This invention relates to a method of measuring a gas flow. More particularly, but not by way of limitation, this invention relates to a method of measuring a dry gas flow from hydrocarbon wells.
According to the National Energy Board (NEB), Canada has about 53 trillion cubic feet (Tcf) of marketable gas supply. The Western Canada Sedimentary basin (WCSB) accounts for more than half. In addition, the magnitude of unconventional gas resources in place is estimated to be quite formidable. However, development of this natural resources require substantial capital expenditures and extensive drilling due mostly to the decline of the know reserve pool sizes and continued high demand for natural gas.
Even though the economic climate seems favourable, producers continue to face the predicament of developing these marginal pools within budgets and strict regulatory regime. According to the data found within the Alberta Energy and Utilities Board (EUB) publication titled: ST98-2006, production from the WCSB is not up to expectations, especially from unconventional sources.
Many producers have started to explore emerging operational paradigms and are open to adapting new technology devices. However, due to the realities of the labour markets, and the nature of these new technologies, typical well costs are still considered relative high in relation to the rate of returns of investment. These costs can range between 2 million to 2 hundred thousand depending on location and existing infrastructure.
Flow metering costs as a proportion of total revenue becomes significant as drill densities increase and the size of gas pools being developed get smaller. Yet, regulators continue to enforce strict measurement guidelines, effective well and reservoir management is dependent on accurate well flow data in order to design the production and processing infrastructure, control of hydrates, and the determination of optimal flow rates. Finally, accurate flow metering becomes a requirement to insure fair allocation of total production volumes when more than one party is using common pipelines, and processing facilities in joint venture relationship. One of the potential solutions for this economical dilemma which can be offered to producers is wet measurement of the flow stream, stated otherwise, metering of natural gas without separation of the liquids from the production stream.
Most typical gas wells with free liquid (water, condensate, and or a combination) in the flow stream, often require a gas-liquid separator to be installed upstream of the gas measurement device to maintain measurement accuracy within the prescribed limit established by the EUB and other similar government regulatory bodies.
A method of measuring a dry gas flow from hydrocarbon wells is disclosed. The hydrocarbon wells produce a stream which contains liquids and natural gas. The method comprises providing a differential flow measurement device (orifice), with the differential flow measurement device (orifice) having an elliptical throat, and wherein the differential flow measurement device (orifice) is located at a well site containing the hydrocarbon wells. The method further includes testing the stream for gas composition and physical characteristics. Additionally, the method comprises measuring a flowing temperature (T) of the stream, measuring a flowing pressure (Pf), and measuring a pressure differential (dP) in the differential flow measurement device (orifice). The method includes computing the liquid-gas ratio (LGR) of the stream, computing the wet gas flow rate (Qw) of the stream, computing a first dry gas flow rate (Qd1) utilizing a first model means, the first model means includes the following computation:
wet flow rate/dry flow rate=Qwet/Qdry=(term1)×(term 2)×(term 3)+(term 4)+(term5).
The method further comprises computing a second dry gas flow rate utilizing a graphical representation of a second model means and correcting the first dry gas flow rate (Qd1) and the second gas flow rate (Qd2) in order to obtain the dry gas flow rate (Qd).
In one preferred embodiment, the step of correcting the wet flow rate to the dry flow rate includes subtracting Qd1 from Qd2 to obtain a first delta factor and comparing the delta factor to an acceptable limit, and wherein the acceptable limit is between 0.3% and 1.5% of reading of a flow measurement instrument depending on the measurement requirements.
The step of correcting the wet flow rate to the dry flow rate further includes adjusting the estimated parameter, and wherein the estimated parameter includes density of the liquids and natural gas. Also, the step of correcting the wet flow rate to the dry flow rate includes inputting a new estimated parameter into the first model means, obtaining a revised Qd1, subtracting the Qd1 from Qd2 to obtain a second delta factor, and comparing the second delta factor to the acceptable limit, and wherein if the second delta factor is greater than the acceptable limit, then Qd is selected.
In one preferred embodiment, the method includes transmitting the data to a central location and obtaining royalty payments of the natural gas produced and/or the fair allocation of total production volume based on the derived Qd. The method may further comprise delivering the stream, including the produced gas and liquids, to a remote processing facility. At the processing facility, the liquids are separated from the produced gas and the hydrocarbon liquids and gas can be further processed.
An advantage of the present invention includes providing value to oil and gas operators. For instance, the method herein described can reduce capital cost through the elimination of separation equipment at the lease. The method can reduce operational cost due to the elimination of onsite separator, which in turn eliminates operational maintenance and repair on the separators. Another advantage is that an operator can increase production, and eventually ultimate recovery from the reservoirs, due to lower back pressure that is caused by the separator. Another advantage is that operators will reduce the safety risk by the elimination of pressure vessels at the lease site.
