008, counterfeited goods resulted in a loss of $650 billion in revenues and 2.5 million jobs. The ICC projected that the loss in revenues would exceed $1.7 trillion in 2015, which is equivalent to 2% of the world economy. In addition to revenue losses, a variety of counterfeit products have been implicated in serious health and safety issues.


SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a method of marking a cellulosic product for authentication: The method includes adding a detectable nucleic acid marker to a cellulosic medium during a step in a process for production of a cellulosic product; and thereby incorporating the nucleic acid marker into the cellulosic product to provide a detectably-marked cellulosic product. The preferred cellulosic product is lyocell.


In another embodiment, the present invention provides a method of authenticating a cellulosic product: The method includes: adding a detectable nucleic acid marker to a cellulosic medium during a step in a process for production of a cellulosic product; thereby incorporating the nucleic acid marker into the cellulosic product to provide a detectably-marked cellulosic product including the nucleic acid marker; introducing the detectably-marked cellulosic product into a stream of commerce; detecting the presence of the nucleic acid marker in the cellulosic medium of the detectably-marked cellulosic product; and thereby authenticating the cellulosic product.


The present invention further provides a detectably-marked cellulosic product for authentication, including a cellulosic medium that includes a detectable nucleic acid marker incorporated into the cellulosic medium and/or onto the surface of the cellulosic medium of the cellulosic product.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a schematic of the steps of a process for the production of, a cellulosic fiber or film from cellulosic material.



FIG. 2 shows a process for the production of a cellulosic fiber or film from wood chips, plant matter or other cellulosic material. One example of a step for addition of marker DNA is shown in the cellulosic medium immediately before spinning to produce the cellulosic fiber.



FIG. 3 shows the process of making lyocell, a cellulosic fiber.





DETAILED DESCRIPTION

Definitions of terms used herein:


“Cellulosic products” as used herein means cellulosic fibers such as for instance, viscose, lyocell or rayon; and cellulosic films, paper, cellulosic porous filters and cellulosic elastomeric sponges.


A “detectable nucleic acid marker” as used herein means any nucleic acid including at least in part, a unique sequence detectable by any of the many well known detection techniques, including polymerase chain reaction (PCR) techniques, other methods of DNA amplification such as isothermal, hybridization techniques and any of the well known method of DNA sequencing.


A “detectable marker DNA” as used herein means any DNA including at least in part, a unique sequence detectable by any of the many well known detection techniques, including polymerase chain reaction (PCR) techniques, other methods of DNA amplification such as isothermal, hybridization techniques and any of the well known method of DNA sequencing.


As used herein a “nucleic acid marker having a unique sequence” means a nucleic acid of one or more molecules having coherent nucleotide sequence shared by all the molecules.


As used herein “nucleic acid marker encoding information related to the product” means a nucleic acid marker having a nucleotide sequence designated to correlate with one or more segments of data related to the particular product. Such product-related information and the nucleotide sequence of the designated nucleic acid marker may be stored in a database. The database is useful for retrieving the product related information upon detection of the particular nucleotide sequence of the designated nucleic acid marker which thereby permits authentication or validation of the particular product from which the nucleic acid marker was obtained. The nucleic acid marker may be sampled at any stage during transit or in the stream of commerce to authenticate or validate the integrity of the product marked with the nucleic acid marker having the nucleotide sequence designated as related to the genuine product.


As used herein, “cellulosic material” includes plant matter (cotton, hemp, bamboo, and almost any botanical cellulosic material, as well as wood chips from beech, eucalyptus, and other trees). These cellulosic materials can be processed into a variety of different cellulosic products. Cellulosic materials are often mixed with solvents to manufacture cellulosic products.


A “cellulosic medium” may refer to any medium including cellulose, including but not limited to cellulosic dope. The cellulosic medium may include cellulose from one or more cellulosic materials. The cellulosic medium may be a slurry or liquid bath in which cellulose pulp and additional chemicals are combined.


Viscose rayon is a semi-synthetic cellulosic material composed of cellulose and cellulose xanthate. It is a soft fiber commonly used in fabrics and clothing, linings, shirts, shorts, coats, jackets, and other outerwear. Viscose is also used in industrial yarns such as cords incorporated in tire manufacturing, upholstery and carpets, and for casting cellophane films.


Rayon fibers are formed of regenerated cellulose and can be engineered to meet many different needs due to the wide range of properties attainable by variation of the production processes. Examples include high wet-modulus rayon yarn, super absorbent rayons and highly stretched low water retaining rayon fibers.


Cellulosic products also include lyocell, another form of rayon, and reconstituted cotton based products. Lyocell is a cellulosic rayon product manufactured from bleached wood pulp and is used for making textiles for clothing and other purposes. Cellophane is a clear wrapping formed as a cellulosic film instead of being spun into fibers.


In a preferred embodiment, the invention relates to a method of incorporating detectable marker DNA into lyocell cellulosic fibers by incorporating detectable marker DNA into the lyocell's cellulosic medium during the pre-spinning stages of the fiber's manufacturing process.


Schematic Process Steps


See FIG. 1 for a schematic of steps in the manufacturing of cellulosic products, including treatment of cellulosic pulp with a caustic soda solution; pressing of the alkaline treated cellulosic material to fluffy crumbs; aging of the cellulosic material at controlled temperature for a set time; a cooling step; a “xanthation” processing step using carbon disulfide (CS2) treatment and dissolution in lye and dissolving the yellow crumbs in caustic soda; a filtration step; a ripening step in which the cellulosic material is matured; a de-aeration step; a pre-spinning step (at which the detectable marker nucleic acid may be added); a washing step; a stretching step followed by a cutting and re-washing of the cellulosic product; and a drying and baling into bales of cellulosic product for distribution or shipping to downstream manufacturers.


See FIG. 2 for a graphic representation of an exemplary process for the production of a cellulosic product showing addition of a DNA marker prior to spinning of fiber.


