Monitoring and managing material flow through a passageway at different check points in the passageway in real time for conditioning of seeds, for example, can increase operating efficiency and can improve profitability. However, no seed meter is available that meets the criteria of minimum damage to seeds, accuracy of measurement, cost effectiveness, and the feasibility of physical installation for retrofitting the flow meter in existing operations.
Existing devices have limitations in many areas, e.g., they draw a sample from the flow and measure the flow rate according to the weight per unit of time; or they employ a moving mechanism (belt or auger) to move the product and weigh the moving device with the product loaded thereon. U.S. Pat. Nos. 5,423,456; 4,788,930; and 4,765,190 are illustrative of this method. Other devices measure the pressure, displacement or impact due to the force generated by the product flow (U.S. Pat. Nos. 4,157,661; 4,440,029; 5,335,554, and 4,637,262). Similar problems arise if the flowable material is a liquid.
Therefore, it is a principal object of this invention to provide a method of measuring flow rate of flowable material, including particulate material or liquids under continuous flow conditions, and an in-line continuous flow meter which is accurate, non-damaging to the material, easily adaptable to existing flow ways, cost effective, and gravity operated without moving mechanisms.
These and other objects will be apparent to those skilled in the art.
A method of determining the rate of flow of a continuously flowing material through a passageway involves causing the material to move continuously downwardly by gravity in the passageway; placing baffle means in the path of the material to slow its downward movement and to create some dwell time on the baffle means of the material as it passes over the baffle means; intermittently determining the weight of the material passing over the baffle means with respect to increments of time; intermittently averaging data as to the weight collected from the preceding step, producing electronic signals from the values resulting from the averaging data; and converting the electronic signals to a flow rate of units of weight of material with respect to units of time.
The flow meter that measures the material flow in the passageway includes an inner housing resiliently suspended in spaced relation within an outer housing. The inner housing has an inlet upper end, and an outlet lower end. At least one baffle extends downwardly and inwardly from an inner surface of the inner housing within the path of the material to slow the downward flow of material.
A load cell on the inner surface of the outer cell measures the weight of the material on the baffle, preferably on an intermittent basis, and sends an electronic signal corresponding to the weighed material which transforms the signal to a flow rate with respect to units of time.
The flowing material may be either particulate material or liquids.
The description of the invention hereafter will refer primarily to particulate material. It should be understood that this invention is applicable to flowable material whether it be particulate material or liquid material. As such, statements made in regard to particulate material will be equally applicable to liquid material. With reference to
A diagonal semi-circular plate 32 extends downwardly and inwardly into inner housing 20 from its upper end and has a lower edge that terminates short of the vertical axis of the housing 20. A conventional adjustable valve plate 34 (FIG. 1) is secured in any convenient fashion to regulate flow of particulate material down through meter 10 as will be discussed below.
Similarly, semi-circular plates 36, 38, 40 and 42 are secured within housing 20 to extend downwardly and inwardly into the housing at progressively different levels (
In an alternative embodiment, meter 10 uses a channel 43 in place of plates 36–42, as shown in
A load cell base 46 is secured to the inner surface 18 of outer housing 12 and supports conventional load cell 48 which in turn engages block 50 secured to the outer surface 26 of inner housing 20. This arrangement imparts the weight of housing 20 and the particulate material moving over plates 36–42 or through curves 45 of channel 43 onto the load cell 48. An adjustment screw 52 on block 50 is used to cause the load cell to factor out of its sensitivity the dead load of the housing itself, so that the load cell is registering only the weight of material that experiences movable dwell time on the plates 36–42 or through curves 45 of channel 43.
The use of the flow meter 10 is schematically shown in
The meter 10 is imposed into the flow way 66 by means of bracket 67 secured to stand 56. The particulate material 68 (e.g., corn or soybean seeds) proceeds downwardly through the sensor 10 in the manner described above along the circuitous path shown by the dotted lines in housing 20 in
It is therefore seen that the flow rate of this invention can measure flow rates accurately, without damaging the material, and which can be adapted to existing flow ways, and which can measure flow rates continuously by gravity feeding for both particulate and liquid material, thus achieving all of its stated objectives.
This application is a continuation-in-part of application Ser. No. 10/336,256 filed Jan. 3, 2003, which claims the benefit of Provisional Patent Application Ser. No. 60/346,588 filed Jan. 8, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3056293 | Ofner | Oct 1962 | A |
3640136 | Nolte | Feb 1972 | A |
3945532 | Marks | Mar 1976 | A |
4067238 | Oetiker | Jan 1978 | A |
4157661 | Schindel | Jun 1979 | A |
4397423 | Beaver et al. | Aug 1983 | A |
4440029 | Tomiyasu et al. | Apr 1984 | A |
4637262 | Vesa | Jan 1987 | A |
4765190 | Strubbe | Aug 1988 | A |
4788930 | Matteau | Dec 1988 | A |
5335554 | Kempf et al. | Aug 1994 | A |
5343761 | Myers | Sep 1994 | A |
5423456 | Arendonk et al. | Jun 1995 | A |
5561250 | Myers | Oct 1996 | A |
5895865 | Ozawa | Apr 1999 | A |
6805014 | Shyy et al. | Oct 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040255692 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60346588 | Jan 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10336256 | Jan 2003 | US |
Child | 10883289 | US |