Another advantage is the iterative process to derive the dry gas flow rate is processed onsite utilizing processing means. Another advantage is that the data thus derived from the onsite processing means can then be transmitted to a central location. The transmission means may include terrestrial lines, hardwire, wireless, fibre optic, and satellite.
Referring to
The flow meter 2, model SDR80A series, is Yamatake Corporation's (of Japan) differential pressure-type flow meter for measuring fluids under harsh conditions (see
The American Gas Association (AGA) report 3, part 1 standard stipulates that the metered fluid stream must be in a single phase. A white paper commissioned by API simply concluded, “Wet gas is the presence of liquids in the gas stream under surface flow conditions and pressures”. The number of wells producing raw natural gas in single phase is a rarity. Most wells within the Western Canadian Sedimentary Basin (WCSB) have gas water ratios of 2 millilitres (mL) per standard meter cubed (Sm3) to 560 mL/Sm3, depending on the flow pressure and temperature. Therefore, it can be concluded that wet metering occurs whenever production gas is metered without prior separation of well effluents. Typically, wells with gas water ratios between 2 mL/Sm3 and 10 mL/Sm3 under most flow conditions are considered as flowing dry gas and usually do not require separation prior to metering.
Liquids entrenched within the gas stream (wet gas streams) will affect the performance of gas flow measurement. These measurement errors will be in direct relation to the quantity of liquids present in the flow stream. For the purpose of this document, the quantity of liquid to gas is expressed in terms of a ratio, and referred to as the liquid to gas ratio (LGR). The magnitude of the measurement error will increase proportionally to the percent of liquid in relation to the total flow volume.
As used herein, the liquid to gas ratio (LGR) is the ratio of gas volume flow rate and the total liquid volume flow rate. Both volume flow rates should be converted to the same pressure and temperature (generally at the standard conditions). Usually, LGR is expressed in terms of volume per volume, e.g., l/m3 (metric system) or bbl/MMscf (imperial system of measurement).
The eTube capabilities have been characterized through empirical tests at Southwest Research Institute and its ability has been proven to be suited for reliable wet gas measurement within identifiable levels of uncertainty, and may provide accurate and reliable volumetric flow rate data for royalty transfer, production allocation, and effective well management.
The current theoretical model that describes various orifice flow measurements are rather weak in predicting the flow conditions for many orifice's mechanical configurations. To determine the influence of an orifice's mechanical configuration to flow regime, often an empirical approach is employed to gather data and to delineate flow conditions using an additional numerical model to compensate for the deficiency in the theoretical model. The following describes new and useful methods of accomplishing wet metering capability.
The flow meter 2 has a unique profile and produces a set of data for various flow conditions. This disclosure shows two empirical models. This disclosure describes the iterative process used between the two empirical models to best derive the effective dry gas flow rate from the measured wet gas flow rate. The two empirical models used for the purpose of the iteration are described below.
The following equation was developed for determining the ratio of wet gas to dry gas, Qw/Qd, when liquid is flowing through an eTube element with the gas. The equation has 5 terms, of which 3 were derived through measurement of the wet flow stream, and 2 are calculated by way of constants and the knowledge of the gas composition and fluid mass. A sixth term is added to compensated for temperature and pressure as required. In order to calculate the last 2 terms, a well test must be performed in order to evaluate the gas composition and the ratio of liquid in relation to the gas flow.
The constants and conversion factors used for calculating the mass values of the fluid flow through the metering device are published in the gas processors suppliers association engineering (GPSA) data book (2004 edition) or have been stated within the American Gas Association (AGA) standard.
For this illustration, the flow rate must be in a volumetric terms and the units used must be consistent through the calculation. Care must be taken when applying conversation factors. Some conversion factors are pressure/temperature dependent.
This term is used to correlate the volumetric flow rates of the fluid in terms of their mass. The liquid component must be separated from the gas component by way of a well test. The mass of gas is calculated by knowing the composition of the gas and the molecular mass of each component of the gas.
This term is used to correlate the differential pressure. The dP value is derived by way of measurement of the flow stream.
x(γ+∂Pφ+η)
This term is used to correlate the static pressure. This value is derived by way of measurement of the flow stream.
Term 4+Term 5:
This term is used to correlate the beta ratio of the flow meter. The value is derived by way of measurement of the pipe diameter D and the throat diameter d. Beta is d/D.
Qw=wet gas flow rate calculated on the basis of the gas properties while a liquid is flowing with the gas through the eTube element. This calculation is usually performed by EFM using the latest measurement standards as specified by a governing body.
Qd=the dry gas flowing with the liquid through the eTube element. This value is calculated by way of the eTube wet gas correlation.
Ml=Mass of liquid through the eTube flow element. This value is calculated by first determining the liquid to gas ratio (LGR).
Mg=Mass of gas through the eTube flow element. This value is calculated by first determining the LGR, and the gas composition.
Ml/Mg=the ratio of the mass of liquid to the mass of gas in the wet flow stream.