See FIG. 3 for a schematic of steps in the manufacturing of lyocell. The process starts by mixing together wood pulp, water and amine oxide to create a cellulosic medium known as the cellulosic dope (The preferred amine oxide is N-methyl morpholine oxide (NMMO). The wood pulp dissolves into the solvent as a 1-1 mole complex of NMMO with water with heat and in a pressurized vessel. The solution is filtered. At this time, a detectable nucleic acid marker may be added to the cellulosic dope. Then, the cellulosic dope is pumped through spinnerets using the process of dry jet-wet spinning. After the spinning process, the fibers are washed with water and dried, then a lubricant may be applied to the fibers. The amine oxide solvent may be recovered from the fiber process and reused in the manufacturing process.


In an embodiment, the present invention provides a method of marking a cellulosic product for authentication: The method includes adding a detectable marker, such as for instance, and without limitation, a detectable nucleic acid to a cellulosic medium during a step in a process for production of a cellulosic product; and thereby incorporating and/or embedding the detectable marker into the cellulosic product to provide a detectably-marked cellulosic product. The step in the production of the cellulosic product may or may not be a step in which the cellulosic material is processed under alkaline conditions.


In one embodiment, the invention provides a method of marking a cellulosic product for authentication, including: adding a detectable nucleic acid marker to a cellulosic medium prior to or during the spinning or the filming of a cellulosic product, and thereby incorporating the detectable nucleic acid marker into the cellulosic product to provide a detectably-marked cellulosic product.


The detectably-marked cellulosic product produced by the above-listed methods may be any cellulosic fiber or cellulosic film.


Nucleic acids, especially deoxyribose nucleic acids (DNA) are well suited to use as detectable marker for ease of detection using modern methods such as isothermal amplification, polymerase chain reaction (PCR), and hybridization detection. Further, nucleic acids are ideally suited to encoding information due to the enormous coding capacity of DNA and RNA oligonucleotides. Useful information that can be readily encoded in nucleic acid detectable markers includes for instance and without limitation: the production lot number, the date of manufacture or processing, the time and the identity of the manufacturer.


Nucleic Acid Markers


Nucleic acids are particularly well suited to serve a detectable markers due to their enormous coding capacity and the fact that they can be used in such minute quantities that their sequences are impossible to duplicate without knowledge of their nucleotide sequences or access to a complementary probe or specific primer sequences necessary for their amplification and hence their detection.


The detectable nucleic acid marker is preferably attached directly onto or embedded directed into the cellulosic fibers or film. In the process of making lyocell, the nucleic acid marker should not be attached to any other “body” prior to being added to the cellulosic medium because adding a large “body” during the manufacturing process would degrade the internal structure of the end Lyocell fiber, which is typically less than 300 nm in width for lyocell. In fact, only trace (very small) amounts of detectable marker DNA are used in the process to ensure the uniform size and density of the internal fiber structure are not compromised.


Suitable amounts of detectable marker DNA for incorporation into the cellulosic material according to the present invention can range from 0.1 nanograms (10−10 g) to micrograms (10−6 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material, with a preferred range of 0.1 nanogram (10−10 g) to 10 micrograms (10×10−6 g) of detectable marker DNA added per kilogram of cellulosic material. The quantity of detectable marker DNA added during the processing of the cellulosic material may be carefully metered for optimal delivery of suitable amounts of DNA for authentication, validation and tracking, yet ensuring the structural integrity of the delicate resultant cellulosic products.


For example, the amount of detectable marker DNA added in the method of making lyocell may range from micrograms (10−6 g) to less than a nanogram (10−9 g) per kilogram of cellulosic material. In a preferred embodiment, the amount of detectable marker DNA added to the cellulosic medium in the method of making lyocell may range from 0.1 nanograms (10-10 g) to 10 micrograms (10×10−6 g) of detectable marker DNA added per kilogram of cellulosic material. In another embodiment, the amount of detectable marker DNA is less than 1 ppt (10−12) w/w of the cellulosic material.


Suitable exemplary ranges of detectable marker DNA loading for cellulosic mediums include for instance:


A range from about 0.1 nanogram (10−10 g) to about 10 microgram (10×10−6 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 0.1 nanogram (10×10−10 g) to about 1 microgram (10−6 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 0.1 nanogram (10×10−10 g) to about 100 nanograms (100×10−9 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 0.1 nanogram (10×10−10 g) to about 10 nanograms (10×10−9 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 1 picograms (1×10−12 g) to about 100 microgram (100×10−6 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 1 femtogram (10−15 g) to about 1 microgram (10−6 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 10 femtograms (10×10−15 g) to about 100 nanograms (100×10−9 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 100 femtograms (100×10−15 g) to about 10 nanograms (10×10−9 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


A range from about 1 picograms (1×10−12 g) to about 1 nanogram (1×10−9 g) of detectable marker DNA added per kilogram (103 g) of cellulosic material.


Any minimum value set forth herein may be combined with any maximum value set forth herein to create all possible ranges.


The detectable marker DNA having a unique nucleotide sequence may be included with an excess of a carrier nucleic acid of a natural genomic sequence or a mixture of random synthetic or natural nucleic acid sequences. In this way, extraction of total nucleic acid will not reveal the detectable marker DNA sequence without access to the cognate PCR primer pair or pairs for PCR, or the complementary nucleotide hybridization probe depending on the detection method used.


The detectable marker DNA used in the methods of the present invention may be any suitable DNA marker. The DNA may be single or double stranded DNA. In one embodiment, the detectable marker DNA may be from about 20 bases to about 5,000 kilobases in single strand length, or about 20 base pairs to about 5 Kb pairs in double strand length.


Alkaline Activation


The detectable marker DNA as used herein may be alkaline activated before introduction of the markers to the cellulosic materials via a cellulosic medium.


In one embodiment, the detectable marker DNA used in the methods of the present invention may be alkaline activated as described in US patent application publication US 20140256881 A1 “Alkaline Activation For Immobilization of DNA Taggants” of Berrada et al. the entire disclosure of which is hereby incorporated by reference.


