The invention relates to a method and apparatus for mechanically removing skin from animal parts. The invention also relates to removing skin from animal parts as an automated inline step of an animal part processing operation. The invention further relates to an apparatus for performing the skin removal step in combination with other steps in the animal part processing method.
Being able to automatically remove the skin from the animal parts is of great importance to the food processing industry. Generally, high amounts of saturated fat are found in animal skin. Therefore health conscious consumers prefer skinless meat products, especially skinless poultry products. Furthermore, as removing the skin from the animal part is generally a tedious process, and due to today's convenience society, there is an increasing demand for purchasing animal meat skinless and ready to cook.
Various methods and apparatuses have been developed for removing skin from animal parts. Typically these methods and apparatuses involve feeding an animal part into a skin remover unit. The skin remover unit may include a knife blade, a hold-down roller, a gripper roller, and a stripper roller. The animal part may be feed manually or by means of a conveyer belt into the skin remover unit. The hold-down roller pushes down on the animal part to ensure that the gripper roller grips the skin of the animal part and guides the animal part in respect of the knife blade. The knife blade separates the skin from the animal part, and the gripper roller pulls the detached skin away from the animal part. The detached skin may fall from the gripper roller, or be removed by the stripper roller.
Usually, the skin remover unit is a separate animal part processing station, and operators are manually required to transport the animal parts to the location of the skin remover unit. If animal parts are fed by conveyer belt into the skin remover unit, the animal parts have most likely already been deboned and the animal part may need to be reoriented by an operator to ensure that the best skinning results are achieved.
Accordingly, there is a growing demand for methods and apparatuses that incorporate the automatic skin removal step into food processing lines. Hence, it is an object of the present invention to propose an improved method and apparatus of mechanically removing skin from animal parts in an inline food processing method or apparatus. In a more general sense it is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art. It is also an object of the present invention to at least provide alternative processes and structures that are less cumbersome in use and which can be provided and used relatively inexpensively. At any rate the present invention is at the very least aimed at offering a useful choice and contribution to the existing art.
To this end the present invention provides a method of mechanically removing skin from animal parts that have a bone part extending therein, as defined in the appended claims. The method including: providing at least one bone holder depending from an overhead conveyor for movement through a given path; providing an animal part with the bone part therein; holding the animal part from the at least one bone holder by engagement of its bone part by the at least one bone holder; moving the animal part through the given path; engaging an outer surface of the animal part, when moving through the given path, with a perimeter surface of a rotating gripper; maintaining a downward force on the animal part on the rotating gripper; entrapping a portion of skin of the animal part between the perimeter surface of the rotating gripper and a fixed knife blade; and pulling the skin away from underlying meat of the animal part.
The present invention allows the skin of an animal part to be removed as an automated inline processing step, specifically an automated inline processing step arranged along an overhead conveyor system, where animal parts are held from above by bone holders. Optionally the overhead conveyor is an overhead conveyor chain made up of individual chain links and the at least one bone holder is depending from a chain link.
The overhead conveyor moves the animal part held from the bone holder through the given path. While travelling through the given path, the animal part may encounter different processing steps, and specifically the processing steps for removing the skin of the animal part. Therefore this method lends itself to incorporating the skin removal step in a meat processing operation.
Optionally, the bone part is an elongate bone part extending through the animal part and has a bone portion protruding outwardly from the animal part. Optionally, the outwardly protruding bone portion is a bone knuckle. The bone knuckle provides a natural and convenient way of holding the animal part from the bone holder. Optionally, the animal part is an item of poultry. Optionally, the item of poultry is one of a group consisting of chicken, quail, turkey, duck, swan, and goose.
In the method according to the present invention, while travelling through the given path, the animal part encounters the rotating gripper. The outer surface of the animal part is engaged by the perimeter surface of the rotating gripper. Optionally, the perimeter surface has protrusions extending outwardly and possibly but not necessarily in the direction of rotation of the rotating gripper. This helps ensure that the rotating gripper sufficiently engages the outer surface of the animal part. Optionally, the rotating gripper is implemented as a roller.
Maintaining a downward force on the animal part on the rotating gripper helps the rotating gripper engage the outer surface of the animal part. Optionally, the downward force is gravity. It has been found that the downward force exerted on the animal part by gravity is sufficient. Optionally, the downward force may be changed, by varying the distance between the animal part held by the bone holder and the rotating gripper. In the case that more downward force is necessary, the distance between the rotating gripper and the bone holder may be decreased. As the rotating gripper engages the skin of the animal part, the animal part, which is held securely by the bone holder, is squeezed between the overhead conveyor and the rotating gripper. As the meat on the animal part is resilient, the animal part passes over the rotating gripper, and the outer skin surface of the animal part is gripped sufficiently.
Optionally, the perimeter surface of the rotating gripper moves at a speed that exceeds a speed at which the overhead conveyor moves. When the perimeter surface of the rotating gripper travels faster than the overhead conveyor, the skin of the animal part is more reliably engaged and entrapped resulting in better skin removal and less waste.
