Method of mechanically removing skin from animal parts

Information

  • Patent Grant
  • 9167823
  • Patent Number
    9,167,823
  • Date Filed
    Wednesday, March 13, 2013
    11 years ago
  • Date Issued
    Tuesday, October 27, 2015
    9 years ago
Abstract
Method of mechanically removing skin from animal parts that have a bone part extending therein, including: obtaining at least one bone holder (16) depending from an overhead conveyor for movement through a given path; obtaining an animal part; holding the animal part from the at least one bone holder (16) by engagement of its bone part; moving the animal part through the given path; engaging an outer surface of the animal part, when moving through the given path, with a perimeter surface (44) of a rotating gripper (38); maintaining a downward force on the animal part on the rotating gripper; entrapping a portion of skin of the animal part between the perimeter surface (44) of the rotating gripper (38) and a fixed knife blade (40); and pulling the skin away from underlying meat of the animal part.
Description
TECHNICAL FIELD

The invention relates to a method and apparatus for mechanically removing skin from animal parts. The invention also relates to removing skin from animal parts as an automated inline step of an animal part processing operation. The invention further relates to an apparatus for performing the skin removal step in combination with other steps in the animal part processing method.


BACKGROUND

Being able to automatically remove the skin from the animal parts is of great importance to the food processing industry. Generally, high amounts of saturated fat are found in animal skin. Therefore health conscious consumers prefer skinless meat products, especially skinless poultry products. Furthermore, as removing the skin from the animal part is generally a tedious process, and due to today's convenience society, there is an increasing demand for purchasing animal meat skinless and ready to cook.


Various methods and apparatuses have been developed for removing skin from animal parts. Typically these methods and apparatuses involve feeding an animal part into a skin remover unit. The skin remover unit may include a knife blade, a hold-down roller, a gripper roller, and a stripper roller. The animal part may be feed manually or by means of a conveyer belt into the skin remover unit. The hold-down roller pushes down on the animal part to ensure that the gripper roller grips the skin of the animal part and guides the animal part in respect of the knife blade. The knife blade separates the skin from the animal part, and the gripper roller pulls the detached skin away from the animal part. The detached skin may fall from the gripper roller, or be removed by the stripper roller.


Usually, the skin remover unit is a separate animal part processing station, and operators are manually required to transport the animal parts to the location of the skin remover unit. If animal parts are fed by conveyer belt into the skin remover unit, the animal parts have most likely already been deboned and the animal part may need to be reoriented by an operator to ensure that the best skinning results are achieved.


Accordingly, there is a growing demand for methods and apparatuses that incorporate the automatic skin removal step into food processing lines. Hence, it is an object of the present invention to propose an improved method and apparatus of mechanically removing skin from animal parts in an inline food processing method or apparatus. In a more general sense it is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art. It is also an object of the present invention to at least provide alternative processes and structures that are less cumbersome in use and which can be provided and used relatively inexpensively. At any rate the present invention is at the very least aimed at offering a useful choice and contribution to the existing art.


SUMMARY

To this end the present invention provides a method of mechanically removing skin from animal parts that have a bone part extending therein, as defined in the appended claims. The method including: providing at least one bone holder depending from an overhead conveyor for movement through a given path; providing an animal part with the bone part therein; holding the animal part from the at least one bone holder by engagement of its bone part by the at least one bone holder; moving the animal part through the given path; engaging an outer surface of the animal part, when moving through the given path, with a perimeter surface of a rotating gripper; maintaining a downward force on the animal part on the rotating gripper; entrapping a portion of skin of the animal part between the perimeter surface of the rotating gripper and a fixed knife blade; and pulling the skin away from underlying meat of the animal part.


The present invention allows the skin of an animal part to be removed as an automated inline processing step, specifically an automated inline processing step arranged along an overhead conveyor system, where animal parts are held from above by bone holders. Optionally the overhead conveyor is an overhead conveyor chain made up of individual chain links and the at least one bone holder is depending from a chain link.


The overhead conveyor moves the animal part held from the bone holder through the given path. While travelling through the given path, the animal part may encounter different processing steps, and specifically the processing steps for removing the skin of the animal part. Therefore this method lends itself to incorporating the skin removal step in a meat processing operation.


Optionally, the bone part is an elongate bone part extending through the animal part and has a bone portion protruding outwardly from the animal part. Optionally, the outwardly protruding bone portion is a bone knuckle. The bone knuckle provides a natural and convenient way of holding the animal part from the bone holder. Optionally, the animal part is an item of poultry. Optionally, the item of poultry is one of a group consisting of chicken, quail, turkey, duck, swan, and goose.


In the method according to the present invention, while travelling through the given path, the animal part encounters the rotating gripper. The outer surface of the animal part is engaged by the perimeter surface of the rotating gripper. Optionally, the perimeter surface has protrusions extending outwardly and possibly but not necessarily in the direction of rotation of the rotating gripper. This helps ensure that the rotating gripper sufficiently engages the outer surface of the animal part. Optionally, the rotating gripper is implemented as a roller.


Maintaining a downward force on the animal part on the rotating gripper helps the rotating gripper engage the outer surface of the animal part. Optionally, the downward force is gravity. It has been found that the downward force exerted on the animal part by gravity is sufficient. Optionally, the downward force may be changed, by varying the distance between the animal part held by the bone holder and the rotating gripper. In the case that more downward force is necessary, the distance between the rotating gripper and the bone holder may be decreased. As the rotating gripper engages the skin of the animal part, the animal part, which is held securely by the bone holder, is squeezed between the overhead conveyor and the rotating gripper. As the meat on the animal part is resilient, the animal part passes over the rotating gripper, and the outer skin surface of the animal part is gripped sufficiently.


Optionally, the perimeter surface of the rotating gripper moves at a speed that exceeds a speed at which the overhead conveyor moves. When the perimeter surface of the rotating gripper travels faster than the overhead conveyor, the skin of the animal part is more reliably engaged and entrapped resulting in better skin removal and less waste.


Optionally, the outer surface of the animal part is engaged by the perimeter surface of the rotating gripper prior to entrapping a portion of skin of the animal part between the perimeter surface of the rotation gripper and the fixed knife blade. In this case, the perimeter surface is sufficiently engaged before the fixed knife blade cuts away the skin of the animal part, resulting in better skin removal.