In one embodiment, the alkaline conditions are produced by mixing the detectable marker DNA with an alkaline solution having a high pH, for instance the pH of the alkaline solution can be a pH of about 9.0 or higher; a pH of about 10.0 or higher; a pH of about 11.0 or higher, or even a pH of about 12.0 or higher, and contacting the deoxyribonucleic acid that has been exposed to the alkaline conditions with the cellulosic medium. In one embodiment, the alkaline solution is a solution of a hydroxide of an alkali metal.


In one embodiment, the method including exposing the detectable marker DNA to alkaline conditions, includes contacting the deoxyribonucleic acid that has been exposed to the alkaline conditions with the cellulosic medium; wherein the alkaline conditions are produced by mixing the detectable marker DNA with a solution of an alkali metal hydroxide, the alkali metal hydroxide solution having a concentration of from about 1 mM to about 1.0 M.


Alternatively, the alkali metal hydroxide solution may have a concentration of from about 10 mM to about 0.9 M. In another embodiment, the alkali metal hydroxide solution may have a concentration of from about 0.1 M to about 0.8 M. In still another embodiment, the alkali metal hydroxide solution may have a concentration of from about 0.4 M to about 0.8 M. In another embodiment, the alkali metal hydroxide solution may have a concentration of about 0.6 M.


In one embodiment, the detectable marker DNA is mixed with an alkaline solution having a pH from about 9.0 to about 14.0 and incubated at a temperature of from about 5° C. to about 55° C. to produce the alkaline conditions. Alternatively, the detectable marker DNA may be mixed with an alkaline solution having a pH from about 9.0 to about 14.0 and incubated at a temperature of from about 0° C. to about 65° C. to produce the alkaline conditions and incubating the mixture for a period of from about 1 minute to about 6 hours. In another embodiment, the alkaline treated detectable marker DNA may be added to the cellulosic medium immediately, for instance and without limitation, the alkaline treated detectable marker DNA may be added to the cellulosic medium in a cellulosic bath immediately prior to spinning the cellulosic medium into fibers or created cellulosic film.


In one embodiment, NaOH may be used for alkaline activation for incorporation of aqueous nucleic acids. As a potential consequence of the presence of NaOH in the some of the cellulosic process(es), nucleic acids may become alkaline activated via a side reaction. Thus, NaOH may be used to prevent “coagulation” of the dissolved cellulose by normalizing pH. In addition, other caustic solutions may be employed, such as potassium hydroxide, calcium oxide, alkoxides, and/or butyl-lithium.


Non-Activated DNA


The addition of NMMO (N-Methylmorpholine N-oxide) to cellulosic material will dissolve the cellulosic material to form a cellulosic medium (cellulosic dope). Following the dissolution process(es) of the cellulosic materials, the detectable marker DNA is incorporated into the cellulosic medium immediately preceding or during the re-polymerization/spinning step(s) for marking and authentication purposes. In this embodiment, the detectable marker DNA will not be alkaline activated.


In an exemplary embodiment, the detectable marker DNA is not alkaline activated, and is added to a cellulosic medium comprising wood pulp, NMMO and water, after dissolution of the cellulosic materials, but immediately preceding or during the re-polymerization/spinning step(s). In this instance, the detectable marker DNA may be delivered into the cellulosic medium as a saturated bound complex with a protecting agent, the protecting agent chosen from the following compounds: non aromatic alkyl amities such as tri-butyl amine, aromatic (triphenyl) alkyl amines such as crystal violet or methyl green, biological amines such as spermidine or spermine. The protecting agent acts to protect the detectable marker DNA from degradation caused by various aspects of the cellulosic medium, including but not limited to NMMO.


Metal ions, especially divalent metal ions are known to catalyze the hydrolytic degradation of nucleic acids. Therefore, addition of these metal ions in water and additives should be avoided where possible. Low concentrations of divalent metal ions commonly found in ground water can be removed by the addition of chelating agents.


The use of low concentrations of about 1 mM to about 20 mM of chelating agents such as Tris-EDTA for the sequestration of metal ions is well documented: See for instance “Metal Ion/Buffer Interactions” Fischer et al. (1979) Eur. J. Biochem. vol. 94: 523-530.


Alternatively, water softeners (e.g. amino acids such as glutamic acid and histidine, or organic dicarboxylic acids such as malate, and polypeptides such as phytochelatin, etc) may be used to sequester and or chelate metal ions, especially divalent metal ions.


Water quality can be a problem leading to lack of stability of the DNA detectable marker: this was found in many cases to be remedied by improving the water quality by removing divalent metal ions with a chelating agent.


Incorporation of Detectable Marker DNA


Surface coating of detectable marker DNA onto a cellulosic product exposes the detectable marker DNA to any further treatments and downstream processing which may lead to reduction in the amount of the detectable marker DNA surviving the processing, but this may be addressed by heavier initial loading of the detectable marker DNA onto the surface of the cellulosic product.


Incorporation of a detectable DNA marker by encapsulation within the cellulosic product rather than coating onto the surface of the cellulosic product protects the detectable DNA marker and preserve the ability to amplify the DNA by standard methods such as PCR and isothermal amplification for authentication. In another embodiment, the detectable DNA marker is integrated uniformly into the cellulosic fiber core and thus is protected from further downstream processing. Such encapsulation may require harsher conditions for extraction of the detectable DNA marker for adequate and reliable detection.


The detectable DNA marker may be added to the cellulosic material, via addition to the cellulosic medium, at any stage of the manufacturing of the cellulosic product. In one exemplary process, the detectable DNA marker may be added to the cellulosic material via addition to the cellulosic medium at the stage immediately before spinning/repolymerization into cellulosic fibers or extruding through a slit to form a cellulosic film. This procedure provides a cellulosic product which incorporates the detectable DNA marker throughout the cellulosic fiber or cellulosic film. The detectable DNA marker is present in the interior of the fiber or film as well as on the surface and so it is at least partially shielded from any further harsh treatments to which the cellulosic product may be exposed.


Alternatively, the detectable DNA marker may be applied to the surface of the cellulosic fibers or the cellulosic film. Higher loadings of the detectable DNA marker may be used to provide greater recoverability of the detectable DNA marker after surface treatments that may cause loss of some of the detectable DNA marker.