Optionally, the outer surface of the animal part is engaged by the perimeter surface of the rotating gripper prior to entrapping a portion of skin of the animal part between the perimeter surface of the rotation gripper and the fixed knife blade. In this case, the perimeter surface is sufficiently engaged before the fixed knife blade cuts away the skin of the animal part, resulting in better skin removal.
Optionally, the method further includes providing a rotating cleaning member for cleaning the rotating gripper. The rotating cleaning member prevents chunks of removed skin from being retained on the rotating gripper. Retained chunks could result in uneven skin removal and/or contamination.
Optionally, the method further includes rotating the cleaning member in the same direction as the rotating gripper. It has been found that rotating the cleaning member in the same direction as the rotating gripper increases the cleaning efficiency of the rotating gripper. It is also conceivable that the rotating cleaning member is provided with protrusions that engage and knock retained skin and/or chunks of skin off the rotating gripper.
Optionally, the cleaning member is rotated at a higher rate than the rotating gripper. When the cleaning member is rotated faster than the rotating gripper retained skin and/or chunks of retained skin on the rotating gripper may be removed before that portion of the perimeter surface of the rotating gripper engages the outer surface of the same animal part and/or a next animal part.
Optionally, the method is part of a meat processing operation. On account of the method being executed as inline steps, the method according to the invention, removing the skin of the animal part, may be incorporated in a meat processing operation. Optionally, the meat processing operation is one for separating meat from thigh bones.
Optionally, the animal part is a thigh and the bone part grasped by the bone holder is a hip or knee knuckle, and wherein the meat processing operation further includes the automated individual processing steps of: cutting tissue near a hip knuckle; cutting tissue adjacent a knee knuckle; engaging the thigh bone adjacent the bone holder with a meat stripper; moving the bone holder and meat stripper away from one another in a direction substantially coextensive with the longitudinal extend of the thigh bone; allowing the meat stripper to pass over the knee knuckle; and collecting the meat separated from the bone.
Including the present invention in the meat processing operation for separating meat from thigh bones, allows thigh meat to be essentially completely processed in a single meat processing operation, without operator interaction.
Optionally, the skin from thigh is removed prior to separating the meat from the bone part extending therein. Best results have been achieved by first removing the skin of the thigh and then performing the steps necessary for separating the meat from the bone.
Also according to the invention an apparatus is provided for performing the method according to the invention, including at least one processing station for carrying out the method steps. The at least one processing station is arranged along a path of conveyance defined by an overhead conveyor moving through a predefined path. A bone holder is depending from the overhead conveyor; and wherein the at least one processing station comprises a skin remover unit including a rotating gripper and a fixed knife blade operatively arranged to, in use, engage, entrap and pull a portion of skin of an animal part between a perimeter surface of the rotating gripper and the fixed knife blade.
Optionally, the rotating gripper is implemented as a roller. Optionally, the skin remover unit further includes a rotating cleaning member. Optionally, the rotation cleaning member is also implemented as a roller. The roller is slightly wider than the width of the animal part to be skinned held in position by the bone holder. Furthermore, the apparatus is modular, and may include different processing stations for performing different method steps. Optionally, the bone holder is rotatably depending from the overhead conveyor. In certain method steps it may be desirable that the animal part is rotated by the bone holder substantially coextensive with a longitudinal extend of the bone of the animal part.
Optionally, the rotating gripper is made from stainless steel. In practice, most of the food processing apparatus is manufactured from stainless steel. Hygiene is extremely important in the food industry and stainless steel is easy to clean and immune to corrosion. Optionally, the rotating cleaning member is made from plastic. The rotating cleaning member may also include protrusions or teeth for better removing excess skin or retained skin or fat from the rotating gripper.
Optionally, a first edge of the fixed knife blade extends parallel to the rotating gripper and substantially perpendicular to the direction of conveyance of the conveyor, and a main body of the fixed knife blade extends substantially tangentially to the perimeter contour of the rotating gripper. As the distance of the animal part from the bone holder depending from the overhead conveyor to a far end of the animal part is fixed, it is may be preferable that the first edge of the fixed knife blade is substantially parallel to an axis of rotation of the rotating gripper and generally perpendicular to the direction of conveyance of the overhead conveyor. It may further be preferred that a main body of the fixed knife blade is also tangential to the perimeter of the rotating gripper. As a result only the skin is removed, and the remaining animal part and meat pass over the first edge of the fixed knife blade. The outer skin surface of the animal part is thus efficiently separated from the remaining animal part including the meat and bone.
Optionally, the knife blade is adjustable relative to the gripper. This facilitates versatility. The apparatus can then be used for different types of animal parts having different skin thicknesses.
Optionally, the skin remover unit is height adjustably mounted to a machine frame via an arm. This feature also increases the versatility of the apparatus. The desired distance from the overhead conveyor and bone holder to the fixed knife blade and rotating gripper depends on the animal part being processed. As animal parts vary in size, for example, a chicken thigh is smaller than a turkey thigh, it is desirable that the entire skin remover unit may be adjusted relative to the overhead conveyor and the bone holder to accommodate for the processing of different types of animals and/or different types of animal parts. The height adjustability may also be convenient to vary the downward force of the animal part on the fixed knife blade and the rotating gripper.