Optionally, the method further includes providing a rotating cleaning member for cleaning the rotating gripper. The rotating cleaning member prevents chunks of removed skin from being retained on the rotating gripper. Retained chunks could result in uneven skin removal and/or contamination.


Optionally, the method further includes rotating the cleaning member in the same direction as the rotating gripper. It has been found that rotating the cleaning member in the same direction as the rotating gripper increases the cleaning efficiency of the rotating gripper. It is also conceivable that the rotating cleaning member is provided with protrusions that engage and knock retained skin and/or chunks of skin off the rotating gripper.


Optionally, the cleaning member is rotated at a higher rate than the rotating gripper. When the cleaning member is rotated faster than the rotating gripper retained skin and/or chunks of retained skin on the rotating gripper may be removed before that portion of the perimeter surface of the rotating gripper engages the outer surface of the same animal part and/or a next animal part.


Optionally, the method is part of a meat processing operation. On account of the method being executed as inline steps, the method according to the invention, removing the skin of the animal part, may be incorporated in a meat processing operation. Optionally, the meat processing operation is one for separating meat from thigh bones.


Optionally, the animal part is a thigh and the bone part grasped by the bone holder is a hip or knee knuckle, and wherein the meat processing operation further includes the automated individual processing steps of: cutting tissue near a hip knuckle; cutting tissue adjacent a knee knuckle; engaging the thigh bone adjacent the bone holder with a meat stripper; moving the bone holder and meat stripper away from one another in a direction substantially coextensive with the longitudinal extend of the thigh bone; allowing the meat stripper to pass over the knee knuckle; and collecting the meat separated from the bone.


Including the present invention in the meat processing operation for separating meat from thigh bones, allows thigh meat to be essentially completely processed in a single meat processing operation, without operator interaction.


Optionally, the skin from thigh is removed prior to separating the meat from the bone part extending therein. Best results have been achieved by first removing the skin of the thigh and then performing the steps necessary for separating the meat from the bone.


Also according to the invention an apparatus is provided for performing the method according to the invention, including at least one processing station for carrying out the method steps. The at least one processing station is arranged along a path of conveyance defined by an overhead conveyor moving through a predefined path. A bone holder is depending from the overhead conveyor; and wherein the at least one processing station comprises a skin remover unit including a rotating gripper and a fixed knife blade operatively arranged to, in use, engage, entrap and pull a portion of skin of an animal part between a perimeter surface of the rotating gripper and the fixed knife blade.


Optionally, the rotating gripper is implemented as a roller. Optionally, the skin remover unit further includes a rotating cleaning member. Optionally, the rotation cleaning member is also implemented as a roller. The roller is slightly wider than the width of the animal part to be skinned held in position by the bone holder. Furthermore, the apparatus is modular, and may include different processing stations for performing different method steps. Optionally, the bone holder is rotatably depending from the overhead conveyor. In certain method steps it may be desirable that the animal part is rotated by the bone holder substantially coextensive with a longitudinal extend of the bone of the animal part.


Optionally, the rotating gripper is made from stainless steel. In practice, most of the food processing apparatus is manufactured from stainless steel. Hygiene is extremely important in the food industry and stainless steel is easy to clean and immune to corrosion. Optionally, the rotating cleaning member is made from plastic. The rotating cleaning member may also include protrusions or teeth for better removing excess skin or retained skin or fat from the rotating gripper.


Optionally, a first edge of the fixed knife blade extends parallel to the rotating gripper and substantially perpendicular to the direction of conveyance of the conveyor, and a main body of the fixed knife blade extends substantially tangentially to the perimeter contour of the rotating gripper. As the distance of the animal part from the bone holder depending from the overhead conveyor to a far end of the animal part is fixed, it is may be preferable that the first edge of the fixed knife blade is substantially parallel to an axis of rotation of the rotating gripper and generally perpendicular to the direction of conveyance of the overhead conveyor. It may further be preferred that a main body of the fixed knife blade is also tangential to the perimeter of the rotating gripper. As a result only the skin is removed, and the remaining animal part and meat pass over the first edge of the fixed knife blade. The outer skin surface of the animal part is thus efficiently separated from the remaining animal part including the meat and bone.


Optionally, the knife blade is adjustable relative to the gripper. This facilitates versatility. The apparatus can then be used for different types of animal parts having different skin thicknesses.


Optionally, the skin remover unit is height adjustably mounted to a machine frame via an arm. This feature also increases the versatility of the apparatus. The desired distance from the overhead conveyor and bone holder to the fixed knife blade and rotating gripper depends on the animal part being processed. As animal parts vary in size, for example, a chicken thigh is smaller than a turkey thigh, it is desirable that the entire skin remover unit may be adjusted relative to the overhead conveyor and the bone holder to accommodate for the processing of different types of animals and/or different types of animal parts. The height adjustability may also be convenient to vary the downward force of the animal part on the fixed knife blade and the rotating gripper.


Optionally, the arm is rotatable about the machine frame about a pivot axis extending in a plane substantially parallel to the overhead conveyor. The location of the skin remover unit may vary along the overhead conveyor. However, it is important that the skin remover unit be located inline with the overhead conveyor. Therefore an arm pivotable on the machine frame is suitable for effectuating a change in distance relative to the overhead conveyor without the skin remover unit becoming too much misaligned from a substantially parallel orientation and moving out from under the virtual line created by the overhead conveyor.


Optionally, the arm is pivotally adjustable with respect to the machine frame and pivoted about a mount point by an adjustment screw that supports the arm at a contact point located on the arm away from the mount point. The adjustment screw may be used to tune the distance between the skin remover unit and the overhead conveyor. This change in distance will also result in a slight change in the location and angular position of the skin remover unit along the overhead conveyor. Optionally, the arm is capable of travelling within 45 degrees above and below the virtual reference line defined to be parallel to the overhead conveyor.