In another embodiment, the present invention provides a method of authenticating a cellulosic product including: adding a detectable marker such as for instance, and without limitation, a detectable nucleic acid encoding information related to the production process and/or the cellulosic product, to a cellulosic medium during a step in a process for production of a cellulosic product; thereby incorporating the detectable marker into the cellulosic product to provide a detectably-marked cellulosic product; introducing the detectably-marked cellulosic product into a stream of commerce; detecting the presence of the detectable marker in the cellulosic medium of the detectably-marked cellulosic product; and thereby authenticating the cellulosic product.


In another embodiment, the invention provides a method of authenticating a cellulosic product, including: adding a detectable nucleic acid marker to a cellulosic medium prior to or during the spinning or the filming of a cellulosic product; thereby incorporating the detectable nucleic acid marker into the cellulosic product to provide a detectably-marked cellulosic product; introducing the detectably-marked cellulosic product into a stream of commerce; detecting the presence of the detectable nucleic acid marker in the cellulosic medium of the detectably-marked cellulosic product; and thereby authenticating the cellulosic product. The cellulosic product may be any cellulosic product, such as for instance paper, or a cellulosic fiber, e.g. rayon, or a cellulosic film such as cellophane, a porous cellulosic filter, or an elastomeric cellulosic sponge.


The detectable nucleic acid marker may be a detectable DNA marker having a unique nucleotide sequence. In one embodiment, the unique nucleotide sequence of the detectable DNA marker may be used to encode information related to the process for production of the cellulosic product. The detectable DNA marker may or may not be alkaline activated prior to addition to the cellulosic medium during the cellulosic production process and may impart specific information about the cellulosic product, such as for instance, and without limitation, a production lot number, a date, a time and a manufacturer identity.


The present invention further provides a detectably marked a cellulosic product for authentication, including a cellulosic medium and a detectable marker, such as a nucleic acid marker incorporated into the cellulosic medium and/or onto the surface of the cellulosic product to form a detectably marked a cellulosic product.


In the event of a conflict between a definition recited in this specification and a definition provided in a patent or publication incorporated herein by reference, the definition provided herein is intended.


The disclosures of each of the references, patents and published patent applications disclosed herein are each hereby incorporated by reference herein in their entireties.


While the invention has been shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.


EXAMPLES
Example 1. DNA Tagging of Lyocell Dope (Cellulosic Material)

Wood pulp is mixed with defined mass excess solution of 50% NMMO, 50% water at room temperature to form a cellulosic medium. The cellulosic medium is then heated to solvate the cellulose and evaporate excess water to form the cellulosic medium.


DNA concentrate comprising detectable marker DNA is added to the cellulosic medium, at one of two (2) different times during the manufacturing process: The final mass ratio of detectable DNA marker to cellulosic material is typically between 0.1 nanograms to 10 micrograms per kilogram of cellulosic material. The addition point are:


A. Addition of detectable DNA marker at the beginning the heating period.


B. Addition of detectable DNA marker after the heating period, just before extrusion/spinning to form fiber.


Example 2. DNA Recovery from Lyocell Fibers

Four methods of DNA recovery and analysis from the lyocell may be used.


Method 1


Two-step in situ PCR of fiber, followed by standard CE (capillary electrophoresis):

    • based on use of @10 mg (i.e 10 μL) of fiber per test. Fiber is added directly to a 40 uL PCR reaction


Aqueous extraction of Fiber at 90° C. at pH 8 or greater, followed by charge switch magnetic bead concentration, then PCR/CE:

    • based on the use of @100 mg (i.e 100 μL) of fiber per test.


      Method 2


Aqueous extraction of fiber at 90° C. at pH 8 or greater, followed by charge switch magnetic bead concentration, followed by qPCR:

    • based on use of @100 mg (i.e 100 μL) of fiber per test. An optimized DNA TaqMan assay may be deployed on a qPCR device


      Method 3


Solvation of fiber in 24% NaOH at 90° C. for 10 minutes, followed by neutralization with acetate and Nynal Magnetic Bead concentration, followed by qPCR:

    • based on the use of @100 mg (i.e 100 μL) of fiber per test. An optimized DNA TaqMan assay may be deployed on a qPCR device


      Method 4


Solvation of fiber in 50% NMMO, 50% water at 90° C. followed by neutralization with acetate and Nynal Magnetic Bead concentration, followed by qPCR:

    • based on the use of @100 mg (i.e 100 μL) of fiber per test. An optimized DNA TaqMan assay may be deployed on a qPCR device

Claims
  • 1. A method of authenticating a cellulosic product, comprising: adding a detectable nucleic acid marker to a cellulosic medium prior to or during a spinning step or prior to or during a filming step of processing of a cellulosic product, said cellulosic medium containing wood pulp and at least one chemical selected from the group consisting of carbon disulfide, sodium hydroxide or N-methylmorpholine-N-oxide (NMMO); andthereby incorporating the detectable nucleic acid marker into the cellulosic product to provide a nucleic acid-marked cellulosic product;introducing the nucleic acid-marked cellulosic product into a stream of commerce;detecting the presence of the detectable nucleic acid marker in the cellulosic product via dissolving all or a portion of the nucleic acid-marked cellulosic product into a solution and performing a PCR based detection technique on a sample of said solution; andthereby authenticating the cellulosic product.
  • 2. The method according to claim 1, wherein the detectable nucleic acid marker comprises a detectable DNA marker.
  • 3. The method according to claim 2, wherein the detectable DNA marker is added to the cellulosic medium in an amount ranging from 1 nanogram to 1 microgram of DNA per kilogram of cellulosic material.
  • 4. The method according to claim 2, wherein the detectable DNA marker is added to the cellulosic medium in an amount ranging from 0.1 nanograms to 10 micrograms of DNA per kilogram of cellulosic material.
  • 5. The method according to claim 2, wherein at least one of N-methylmorpholine-N-oxide (NMMO) or sodium hydroxide is used to dissolve all or a portion of the nucleic acid-marked cellulosic product into a solution.
  • 6. The method according to claim 5, wherein information related to the process for production of the cellulosic product comprises one or more of a production lot number, a date, a time and a manufacturer.
  • 7. The method according to claim 1, wherein the cellulosic product is a cellulosic fiber.
  • 8. The method according to claim 7, wherein the cellulosic fiber is lyocell.
  • 9. A method of marking a cellulosic product for authentication, comprising: adding a detectable DNA marker to a cellulosic medium prior to or during a spinning step or prior to or during a filming step of processing of a cellulosic product, said cellulosic medium containing wood pulp and at least one chemical selected from the group consisting of carbon disulfide, sodium hydroxide or N-methylmorpholine-N-oxide (NMMO), and wherein the DNA marker is complexed with at least one protecting agent chosen from the group consisting of non-aromatic alkyl amines, aromatic (triphenyl) alkyl amines, or biological amines; andthereby incorporating and embedding the detectable DNA marker throughout the cellulosic product to provide a DNA-marked cellulosic product.
  • 10. The method according to claim 9, wherein the unique DNA sequence of the detectable DNA marker encodes information related to the process for production of the cellulosic product.
  • 11. The method according to claim 10, wherein information related to the process for production of the cellulosic product comprises one or more of a production lot number, a date, a time and a manufacturer.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Patent Provisional Ser. No. 62/320,946, filed Apr. 11, 2016, which is incorporated herein by reference.