∂P=the differential pressure of the eTube flow element. This value is measured usually by pressure transmitters.
β=Static pressure at eTube. This value is usually measured by way of pressure transmitters.
N=actual beta ratio of Wet eTube element. This value is the ratio of the throat diameter to the pipe diameter.
χ=Correlating coefficient—low flow rates;
a=Correlating coefficient—high flow rates;
e=Flow rate coefficient;
γ=Pressure coefficient;
θ=Differential pressure adjustment correlating coefficient;
{dot over (η)}=Differential pressure correlating coefficient;
t=Static pressure adjustment correlating coefficient;
κ=Beta ratio adjustment correlating coefficient;
λ=Beta ratio coefficient;
μ=Beta ratio range coefficient;
This is an approach that is used for a unique set of data that have confirmed relationship yet theory fails to describe the details of data relationship. The confirmed relationship is further supported by the fact that data are collected from a set of instruments that measures process variables from a controlled environment.
When a set of data is acquired from eTube and test apparatus, this test data maps over the dimensional space of Ps (measured static pressure), dP (measured differentia pressure across eTube), T (measured stream temperature), Qw (measure flow rate based on gas calculation while dry gas is injected with water), and Qd (measure flow rate based on while gas is free from water.)
The typical graphical presentation of data set will look like
Thus more comprehensive graphical presentation of the gas flow measurement can be mapped.
The data point can be connected with the cubic spline method shown in
For a given measurement: Ps, dP, T, Qw, the effective dry gas flow rate Qd can graphically be represented. Therefore, for a given Ps, we can determine a 3 dimensional solution surface that can be determined as shown in
Finally, with the LGR data, we can identify the line of solution in the solution surface. For a given dP, we can determine a calculated single data point in the line of solution.
Research conducted at the Southwest Research Institute (SwRI) has led to greater understanding of wet gas measurement capabilities of the eTube technology. One of the direct results of this research has been the development of the empirical models which enables the determination of the effective dry gas rate on the basis of the liquid to gas ratio. The wet gas correction parameters are unique to the flow meter. Therefore, the parameters used to correct the effects of wet gas are based on the flow meter characteristics observed during the research phase.
Gas flows not containing any liquids under actual operating conditions, however with further processing (e.g., pressure and temperature changes), liquids again might fall out.
Referring now to
Thus the process is designed to iterate between the two models to come up with best estimate between the two. The following shows the flow chart of estimation and decision process.
Qw Measured wet gas volumetric flow rate.
Qd Estimated dry gas volumetric flow rate.
dP Measured Differential Pressure Across eTube.
Delta Difference between Qd1 and Qd2.
Referring generally to
There are physical parameters that can affect the estimation; namely, the density of water and gas. It is reasonable to assume that the density of methane gas based on static pressure and temperature can make larger contribution to the Model 1 estimates.
Since the density of water and gas has been show as:
ρ water=function of (Ps, T)
ρ gas=function of (Ps, T)
The density is a derived value from static pressure and temperature measurement, it is reasonable to expect measurement error. By assuming:
ρ gas<<ρ water
ρ gas can vary within the measurement error band.
The measured value will specify the middle of the square for the density error band.
To find the local minimum deviation of the delta, the program can be set to deviate the density value by 25% of error band as shown below; reference is made to
If the local minimum is found out of 9 new estimates, say northeast corner then the whole local minimum process can be repeated as shown below until the delta meets the acceptable limits. Reference is made to
This iterative process ensures that the estimate meets both objective functions of 2 completely separate empirical models.
Values from Table 1:
1. Water injection rate: 117.4165 Bbl/day
2. Gas flow rate: 2.35957 MMscf/day
LGR (in Bbl/MMscf)=Water injection rate in Bbl/Day Gas flow rate in MMscf/Day
∴LGR=117.4165 Bbl′/Day÷2.35957 MMscf/Day=49.76182 Bbl/MMscf
∴Mass of water per MMscf:
Ml=49.76182 Bbls/MMscf×350.25 lb/Bbl=17,429.0775 lb/Bbl
The liquid rate determined during the well test may be at pressures and temperature other then base conditions, a term will be added to the equation for density adjustment according to the test pressure and temperature.
1. Gas constant=10.73164 psia ft3/μmol-R;
2. Base pressure U.S.=14.73 psia;
3. Compressibility Factor Zb (base conditions)=0.9980333 (calculated value);
4. Temperature Fahrenheit to Rankin: ° R=° F.+459.67
5. 60° F.=519.67;
6. Molecular weight of methane=16.043 lb/mol
The numerical values necessary for calculating the effective dry gas rate is now available. These values can now be inserted into the empirical models to determine Qd
eTube Dry=2.388 MMscf/day
Difference between the measured eTube dry value and calculated value is 0.15%.
While the particular invention as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein above stated, it is to be understood that this disclosure is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended other than as described in the claims, and any equivalents thereof.