Optionally, the overhead conveyor path is arranged in a closed loop and the closed loop is defined by first and second carousels, connecting parallel first and second linear conveyor sections. Such a setup increases the processing area of the overhead conveyor and provides a method of driving the overhead conveyor. Optionally, the second carousel is driven for rotation, and wherein the first carousel is idle and driven indirectly by the overhead conveyer.


Optionally, in use, the skin remover unit is arranged at a distance from the overhead conveyor such that the animal part is first engaged by the perimeter surface of the rotating gripper, before coming in contact with the fixed knife blade. Conveniently this implies that the end of the animal part travels along a path that is lower than the fixed knife yet higher than a middle of the rotating gripper.


Optionally, the at least one processing station further comprises a bone hanger station, a first tissue cutting station, a second tissue cutting station, and a meat stripper station. As mentioned above, the apparatus is modular and lends itself well to the incorporation of additional processing stations for carrying out additionally processing steps.


Optionally, the skin remover unit, is arranged after the bone hanger station, and before the meat stripper station. As stated while discussing the method according to the invention it is preferable that the skin of the animal part is removed prior to stripping the meat from the animal part.


Although the method according to the present invention and the apparatus for performing the method according to the present invention are discussed in different sections, it will be appreciated that the above description and features of the method according to the invention are also applicable to the apparatus according to the invention, and that the above description and features of the apparatus according to the invention are also applicable to the method according to the invention.


The aspects as covered by the appended claims as well as other aspects, features and advantages of the invention will be explained in further detail in the description below in reference to the accompanying drawings briefly described below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a first partial bird's eye perspective view of an embodiment of the apparatus according to and for performing the method of the present invention;



FIG. 2 is a second partial bird's eye perspective view of an enlarged detail of the apparatus according to and for performing the method of the present invention;



FIG. 3 is a partial side view of the skin remover unit of the apparatus according to and for performing the method of the present invention; and



FIG. 4 is a partial perspective view of the skin remover unit of the same embodiment of the apparatus according to and for performing the method of the present invention.





DETAILED DESCRIPTION

The apparatus 1 according to a first embodiment of the invention as shown in FIGS. 1 to 4. In the example of FIGS. 1 and 2, the apparatus 1 is a meat processing machine for removing the skin of chicken thighs and subsequently separating the meat from the thigh bones. The apparatus 1 has an overhead conveying means that is defined by a first linear conveyor section 4, a first carousel 6, a second linear conveyor section 8 and a second carousel 10. The overhead conveying means includes a conveyor chain (not shown but conventional) that is arranged for movement in the direction of arrow 12. The conveyor chain is driven for movement by the second carousel 10 that is provided for this purpose with an electric drive motor 14 that may drive the carousel 10 through a gear reduction. The first carousel 6 is mounted for idle rotation and is driven indirectly by the conveyor chain, as is conventional for such overhead conveying systems for moving article hangers, such as bone holder 16, through a processing path defined by the conveying means. All the basic elements described thus far are mounted on an apparatus or machine frame, generally indicated with reference numeral 2. The apparatus 1, in accordance with the direction of conveyance of arrow 12 (FIG. 1), can be distinguished by a loading station 18, a skin remover unit 20 (FIG. 2), a first tissue cutting station 22, a second tissue cutting station 24 and a meat stripping and discharge station 26 incorporating a third tissue cutting station 28.


As best seen in FIGS. 3 and 4, the bone holder 16, at the loading station 18, is presented with a receiving end 32 opening to the exterior of the apparatus 1. While only one bone holder 16 is shown in each of FIGS. 1 and 2, for clarity, it is to be understood that a plurality of such bone holders 16 will be present and spaced at regular intervals along the overhead conveyor. Such arrangements are in itself conventional and require no further explanation. The bone holder 16, in this embodiment, is adapted to receive and support the knee knuckle (condylus) of the thigh bone (femur) of a chicken, with the hip knuckle (caput femoris) hanging substantially vertically downwardly. Furthermore, the receiving end 32 of the bone holder 16 is rotatable by a turning gear 34. (For details of the bone holder 16, reference is made to FIGS. 3 and 4)


The conveyer chain is formed in such a way that the chain is not limited to substantially lateral movement. Although not pictured in this embodiment, it is possible that the conveyer chain undergoes a change in elevation.


After the animal part, in this example a chicken thigh, has been inserted into the receiving end 32 of the bone holder 16, preferably the animal thigh is positioned with the front part of the knee knuckle facing outwards from the machine, the bone holder's swivelable locking arm 36 locks the thigh bone in place. Furthermore, the bone holder 16 is rotated such that the receiving end 32 of the bone holder travels in the conveyance direction defined by arrow 12 leading with the receiving end 32. From the first carousel 6 the bone holders 16 will advance along the overhead conveyor to its second linear section 8 and enter the skin remover unit 20 positioned at the perimeter of the first carousel 6. The skin remover unit 20 is depicted in FIGS. 3 and 4, and includes a rotating gripper 38 and a fixed knife blade 40 operatively arranged to, in use, engage, entrap and pull a portion of skin of an animal part between a perimeter surface 44 of the rotating gripper 38 and the fixed knife blade 40. In this embodiment the skin remover unit 20 further includes a rotating cleaning member 42.


Both the rotating gripper 38 and the rotating cleaning member 42 are, in this example, implemented as rollers. These rollers 38, 42 are arranged parallel to one another with their axes of rotation extending perpendicular to the direction of conveyance 12, and have an axial length that makes them slightly wider than the width of the animal part to be skinned held in position by the bone holder 16. The rotating gripper 38, in this example, is manufactured from stainless steel and has a rough outer perimeter surface 44 to improve and/or increase the engagement of the outer surface of the animal part. The rotating cleaning member 42 is manufactured from plastic, in this example, and has a plurality of protrusions 46 extending from a perimeter surface of the roller. These protrusions 46 aid in removing retained skin and/or retained skin chunks including fat from the rotating gripper 38.


The perimeter surface 44 of the rotating gripper 38 rotates towards the fixed knife blade 40 in the same direction as the direction of conveyance indicated by arrow 12. Furthermore, the linear speed measured at the perimeter surface 44 of the rotating gripper 38 exceeds a linear speed at which the overhead conveyor moves above the skin remover unit 20. Additionally, the cleaning member 42 is rotated in the same direction as the rotating gripper 38 and at an angular velocity that exceeds the angular velocity of the rotating gripper 38. Both the rotating gripper 38 and the rotating cleaning member 42 are driven by an electric motor 56.