US Referenced Citations (218)
Number Name Date Kind
4183989 Tooth Jan 1980 A
4278557 Elwell, Jr. Jul 1981 A
4454171 Diggle, Jr. et al. Jun 1984 A
4548955 Okahata et al. Oct 1985 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4739044 Stabinsky Apr 1988 A
4757141 Fung et al. Jul 1988 A
4861620 Azuma et al. Aug 1989 A
4965188 Mullis et al. Oct 1990 A
5047519 Hobbs, Jr. et al. Sep 1991 A
5075216 Innis et al. Dec 1991 A
5089691 Morisaki et al. Feb 1992 A
5132242 Cheung Jul 1992 A
5139812 Lebacq Aug 1992 A
5151507 Hobbs, Jr. et al. Sep 1992 A
5156765 Smrt et al. Oct 1992 A
5176203 Larzul Jan 1993 A
5270183 Corbett et al. Dec 1993 A
5415839 Zaun et al. May 1995 A
5429952 Garner et al. Jul 1995 A
5451505 Dollinger Sep 1995 A
5498283 Botros et al. Mar 1996 A
5508197 Hansen et al. Apr 1996 A
5595871 DelVecchio et al. Jan 1997 A
5599578 Butland Feb 1997 A
5602381 Hoshino et al. Feb 1997 A
5639603 Dower et al. Jun 1997 A
5643728 Slater et al. Jul 1997 A
5725821 Gannon Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5763176 Slater et al. Jun 1998 A
5776713 Garner et al. Jul 1998 A
5849208 Hayes et al. Dec 1998 A
5866336 Nazarenko et al. Feb 1999 A
5912257 Prasad et al. Jun 1999 A
5942444 Rittenburg et al. Aug 1999 A
5956172 Downing Sep 1999 A
5977436 Thomas et al. Nov 1999 A
5989823 Jayasena et al. Nov 1999 A
6013789 Rampal Jan 2000 A
6030657 Butland et al. Feb 2000 A
6033880 Haff et al. Mar 2000 A
6057370 Weiland et al. May 2000 A
6127120 Graham et al. Oct 2000 A
6132996 Hunicke-Smith Oct 2000 A
6140075 Russell et al. Oct 2000 A
6169174 Hasegawa et al. Jan 2001 B1
6261809 Bertling et al. Jul 2001 B1
6287768 Chenchik et al. Sep 2001 B1
6312911 Bancroft et al. Nov 2001 B1
6326489 Church et al. Dec 2001 B1
6342359 Lee et al. Jan 2002 B1
6361944 Mirkin et al. Mar 2002 B1
6379897 Weidenhammer et al. Apr 2002 B1
6399397 Zarling et al. Jun 2002 B1
6537747 Mills, Jr. et al. Mar 2003 B1
6537752 Astle Mar 2003 B1
6576422 Weinstein et al. Jun 2003 B1
6608228 Cumpston et al. Aug 2003 B1
6613560 Tso et al. Sep 2003 B1
6632653 Astle Oct 2003 B1
6686149 Sanchis et al. Feb 2004 B1
6703228 Landers et al. Mar 2004 B1
6709692 Sudor Mar 2004 B2
6743640 Whitten et al. Jun 2004 B2
6995256 Li et al. Feb 2006 B1
7014113 Powell et al. Mar 2006 B1
7015030 Fouillet et al. Mar 2006 B1
7031927 Beck et al. Apr 2006 B1
7060874 Wilkins Jun 2006 B2
7112616 Takizawa et al. Sep 2006 B2
7115301 Sheu et al. Oct 2006 B2
7133726 Atwood et al. Nov 2006 B1
7160996 Cook Jan 2007 B1
7223906 Davis May 2007 B2
7250195 Storey et al. Jul 2007 B1
7709250 Corbett et al. May 2010 B2
7732492 Makino et al. Jun 2010 B2
8278807 Agneray et al. Oct 2012 B2
8597549 Cumpston et al. Dec 2013 B2
9266370 Jung et al. Feb 2016 B2
9297032 Jung et al. Mar 2016 B2
20010039018 Matson et al. Nov 2001 A1
20020048822 Rittenburg et al. Apr 2002 A1
20020051969 Goto et al. May 2002 A1
20020056147 Dau et al. May 2002 A1
20020064639 Rearick et al. May 2002 A1
20020080994 Lofgren et al. Jun 2002 A1
20020119485 Morgan Aug 2002 A1
20020128234 Hubbell et al. Sep 2002 A1
20020129251 Itakura et al. Sep 2002 A1
20020137893 Burton et al. Sep 2002 A1
20020155490 Skinner et al. Oct 2002 A1
20020160360 Chenchik et al. Oct 2002 A1
20020167161 Butland Nov 2002 A1
20020185634 Marder et al. Dec 2002 A1
20020187263 Sheu et al. Dec 2002 A1
20030000225 Nagai et al. Jan 2003 A1
20030017551 Parthasarathy et al. Jan 2003 A1
20030035917 Hyman Feb 2003 A1
20030064507 Gallagher et al. Apr 2003 A1
20030096273 Gagna May 2003 A1
20030142704 Lawandy Jul 2003 A1
20030142713 Lawandy Jul 2003 A1
20030162296 Lawandy Aug 2003 A1
20030177095 Zorab et al. Sep 2003 A1
20030203387 Pelletier Oct 2003 A1
20030207331 Wilson, Jr. et al. Nov 2003 A1
20040063117 Rancien et al. Apr 2004 A1
20040071718 Tsai Apr 2004 A1
20040115796 Burns Jun 2004 A1
20040166520 Connolly Aug 2004 A1
20040219287 Regan et al. Nov 2004 A1
20050008762 Sheu et al. Jan 2005 A1
20050031120 Samid Feb 2005 A1
20050045063 Niggemann et al. Mar 2005 A1
20050053968 Bharadwaj et al. Mar 2005 A1
20050059029 Mariella, Jr. et al. Mar 2005 A1
20050059059 Liang Mar 2005 A1
20050112610 Lee et al. May 2005 A1
20050142565 Samper et al. Jun 2005 A1
20050214532 Kosak et al. Sep 2005 A1
20050260609 Lapidus Nov 2005 A1
20060017957 Degott et al. Jan 2006 A1
20060017959 Downer et al. Jan 2006 A1
20060117465 Willows et al. Jun 2006 A1
20060121181 Sleat et al. Jun 2006 A1
20060199196 O'Banion et al. Sep 2006 A1
20060286569 Bar-Or et al. Dec 2006 A1
20070012784 Mercolino Jan 2007 A1
20070026239 Sigrist et al. Feb 2007 A1
20070048761 Reep et al. Mar 2007 A1
20070072197 Rayms-Keller et al. Mar 2007 A1
20070117119 Akita et al. May 2007 A1
20070121937 Kochevar et al. May 2007 A1
20070254292 Fukasawa et al. Nov 2007 A1
20080038813 Chen Feb 2008 A1
20080081357 Kwon et al. Apr 2008 A1
20080149713 Brundage Jun 2008 A1
20080153135 Liu Jun 2008 A1
20080216255 Poovey et al. Sep 2008 A1
20080290649 Klein et al. Nov 2008 A1
20080293052 Liang et al. Nov 2008 A1
20080299559 Kwok et al. Dec 2008 A1
20080299667 Kwok et al. Dec 2008 A1
20080312427 Kwok et al. Dec 2008 A1
20090042191 Hayward et al. Feb 2009 A1
20090057147 Kayyem Mar 2009 A1
20090069199 Brandenburg Mar 2009 A1
20090075261 Hayward et al. Mar 2009 A1
20090136163 Kerr et al. May 2009 A1
20090220789 DeSimone et al. Sep 2009 A1
20090222912 Boschin Sep 2009 A1
20090253127 Gaudreau et al. Oct 2009 A1
20090286250 Hayward et al. Nov 2009 A1
20090311555 Badyal et al. Dec 2009 A1
20090313740 Santos et al. Dec 2009 A1
20090325234 Gregg et al. Dec 2009 A1
20100050344 Peltz et al. Mar 2010 A1
20100065463 Taylor Mar 2010 A1
20100075407 Duffy et al. Mar 2010 A1
20100075858 Davis et al. Mar 2010 A1
20100099080 Church et al. Apr 2010 A1
20100149531 Tang Jun 2010 A1
20100240101 Lieberman et al. Sep 2010 A1
20100250616 Kim Sep 2010 A1
20100258743 Bortolin Oct 2010 A1
20100267091 Murray et al. Oct 2010 A1
20100279282 Liang et al. Nov 2010 A1
20100285447 Walsh et al. Nov 2010 A1
20100285490 Dees et al. Nov 2010 A1
20100285985 Liang et al. Nov 2010 A1
20100307120 Stover Dec 2010 A1
20110054938 Hood et al. Mar 2011 A1
20110165569 Macula Jul 2011 A1
20110229881 Oshima et al. Sep 2011 A1
20110250594 Liang et al. Oct 2011 A1
20110263688 Barany et al. Oct 2011 A1
20120115154 Hampikian May 2012 A1
20120264742 Furuishi et al. Oct 2012 A1
20130040150 Trexler et al. Feb 2013 A1
20130040381 Gregg et al. Feb 2013 A1
20130046994 Shaw Feb 2013 A1
20130048731 Flickner et al. Feb 2013 A1
20130109596 Peterson et al. May 2013 A1
20130149706 Kwok et al. Jun 2013 A1
20130234043 Hussain et al. Sep 2013 A1
20130274129 Katzen et al. Oct 2013 A1
20140099643 Jung et al. Apr 2014 A1
20140106357 Berrada et al. Apr 2014 A1
20140224673 Alocilja Aug 2014 A1
20140256881 Berrada et al. Sep 2014 A1
20140272097 Jung et al. Sep 2014 A1
20140295423 Liang et al. Oct 2014 A1
20150018538 Berrada et al. Jan 2015 A1
20150030545 Grass et al. Jan 2015 A1
20150083797 Tran et al. Mar 2015 A1
20150104800 Lee et al. Apr 2015 A1
20150107475 Jung et al. Apr 2015 A1
20150125949 Liss May 2015 A1
20150133319 Fu et al. May 2015 A1
20150141264 Jung et al. May 2015 A1
20150191799 Liang et al. Jul 2015 A1
20150232952 Sun et al. Aug 2015 A1
20150266332 Szczepanik et al. Sep 2015 A1
20150275271 Berrada et al. Oct 2015 A1
20150302713 Berrada et al. Oct 2015 A1
20150304109 Tran et al. Oct 2015 A1
20150329856 Liang et al. Nov 2015 A1
20160076088 Tran et al. Mar 2016 A1
20160102215 Hayward et al. Apr 2016 A1
20160168781 Tran et al. Jun 2016 A1
20160246892 Murrah et al. Aug 2016 A1
20160264687 Tran Sep 2016 A1
20160326511 Berrada et al. Nov 2016 A1
20160362723 Jung et al. Dec 2016 A1
20170021611 Jung et al. Jan 2017 A1
Foreign Referenced Citations (54)
Number Date Country
0623658 Nov 1994 EP
0477220 Sep 1996 EP
0840350 May 1998 EP
1063286 Dec 2000 EP
1231470 Aug 2002 EP
1237327 Sep 2002 EP
1403333 Mar 2004 EP
1847316 Oct 2007 EP
2428925 Mar 2012 EP
2444136 Apr 2012 EP
2444546 Apr 2012 EP
2319337 May 1998 GB
2434570 Aug 2007 GB
63-503242 Nov 1988 JP
2009517250 Apr 2009 JP
2084535 Jul 1997 RU
2170084 Jul 2001 RU
8706383 Oct 1987 WO
9014441 Nov 1990 WO
9204469 Mar 1992 WO
9502702 Jan 1995 WO
9506249 Mar 1995 WO
9704392 Feb 1997 WO
9745539 Dec 1997 WO
9806084 Feb 1998 WO
9816313 Apr 1998 WO
9945514 Sep 1999 WO
9959011 Nov 1999 WO
0055609 Sep 2000 WO
0061799 Oct 2000 WO
0125002 Apr 2001 WO
0136676 May 2001 WO
0199063 Dec 2001 WO
02057548 Jul 2002 WO
02066678 Aug 2002 WO
02084617 Oct 2002 WO
03016558 Feb 2003 WO
03030129 Apr 2003 WO
03038000 May 2003 WO
03080931 Oct 2003 WO
2004025562 Mar 2004 WO
2004086323 Oct 2004 WO
2005075683 Aug 2005 WO
2005103226 Nov 2005 WO