As best seen in FIG. 3, a first edge 48 of the fixed knife blade 40 extends parallel to the rotating gripper 38 and substantially perpendicular to the direction of conveyance, indicated by arrow 12, of the overhead conveyor. The first edge 48 is positioned about the perimeter contour of the rotating gripper 38 to define a gap between the perimeter surface 44 and the first edge 48. A second edge 50 of the fixed knife blade 40 is positioned about the contour of the rotating gripper 38, in this case a roller, at a location below the first edge 48. The fixed knife blade 40 has its main body extending generally tangentially with respect to the rotating gripper 38 and is adjustable. Adjustment being accomplished by resilient member 54 and adjustment screw 52, relative to the rotating gripper to accommodate a wide variety of animal skin thicknesses.


The skin remover unit 20 is, in this example, adjustably mounted to a machine frame 2 via an arm 58, and a bracket 60. This is shown in both FIGS. 2 and 3. The skin remover unit 20 is attached to a first end of the arm 58, and a second opposite end of the arm 58 is pivotally mounted at a mount point 62 to the bracket 60, which in turn is mounted to the machine frame 2. Adjusting the bracket 60 laterally along the machine frame 2 allows the skin remover unit 20 to be aligned to the virtual center line of a path of conveyance defined by the second linear conveyor section 8 of the overhead conveyor.


An adjustment screw spindle 64 supports the arm 58 at a contact point 68 located on the arm 58 spaced away from the mount point 62. Adjusting the adjustment screw spindle 64 by a hand wheel 66 results in the skin remover unit 20 pivoting about the mount point 62 in a height direction with respect to the machine frame 2. This allows the distance from the skin remover unit 20 to the bone holder 16 to be varied without the skin remover unit 20 becoming misaligned, because the height adjustment is independent of the lateral adjustability. The change in distance of the skin remover unit 20 from the overhead conveyor and bone holder 16 will also result in a slight change in the elevation angle of the skin remover unit 20, and in its up- and downstream location along the second linear conveyor section 8 of the overhead conveyor. These slight positional changes do not affect the efficiency of the skin remover unit 20 or the apparatus 1.


Being able to set the desired vertical distance from the overhead conveyor and bone holder 16 to the fixed knife blade 40 and rotating gripper 38 is preferred for processing different animal parts from different animals. Animal parts vary in size and although the apparatus 1 is for processing chicken thighs, which do differ somewhat in length, it is also conceivable that the apparatus 1 may be used to process turkey thighs, which are larger, during another shift.


In use an outer surface of the animal part held by the bone holder 16 travelling through the conveyer path in the direction of conveyance, indicated by arrow 12, is first engaged by the perimeter surface 44 of the rotating gripper 38. A downward force is maintained on the animal part on the rotating gripper 38. The downward force, in this example, is gravity and results from the distance between the bone holder 16 and the skin remover unit 20 being set such that the outer surface of the animal part is first engaged by the perimeter surface 44 of the gripper roller 38. The outer surface of the animal part first engages the perimeter surface 44 at a position located approximately at a middle of the gripper roller 38, below the fixed knife blade 40, and above the rotating cleaning member 42. The downward force is further created by cooperation of the distance of the bone holder 16 with respect to the rotating gripper 38, the specific length of the animal part, its inherent stiffness, and its inherent flexibility. Therefore as the animal part travels along the conveying path it is pressed/urged by the bone holder 16 against the perimeter surface 44 of the rotating gripper 38. As the animal part, a chicken thigh in this example, is held securely by the bone holder 16, as the outer of the animal part is engaged by the perimeter surface 44 of the rotating gripper 38, the animal meat is pushed against the perimeter surface 44 of the rotating gripper 38 resulting in better engagement.


Next, a portion of skin of the animal part is entrapped between the perimeter surface 44 of the rotating gripper 38 and the first and second edges 48, 50 of the fixed knife blade 40. The skin of the animal is subsequently pulled away from underlying meat of the animal part. The skin to be detached is engaged by the perimeter surface 44 of the rotating gripper 38, and is directed downward along the rotating gripper 38 by the second edge 50 of the fixed knife blade 40. The first edge 48 of the fixed knife blade 40 continues separating and guiding the meat of the animal part away from the skin. As the skin is removed from the animal part portions of the removed skin will fall from the rotating gripper 38 on a generally downwardly inclined chute surface of the skin remover unit 20. If portions of the removed skin or fat remain engaged to the rotating gripper 38, the rotating cleaning member 42 and its protrusions 46 knock off the remaining removed skin from the rotating gripper 38, keeping the rotating gripper 38 clean.


Since the linear speed of the perimeter surface 44 of the rotating gripper 38 exceeds the linear speed of the overhead conveyor the entire part of animal meat can be processed during the short time it takes for the animal part to travel through the skin remover station comprising the skin remover unit 20.


After passing over the skin remover unit 20, the animal part held by the bone holder 16 enters the first tissue cutting station 22 followed by the second tissue cutting station 24. In this embodiment the first and second tissue cutting stations 22, 24 are mounted on a sub-frame 70, which is preferably height adjustably mounted on the machine frame 2.


The first tissue cutting station 22 comprises a circular rotating cutting blade driven by an electric motor. The rotating cutting blade is opposite a thigh bone guiding means which engages the knee knuckle and assists in positioning the individual knee ends of the animal part for cutting tissue by the circular cutting blade. The predetermined position is such that the back portion of the bone shaft directly adjacent to the knee knuckle passes against cutting blade, for cutting tissue that connects the meat to the bone. Thereby, such tissue is severed that is positioned adjacent the back of the knee knuckle end of the thigh bone.


Next the animal part progresses through the second tissue cutting station 24. The animal part successively passes through a first set of parallel knife blades, and a second set of parallel knife blades. The bone holders 16 are rotated through the turning gears 34 while passing through the second tissue cutting station 24.


The meat stripping and discharge station 26 includes the second carousel 10 that receives the bone holders 16 from the second linear conveyer section 8 after these have been advanced through the second tissue cutting station 24. The meat stripping and discharge station 26 also incorporates, in this embodiment, a third tissue cutting station 28.


In this example, conventional meat stripper units 68 each have gripper plates closing around the bone shaft adjacent to the knee knuckle, and then undergo a vertically downward movement which strips the meat from the bone. At the bottom of the bone, the gripper plates open slightly to allow the gripper plates to pass over the hip knuckle region of the thigh bone. Because the tissue holding the meat to the hip knuckle region of the thigh bone has already been severed sufficiently, the continued downward movement of the meat stripper unit will remove the meat from the thigh bone. This removed meat may then be collected by gravity in a collecting tray or alternatively by a collecting conveyer placed underneath the second carousel 10.


In order to further reduce waste and ensure that no meat clings to the thigh bone, in this example, the animal part passes through a third tissue cutting station 28 after the meat stripping station 26. Any tissue still holding any meat is cut, and also collected by gravity in the collecting tray or alternatively by the collecting conveyer placed underneath the second carousel 10.


After removal of all the meat, the bone holders 16 continue their movement around the second carousel 10 and release the bone part from which the meat has been removed. Suitable means may additionally be provided to collect the discharged thigh bones, such as trays or conveyors (not shown but conventional).


Accordingly method of mechanically removing skin from animal parts that have a bone part extending therein is disclosed. The method includes: providing at least one bone holder 16 depending from an overhead conveyor for movement through a given path; providing an animal part with the bone part therein; holding the animal part from the at least one bone holder 16 by engagement of its bone part by the at least one bone holder 16; moving the animal part through the given path; engaging an outer surface of the animal part, when moving through the given path, with a perimeter surface 44 of a rotating gripper 38; maintaining a downward force on the animal part on the rotating gripper 38; entrapping a portion of skin of the animal part between the perimeter surface 44 of the rotating gripper 38 and a fixed knife blade 40; and pulling the skin away from underlying meat of the animal part.


It is thus believed that the operation and construction of the present invention will be apparent from the foregoing description. To the skilled person in this field of the art it will be clear that the invention is not limited to the embodiment represented and described here, but that within the framework of the appended claims a large number of variants are possible. Also kinematic inversions are considered inherently disclosed and to be within the scope of the present invention. The terms comprising and including when used in this description or the appended claims should not be construed in an exclusive or exhaustive sense but rather in an inclusive sense. Expressions such as: “means for . . . ” should be read as: “component configured for . . . ” or “member constructed to . . . ” and should be construed to include equivalents for the structures disclosed. The use of expressions like: “critical”, “preferred”, “especially preferred” etc. is not intended to limit the invention. Features which are not specifically or explicitly described or claimed may be additionally included in the structure according to the present invention without deviating from its scope.