2006109014 Oct 2006 WO
2007078833 Jul 2007 WO
2008007060 Jan 2008 WO
2008045288 Apr 2008 WO
2008154931 Dec 2008 WO
2012076021 Jun 2012 WO
2013052924 Apr 2013 WO
2013154943 Oct 2013 WO
2013170009 Nov 2013 WO
2014062754 Apr 2014 WO
Non-Patent Literature Citations (54)
Entry
Kim, Jeong Ah et al., “Fabrication and Characterization of a PDMS-Glass Hybrid Continuous-Flow PCR Chip”, Biochemical Engineering Journal, 29, 91-97 (2006).
Curcio, Mario et al., “Continuous Segmented-Flow Poymerase Chain Reaction for High-Throughput Miniaturized DNA Amplification” Analytical Chemistry, vol. 75, No. 1, 1-7 ( Jan. 1, 2003).
Kopp, Martin U. et al, “Chemical Amplification: Continuous-Flow PCR on a Chip”, Science, vol. 280, 1046-1048 (1998).
Skirtach, Andre, G. et al, “The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials”, Nano Letters, vol. 5, No. 7, 1371-1377 (2005).
Fixe, F. et al., Thin Film Micro Arrays with Immobilized DNA for Hybridization Analysis, Mat. Res. Soc. Symp. Proc. vol. 723, Materials Research Society, O2.3.1-O2.3.6 (2002).
Hayward, Jim et al., “A Scaled, Integrative Implementation for DNA Marking of Integrated Circuits”, Applied DNA Sciences, 1-25 (2013).
Ovsianikov, Aleksandr et al., “Two-Photon Polymerization Technique for Microfabrication of CAD-Designed 3D Scaffolds from Commercially Available Photosensitive Materials”, Journal of Tissue Engineering and Regenerative Medicine, 1:443-449 (2007).
Khandjian, E.W., “Optimized Hybridization of DNA Blotted and Fixed to Nitrocellulose and Nylon Membranes” Biotechnology, vol. 5, 165-167 (1987).
Chrisey, Linda A et al., “Fabrication of Patterned DNA Surfaces”, Nucleic Acids Research, vol. 24, No. 15, 3040-3047 (1996).
Wollenberger, Louis V. et al., “Detection of DNA Using Upconverting Phosphor Reporter Probes”, SPIE, vol. 2985, 100-111 (1997).
Takara Bio, “Takara Bio to Produce DNA Fragments for DNA Microarrays on Industrial Scale”, http://www.evaluategroup.com/Universal/View.aspx?type_Story&id.
Obeid, Pierre J. et al., “Microfabricated Device for DNA and RNA Amplification by Continuous-Flow Polymerase Chain Reaction and Reverse Transcription-Polymerase Chain Reaction with Cycle Number Section”, Anal. Chem, 75, 288-295 (2003).
Supplemental European Search Report for Corresponding European Patent Application No. EP14820538.8, pp. 1-8 (dated Jan. 25, 2017).
Hashimoto, Masahiko et al., “Rapid PCR in a Continuous Flow Device”, Lab Chip, 4, 638-645 (2004).
Thibaudau, Franck, “Ultrafast Photothermal Release of DNA from Gold Nanoparticles”, J. Phys. Chem. Lett. 3, 902-907 (2012).
Berger, S.A. et al., “Flow in Curved Pipes”, Ann. Rev. Fluid Mech., 15:461-512 (1983).
Written Opinion of the International Search Authority for PCT/US2015/013084 dated Apr. 17, 2015.
Ageno, M., et al., “The Alkaline Denaturation of DNA”, Biophys J., Nov. 1969; 9(11): 1281-1311.
Hou, Sen, et al., “Method to Improve DNA Condensation Efficiency by Alkali Treatment”, Taylor & Francis, Nucleosides, Nucleotides and Nucleic Acids, 28:725-735, 2009.
Thiel, Teresa, et al., “New zwitterionic butanesulfonic acids that extend the alkaline range of four families of good buffers: Evaluation for use in biological systems”, J. Biochem. Biophys., Methods 37 (1998) 117-129.
Schulz, M.M., et al., “Archived or directly swabbed latent fingerprints as a DNA source for STR typing”, Forensic Science International 127 (2002) 128-130.
Park, H., et al., “Stress response of fibroblasts adherent to the surface of plasma-treated poly(lactic-co-glycolic acid) nanofiber matrices”, Colloids Surf B Biointerfaces, May 1, 2010 1;77(1); 90-5.
WiseGeek, “How Many Species of Bacteria Are There”, http://www.wisegeek.org/how-many-species-of-bacteria-are-there.htm.
Wikipedia, “List of sequenced bacterial genomes”, http://en.wikipedia.org/wiki/List_of_sequenced_bacterial_genomes.
Wikipedia, “Virus”, http://en.wikipedia.org/wiki/Virus.
Agrawal, Sudhir, et al., “Site-Specific Functionalization of Oligodeoxynucleotides for Non-Radioactive Labelling”, Tetrahedron Letters, vol. 31, No. 11, pp. 1543-1546, 1990.
Beija, Mariana, et al., “Synthesis and applications of Rhodamine derivatives as fluorescent probes”, Chem. Soc. Rev., 2009, 38, 2410-2433.
Corstjens, P.L.A.M., et al., “Infrared up-converting phosphors for bioassays”, IEE Proc.-Nanobiotechnol., vol. 152, No. 2, Apr. 2005.