Claims
  • 1. Method of mechanically removing skin from animal parts that have a bone part extending therein, the method including: obtaining at least one bone holder associated with a conveyor for moving the bone holder through a given path;obtaining an animal part with the bone part therein;holding the animal part with the at least one bone holder by engagement of its bone part by the at least one bone holder;moving the animal part through the given path;engaging an outer surface of the animal part, when moving through the given path, with a rotating gripper means having an axis of rotation extending substantially perpendicular to the direction of movement of the animal part through the given path;maintaining a force on the animal part when it is in engagement with the gripper means;entrapping a portion of skin of the animal part between a gap of the gripper means; andpulling the skin away from underlying meat of the animal part.
  • 2. Method according to claim 1, wherein the bone part is an elongate bone part extending through the animal part and has a bone portion protruding outwardly from the animal part.
  • 3. Method according to claim 2, wherein the outwardly protruding bone portion is a bone knuckle.
  • 4. Method according to claim 1 wherein the gripper means include a perimeter surface of a rotating gripper and a fixed knife blade, and wherein the gap of the gripper means is formed between the perimeter surface of the rotating gripper and a fixed knife blade.
  • 5. Method according to claim 4, wherein the outer surface of the animal part is engaged by the perimeter surface of the rotating gripper prior to entrapping a portion of skin of the animal part between the perimeter surface of the rotation gripper and the fixed knife blade.
  • 6. Method according to claim 4 further including cleaning the rotating gripper by a rotating cleaner member.
  • 7. Method according to claim 6, further including rotating the cleaning member in the same direction as the rotating gripper.
  • 8. Method according to claim 7, wherein the cleaning member is rotated at a higher rate than the rotating gripper.
  • 9. Method according to claim 4, wherein the perimeter surface of the rotating gripper moves at a speed that exceeds a speed at which the conveyor moves.
  • 10. Method according to claim 1 wherein the downward force is created by at least one of a distance of the bone holder with respect to the gripper means, a length of the animal part, an inherent stiffness of the animal part, and flexibility of the animal part.
  • 11. Method according to claim 1, wherein the conveyor is an overhead conveyor, and wherein the bone holder depends from the overhead conveyor.
  • 12. Method according to claim 11, wherein the downward force includes gravity.
  • 13. Method according to claim 1, wherein the method is part of a meat processing operation.
  • 14. Method according to claim 13, wherein the meat processing operation is one for separating meat from thigh bones.
  • 15. Method according to claim 14, wherein the animal part is a thigh and the bone part grasped by the bone holder is a hip knuckle, and wherein the meat processing operation further includes the automated individual processing steps of: cutting tissue near a hip knuckle;cutting tissue adjacent a knee knuckle;engaging the thigh bone adjacent the bone holder with a meat stripper;moving the bone holder and meat stripper away from one another in a direction substantially coextensive with the longitudinal extend of the thigh bone;allowing the meat stripper to pass over the knee knuckle; andcollecting the meat separated from the bone.
  • 16. Method according to claim 14 wherein the skin from thigh is removed prior to separating the meat from the bone part extending therein.
  • 17. Method according to claim 1, wherein the animal part is an item of poultry.
  • 18. Method according to claim 17, wherein the item of poultry is one of a group consisting of chicken, quail, turkey, duck, swan, and goose.
  • 19. Apparatus for performing the method of claim 1 including at least one processing station for carrying out the method steps; wherein the at least one processing station is arranged along a path of conveyance defined by a conveyor moving through a predefined path;wherein a bone holder is associated with the conveyor; andwherein the at least one processing station comprises a skin remover unit including the gripper means operatively arranged to, in use, entrap and pull a portion of skin of an animal part between a gap of the gripper means.
  • 20. Apparatus according to claim 19, wherein the conveyor is an overhead conveyor, and wherein the bone holder is rotatably depending from the overhead conveyor.
  • 21. Apparatus according to claim 19 wherein the gripper means includes a rotating gripper and a fixed knife blade, and wherein the gap is formed between a perimeter surface of the rotating gripper and the fixed knife blade, and wherein a first edge of the fixed knife blade extends parallel to the rotating gripper and substantially perpendicular to the direction of conveyance of the conveyor, and a main body of the fixed knife blade extends substantially tangentially to the perimeter contour of the rotating gripper.
  • 22. Apparatus according to claim 21, wherein the knife blade is adjustable relative to the gripper.
  • 23. Apparatus according to claim 21 wherein in use, the skin remover unit is arranged at a distance from the conveyor such that the animal is first engaged by the perimeter surface of the rotating gripper, before coming in contact with the fixed knife blade.
  • 24. Apparatus according to claim 19 wherein the skin remover unit is adjustably mounted to a machine frame via an arm.
  • 25. Apparatus according to claim 24, wherein the arm is pivotable with respect to the machine frame in a plane substantially inline with the overhead conveyor.
  • 26. Apparatus according to claim 25, wherein the arm is pivotally mounted to the machine frame and pivoted about a mount point by an adjustment screw spindle that adjustably supports the arm at a contact point spaced from the mount point.
  • 27. Apparatus according to claim 19 wherein the conveyor path is arranged in a closed loop and the closed loop is defined by first and second carousels, connecting parallel first and second linear conveyor sections.
  • 28. Apparatus according to claim 27, wherein the second carousel is driven for rotation, and wherein the first carousel is idle and driven indirectly by the conveyer.
  • 29. Apparatus according to claim 19 wherein the at least one processing station further comprises a animal part loading station, a first tissue cutting station, a second tissue cutting station, and a meat stripper station.
  • 30. Apparatus according to claim 29, wherein the skin remover unit, is positioned after the loading station, and before the meat stripper station.
Priority Claims (1)
Number Date Country Kind
2009718 Oct 2012 NL national
US Referenced Citations (291)
Number Name Date Kind
3956794 Verbakel May 1976 A
3969790 Smorenburg Jul 1976 A
3979793 Hazenbroek Sep 1976 A
3983601 Verbakel Oct 1976 A
3990128 van Mil Nov 1976 A
4011573 Braico Mar 1977 A
4034440 van Mil Jul 1977 A
4096950 Brook Jun 1978 A
4118829 Harben, Jr. Oct 1978 A
4131973 Verbakel Jan 1979 A
4147012 van Mil Apr 1979 A
4153971 Simonds May 1979 A
4153972 Harben et al. May 1979 A
4178659 Simonds Dec 1979 A
4203178 Hazenbroek May 1980 A
4283813 House Aug 1981 A
4292709 van Mil Oct 1981 A
4388811 Zebarth Jun 1983 A
4395795 Hazenbroek Aug 1983 A
4406037 Hazenbroek Sep 1983 A
4418444 Meyn et al. Dec 1983 A
4418445 Meyn et al. Dec 1983 A
4434526 van Mil Mar 1984 A
4439891 van Mil Apr 1984 A
4468838 Sjöström et al. Sep 1984 A
4510886 van Mil Apr 1985 A
4514879 Hazenbroek May 1985 A
4516290 van Mil May 1985 A
4524489 van Mil Jun 1985 A
4558490 Hazenbroek et al. Dec 1985 A
4559672 Hazenbroek et al. Dec 1985 A
4567624 van Mil Feb 1986 A
4570295 van Mil Feb 1986 A
4574429 Hazenbroek Mar 1986 A
4577368 Hazenbroek Mar 1986 A
D283289 Hazenbroek Apr 1986 S
4593432 Hazenbroek Jun 1986 A
4597133 van de Nieuwelaar Jul 1986 A
4597136 Hazenbroek Jul 1986 A
4635317 van der Eerden Jan 1987 A
4639973 van der Eerden Feb 1987 A
4639974 Olson Feb 1987 A
4639975 van der Eerden Feb 1987 A
4646384 van der Eerden Mar 1987 A
4651383 van der Eerden Mar 1987 A
4653147 van der Eerden Mar 1987 A
4682386 Hazenbroek et al. Jul 1987 A
4704768 Hutting et al. Nov 1987 A
4723339 van de Nieuwelaar et al. Feb 1988 A
4724581 van de Nieuwelaar Feb 1988 A
4736492 Hazenbroek et al. Apr 1988 A
RE32697 Hazenbroek et al. Jun 1988 E
4765028 van de Nieuwelaar et al. Aug 1988 A
4766644 van den Nieuwelaar et al. Aug 1988 A
4769872 Hazenbroek et al. Sep 1988 A
4779308 van de Nieuwelaar et al. Oct 1988 A
4788749 Hazenbroek et al. Dec 1988 A
4811456 Heuvel Mar 1989 A
4811458 v.d. Nieuwelaar et al. Mar 1989 A
4811462 Meyn Mar 1989 A
4813101 Brakels et al. Mar 1989 A
4884318 Hazenbroek Dec 1989 A
4893378 Hazenbroek et al. Jan 1990 A
4894885 Markert Jan 1990 A
4896399 Hazenbroek Jan 1990 A
4899421 Van Der Eerden Feb 1990 A
4918787 Hazenbroek Apr 1990 A
4928351 van den Nieuwelaar et al. May 1990 A
4935990 Linnenbank Jun 1990 A
4939813 Hazenbroek Jul 1990 A
4958694 van den Nieuwelaar et al. Sep 1990 A
4965908 Meyn Oct 1990 A
4972549 van den Nieuwelaar et al. Nov 1990 A
4993113 Hazenbroek Feb 1991 A
4993115 Hazenbroek Feb 1991 A
5001812 Hazenbroek Mar 1991 A
5013431 Doets May 1991 A
5015213 Hazenbroek May 1991 A
5019013 Hazenbroek May 1991 A
5026983 Meyn Jun 1991 A
5035673 Hazenbroek Jul 1991 A
5037351 van den Nieuwelaar et al. Aug 1991 A
5041054 van den Nieuwelaar et al. Aug 1991 A
5045022 Hazenbroek Sep 1991 A
5060596 Esbroeck Oct 1991 A
5064402 Koops Nov 1991 A
5067927 Hazenbroek et al. Nov 1991 A
5069652 Hazenbroek Dec 1991 A
5074823 Meyn Dec 1991 A
5088959 Heemskerk Feb 1992 A
5090940 Adkison Feb 1992 A
5098333 Cobb Mar 1992 A
5104351 van den Nieuwelaar et al. Apr 1992 A
5122090 van de Nieuwelaar et al. Jun 1992 A
5123871 van den Nieuwelaar et al. Jun 1992 A
5125498 Meyn Jun 1992 A
5147240 Hazenbroek et al. Sep 1992 A
5147241 Rudin Sep 1992 A
5154664 Hazenbroek et al. Oct 1992 A
5154665 Hazenbroek Oct 1992 A
RE34149 Markert Dec 1992 E
5173076 Hazenbroek Dec 1992 A
5173077 van den Nieuwelaar et al. Dec 1992 A
5176563 van den Nieuwelaar et al. Jan 1993 A
5176564 Hazenbroek Jan 1993 A
5178890 van den Nieuwelaar et al. Jan 1993 A
5186679 Meyn Feb 1993 A
5188559 Hazenbroek Feb 1993 A
5188560 Hazenbroek Feb 1993 A
5194035 Dillard Mar 1993 A
5197917 Verbakel et al. Mar 1993 A
5199922 Korenberg et al. Apr 1993 A
5222905 Van den Nieuwelaar et al. Jun 1993 A
5242324 Koops Sep 1993 A
5248277 Bos et al. Sep 1993 A
5256101 Koops Oct 1993 A
5269721 Meyn Dec 1993 A
5277649 Adkison Jan 1994 A
5277650 Meyn Jan 1994 A
5279517 Koops Jan 1994 A
5290187 Meyn Mar 1994 A
5299975 Meyn Apr 1994 A
5299976 Meyn Apr 1994 A
5318428 Meyn Jun 1994 A
5326311 Persoon et al. Jul 1994 A
5334083 van den Nieuwelaar et al. Aug 1994 A
5336127 Hazenbroek Aug 1994 A
5340351 Minderman et al. Aug 1994 A
5340355 Meyn Aug 1994 A
5342237 Kolkman Aug 1994 A
5344359 Kolkman Sep 1994 A
5344360 Hazenbroek Sep 1994 A
5366406 Hobbel et al. Nov 1994 A
5370574 Meyn Dec 1994 A
5372246 van Aalst Dec 1994 A
RE34882 Meyn Mar 1995 E
5401210 Manmoto et al. Mar 1995 A
5429549 Verrijp et al. Jul 1995 A
5439702 French Aug 1995 A
5453045 Hobbel et al. Sep 1995 A
5462477 Ketels Oct 1995 A
5470194 Zegers Nov 1995 A
5487700 Dillard Jan 1996 A
5490451 Nersesian Feb 1996 A
5505657 Janssen et al. Apr 1996 A
5549521 van den Nieuwelaar et al. Aug 1996 A
D373883 Dillard Sep 1996 S
5569067 Meyn Oct 1996 A
5595066 Zwanikken et al. Jan 1997 A