Tyagi, Sanjay, et al., “Multicolor molecular beacons for allele discrimination”, Nature Biotechnology, vol. 16, Jan. 1996.
Gibson, U.E., et al., “A novel method for real time quantitative RT-PCR”, Genome Res., 1996, 6:995-1001.
Gupta, K.C., et al., “A general method for the synthesis of 3′-sulfhydryl and phosphate group containing oligonucleotides”, Nucleic Acids Research, vol. 19, No. 11, p. 3019-3025 (1991).
Heid, C.A., et al., “Real time quantitative PCR”, Genome Res. 1996 6:986-994.
Holland, Pamela, M., et al., “Detection of specific polymerase chain reaction product by utilizing the 5′ → 3′ exonuclease activity of Thermus aquaticus DNA polymerase”, Proc. Natl. Acad. Sci. USA, vol. 88, pp. 7276-7280, Aug. 1991, Biochemistry.
Hosokawa, Kazuo, et al., “DNA Detection on a Power-free Microchip with Laminar Flow-assisted Dendritic Amplification”, Analytical Sciences, Oct. 2010, vol. 26.
Hussein, Ebtissam, H.A., et al., “Molecular Characterization of Cotton Genotypes Using PCR-based Markers”, Journal of Applied Sciences Research, 3(10): 1156-1169, 2007.
Ibrahim, Rashid Ismael Hag, et al., “Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast Genome with a Comparative Analysis of Sequences among 9 Dicot Plants”, Genes Genet. Syst. (2006) 81, p. 311-321.
Jiang, Chun-Xiao, et al., “Polyploid formation created unique avenues for response to selection in Gossypium (cotton)”, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 4419-4424, Apr. 1998.
Kaneda, Shohei, et al., “Modification of the Glass Surface Property in PDMS-Glass Hybrid Microfluidic Devices”, Analytical Sciences, Jan. 2012, vol. 28.
Karahan, H.A., et al., “Improvements of Surface Functionality of Cotton Fibers by Atmospheric Plasma Treatment”, Fibers and Polymers 2008, vol. 9, No. 1, 21-26.
Lee, Seung-Bum, et al., “The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms”, BMC Genomics 2006, 7:61.
Lee, Linda G., et al., “Allelic discrimination by nick-translation PCR with fluorogenic probes”, Nucleic Acids Research, 1993, vol. 21, No. 16, 3761-3766.
Tyagi, Sanjay, et al., “Molecular Beacons: Probes that Fluoresce upon Hybridization”, Nature Biotechnology, vol. 18, Mar. 1996.
Sproat, Brian S. et al., “The synthesis of protected 5′-mercapto-2′, 5′-dideoxyribonucleoside-3′-O-phosphoramidites; uses of 5′-mercapto-oligodeoxyribonucleotides”, Nucleic Acids Research, vol. 15, No. 12, 1987.
Nazarenko, I.A., et al., “A closed tube format for amplification and detection of DNA based on energy transfer”, Nucleic Acids Research, 1997, vol. 25, No. 12, 2516-2521.
Nelson, Paul S., et al., “Bifunctional oligonucleotide probes synthesized using a novel CPG support are able to detect single base pair mutations”, Nucleic Acids Research, vol. 17, No. 18, 1989.
International Preliminary Report on Patentability issued in PCT/US2013/065161 dated Apr. 21, 2015.
Written Opinion of the International Searching Authority issued in PCT/US15/21165 dated Jul. 2, 2015.
Tuzlakoglu, K., et al., “A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation”, Journal of Biomedical Materials Research Part A, 2009, Wiley Periodicals, Inc, p. 369-377.
Zuckermann, Ronald, et al., “Efficient methods for attachment of thiol specific probes to the 3′-ends of synthetic oligodeoxyribonucleotides”, Nucleic Acids Research, vol. 15, No. 13, 1987.
Yang, XF, et al., “Fluorimetric determination of hemoglobin using spiro form rhodamine B hydrazide in a micellar medium”, Talanta Nov. 12, 2003; 61(4): 439-45.
Ullrich, Thomas, et al., “Competitive Reporter Monitored Amplification (CMA)—Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization”, Plos One, Apr. 2012, vol. 7, Issue 4.
Van De Rijke, Frans, et al., “Up-converting phosphor reporters for nucleic acid microarrays”, Nature Publishing Group, Nature Biotechnology 19, Mar. 2001, 273-276.
Whitcombe, David, et al., “Detection of PCR products using self-probing amplicons and fluorescence”, Nature Biotechnology, vol. 17, Aug. 1999, p. 804-807.
Hunicke-Smith, Scott P., “PCR and Cycle Sequencing Reactions: A New Device and Engineering Model”, Dissertation, Stanford University, pp. i-xiv and 1-200, May 1997.
Related Publications (1)
Number Date Country
20170292206 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62320946 Apr 2016 US