5605503 Martin Feb 1997 A
5643072 Lankhaar et al. Jul 1997 A
5643074 Linnenbank Jul 1997 A
5672098 Veraart Sep 1997 A
5676594 Joosten Oct 1997 A
5704830 Van Ochten Jan 1998 A
5713786 Kikstra Feb 1998 A
5713787 Schoenmakers et al. Feb 1998 A
5741176 Lapp et al. Apr 1998 A
5755617 van Harskamp et al. May 1998 A
5759095 De Weerd Jun 1998 A
5766063 Hazenbroek et al. Jun 1998 A
5782685 Hazenbroek et al. Jul 1998 A
5785588 Jacobs et al. Jul 1998 A
5803802 Jansen Sep 1998 A
5810651 De Heer et al. Sep 1998 A
5810653 Van Craaikamp et al. Sep 1998 A
5813908 Craaikamp Sep 1998 A
5827116 Al et al. Oct 1998 A
5833527 Hazenbroek et al. Nov 1998 A
5865672 Hazenbroek Feb 1999 A
5875738 Hazenbroek et al. Mar 1999 A
5947811 Hazenbroek et al. Sep 1999 A
5951393 Barendregt Sep 1999 A
5975029 Morimoto et al. Nov 1999 A
5976004 Hazenbroek Nov 1999 A
5980377 Zwanikken et al. Nov 1999 A
6007416 Janssen et al. Dec 1999 A
6007417 Jones et al. Dec 1999 A
6024636 Hazenbroek et al. Feb 2000 A
6027403 Hazenbroek et al. Feb 2000 A
6027404 Wols Feb 2000 A
6029795 Janssen et al. Feb 2000 A
6033299 Stone et al. Mar 2000 A
6062972 Visser May 2000 A
6095914 Cornelissen et al. Aug 2000 A
6126534 Jacobs et al. Oct 2000 A
6126536 Kielwasser Oct 2000 A
6132304 Aarts et al. Oct 2000 A
6142863 Janssen et al. Nov 2000 A
6152816 van den Nieuwelaar et al. Nov 2000 A
6176772 Hazenbroek et al. Jan 2001 B1
6179702 Hazenbroek Jan 2001 B1
6190250 Volk et al. Feb 2001 B1
6193595 Volk et al. Feb 2001 B1
6220953 Cornelissen et al. Apr 2001 B1
6231436 Bakker May 2001 B1
6254471 Meyn Jul 2001 B1
6254472 Meyn Jul 2001 B1
6277021 Meyn Aug 2001 B1
6299524 Janssen et al. Oct 2001 B1
6306026 Post Oct 2001 B1
6322438 Barendregt et al. Nov 2001 B1
6358136 Volk et al. Mar 2002 B1
6371843 Volk et al. Apr 2002 B1
6375560 Verrijp Apr 2002 B1
6383069 Volk et al. May 2002 B1
6398636 Jansen et al. Jun 2002 B1
6446352 Middelkoop et al. Sep 2002 B2
6478668 Visser et al. Nov 2002 B2
6530466 Murata et al. Mar 2003 B2
6599179 Hazenbroek et al. Jul 2003 B1
6612919 Jansen et al. Sep 2003 B2
6656032 Hazenbroek et al. Dec 2003 B2
6726556 Gooren et al. Apr 2004 B2
6736717 Annema et al. May 2004 B1
6764393 Hazenbroek et al. Jul 2004 B1
6783451 Aandewiel et al. Aug 2004 B2
6811478 van den Nieuwelaar et al. Nov 2004 B2
6811480 Moriarty Nov 2004 B2
6811802 van Esbroeck et al. Nov 2004 B2
6830508 Hazenbroek et al. Dec 2004 B2
6837782 Hetterscheid et al. Jan 2005 B2
6899613 van den Nieuwelaar et al. May 2005 B2
6912434 van den Nieuwelaar et al. Jun 2005 B2
6986707 Van Den Nieuwelaar et al. Jan 2006 B2
7018283 Schmidt et al. Mar 2006 B2
7029387 van den Nieuwelaar et al. Apr 2006 B2
7059954 Annema et al. Jun 2006 B2
7063611 Nolten et al. Jun 2006 B2
7066806 de Heer et al. Jun 2006 B2
7070493 Hazenbroek et al. Jul 2006 B2
7115030 van Hillo et al. Oct 2006 B2
7125330 Beeksma et al. Oct 2006 B2
7128937 van den Nieuwelaar et al. Oct 2006 B2
7133742 Cruysen et al. Nov 2006 B2
7172781 Kish Feb 2007 B2
7232365 Annema et al. Jun 2007 B2
7232366 Van Den Nieuwelaar et al. Jun 2007 B2
7249998 van Esbroeck et al. Jul 2007 B2
7261629 Holleman Aug 2007 B2
7284973 van Esbroeck et al. Oct 2007 B2
7302885 Townsend Dec 2007 B2
7344437 Van Den Nieuwelaar et al. Mar 2008 B2
D565941 Peters et al. Apr 2008 S
7357707 de Vos et al. Apr 2008 B2
7476148 McQuillan et al. Jan 2009 B2
7494406 van Esbroeck et al. Feb 2009 B2
7530888 Annema et al. May 2009 B2
7572176 Petersen et al. Aug 2009 B2
7662033 Ritter et al. Feb 2010 B1
7662034 Van Hillo et al. Feb 2010 B2
7717773 Woodford et al. May 2010 B2
7740527 Harben Jun 2010 B1
7744449 van Esbroeck et al. Jun 2010 B2
7824251 van den Nieuwelaar et al. Nov 2010 B2
7942730 Hagendoorn et al. May 2011 B2
8272927 Gasbarro Sep 2012 B2
20010023171 Hazenbroek et al. Sep 2001 A1
20020055328 Schmidt et al. May 2002 A1
20020058470 Schmidt et al. May 2002 A1
20020090905 Moriarty Jul 2002 A1
20020168930 Jansen et al. Nov 2002 A1
20030008606 Hazenbroek et al. Jan 2003 A1
20030084856 Hazenbroek et al. May 2003 A1
20030092372 Aandewiel et al. May 2003 A1
20040198209 Hazenbroek et al. Oct 2004 A1
20040235409 Nolten et al. Nov 2004 A1
20050037704 Heer et al. Feb 2005 A1
20050037705 Beeksma et al. Feb 2005 A1
20050048894 van Hillo et al. Mar 2005 A1
20050186897 Holleman Aug 2005 A1
20050221748 Hillo et al. Oct 2005 A1
20060099899 Hazenbroek et al. May 2006 A1
20060217051 Gerrits Sep 2006 A1
20070082595 de Vos et al. Apr 2007 A1
20070221071 Kuijpers et al. Sep 2007 A1
20070224306 van Esbroeck et al. Sep 2007 A1
20080017050 van Esbroeck et al. Jan 2008 A1
20080125025 Van Den Nieuwelaar et al. May 2008 A1
20080171506 Nieuwelaar et al. Jul 2008 A1
20090239457 Jansen et al. Sep 2009 A1
20090320761 Grave et al. Dec 2009 A1
20100022176 Van De Nieuwelaar et al. Jan 2010 A1
20100029186 Janssen et al. Feb 2010 A1
20100048114 Van Den Nieuwelaar et al. Feb 2010 A1
20100062699 Sorensen et al. Mar 2010 A1
20100075584 Aandewiel et al. Mar 2010 A1
20100081366 De Vos et al. Apr 2010 A1
20100120344 Van Den Nieuwelaar et al. May 2010 A1
20100151779 Bakker Jun 2010 A1
20100221991 Hagendoorn Sep 2010 A1
Foreign Referenced Citations (11)
Number Date Country
0 736 255 Oct 1996 EP
0 786 208 Jul 1997 EP
1 353 155 Oct 2003 EP
1 440 618 Jul 2004 EP
1 538 113 Jun 2005 EP
2 018 809 Jan 2009 EP
2 181 841 May 2010 EP
2 529 177 Dec 1983 FR
1 395 722 May 1975 GB
WO 0059311 Oct 2000 WO
WO 0244670 Jun 2002 WO
Non-Patent Literature Citations (5)
Entry
European Search Report—NL 200574, Jan. 3, 2011, Foodmate B.V.
Written Opinion—NL 2004574, Jan. 3, 2011, Foodmate B.V.
PCT/NL2011/050267—International Preliminary Report on Patentability, Oct. 23, 2012, Foodmate B.V.
Search Report in Netherlands Application No. 2006075 dated Jan. 12, 2011.
Office Action in EP Application No. 12 703 612.7 dated May 26, 2014.
Related Publications (1)
Number Date Country
20140120816 A1 May 2014 US