Optionally, the arm is rotatable about the machine frame about a pivot axis extending in a plane substantially parallel to the overhead conveyor. The location of the skin remover unit may vary along the overhead conveyor. However, it is important that the skin remover unit be located inline with the overhead conveyor. Therefore an arm pivotable on the machine frame is suitable for effectuating a change in distance relative to the overhead conveyor without the skin remover unit becoming too much misaligned from a substantially parallel orientation and moving out from under the virtual line created by the overhead conveyor.
Optionally, the arm is pivotally adjustable with respect to the machine frame and pivoted about a mount point by an adjustment screw that supports the arm at a contact point located on the arm away from the mount point. The adjustment screw may be used to tune the distance between the skin remover unit and the overhead conveyor. This change in distance will also result in a slight change in the location and angular position of the skin remover unit along the overhead conveyor. Optionally, the arm is capable of travelling within 45 degrees above and below the virtual reference line defined to be parallel to the overhead conveyor.
Optionally, the overhead conveyor path is arranged in a closed loop and the closed loop is defined by first and second carousels, connecting parallel first and second linear conveyor sections. Such a setup increases the processing area of the overhead conveyor and provides a method of driving the overhead conveyor. Optionally, the second carousel is driven for rotation, and wherein the first carousel is idle and driven indirectly by the overhead conveyer.
Optionally, in use, the skin remover unit is arranged at a distance from the overhead conveyor such that the animal part is first engaged by the perimeter surface of the rotating gripper, before coming in contact with the fixed knife blade. Conveniently this implies that the end of the animal part travels along a path that is lower than the fixed knife yet higher than a middle of the rotating gripper.
Optionally, the at least one processing station further comprises a bone hanger station, a first tissue cutting station, a second tissue cutting station, and a meat stripper station. As mentioned above, the apparatus is modular and lends itself well to the incorporation of additional processing stations for carrying out additionally processing steps.
Optionally, the skin remover unit, is arranged after the bone hanger station, and before the meat stripper station. As stated while discussing the method according to the invention it is preferable that the skin of the animal part is removed prior to stripping the meat from the animal part.
Although the method according to the present invention and the apparatus for performing the method according to the present invention are discussed in different sections, it will be appreciated that the above description and features of the method according to the invention are also applicable to the apparatus according to the invention, and that the above description and features of the apparatus according to the invention are also applicable to the method according to the invention.
The aspects as covered by the appended claims as well as other aspects, features and advantages of the invention will be explained in further detail in the description below in reference to the accompanying drawings briefly described below.
The apparatus 1 according to a first embodiment of the invention as shown in
As best seen in
The conveyer chain is formed in such a way that the chain is not limited to substantially lateral movement. Although not pictured in this embodiment, it is possible that the conveyer chain undergoes a change in elevation.
After the animal part, in this example a chicken thigh, has been inserted into the receiving end 32 of the bone holder 16, preferably the animal thigh is positioned with the front part of the knee knuckle facing outwards from the machine, the bone holder's swivelable locking arm 36 locks the thigh bone in place. Furthermore, the bone holder 16 is rotated such that the receiving end 32 of the bone holder travels in the conveyance direction defined by arrow 12 leading with the receiving end 32. From the first carousel 6 the bone holders 16 will advance along the overhead conveyor to its second linear section 8 and enter the skin remover unit 20 positioned at the perimeter of the first carousel 6. The skin remover unit 20 is depicted in
Both the rotating gripper 38 and the rotating cleaning member 42 are, in this example, implemented as rollers. These rollers 38, 42 are arranged parallel to one another with their axes of rotation extending perpendicular to the direction of conveyance 12, and have an axial length that makes them slightly wider than the width of the animal part to be skinned held in position by the bone holder 16. The rotating gripper 38, in this example, is manufactured from stainless steel and has a rough outer perimeter surface 44 to improve and/or increase the engagement of the outer surface of the animal part. The rotating cleaning member 42 is manufactured from plastic, in this example, and has a plurality of protrusions 46 extending from a perimeter surface of the roller. These protrusions 46 aid in removing retained skin and/or retained skin chunks including fat from the rotating gripper 38.
The perimeter surface 44 of the rotating gripper 38 rotates towards the fixed knife blade 40 in the same direction as the direction of conveyance indicated by arrow 12. Furthermore, the linear speed measured at the perimeter surface 44 of the rotating gripper 38 exceeds a linear speed at which the overhead conveyor moves above the skin remover unit 20. Additionally, the cleaning member 42 is rotated in the same direction as the rotating gripper 38 and at an angular velocity that exceeds the angular velocity of the rotating gripper 38. Both the rotating gripper 38 and the rotating cleaning member 42 are driven by an electric motor 56.
As best seen in
The skin remover unit 20 is, in this example, adjustably mounted to a machine frame 2 via an arm 58, and a bracket 60. This is shown in both
An adjustment screw spindle 64 supports the arm 58 at a contact point 68 located on the arm 58 spaced away from the mount point 62. Adjusting the adjustment screw spindle 64 by a hand wheel 66 results in the skin remover unit 20 pivoting about the mount point 62 in a height direction with respect to the machine frame 2. This allows the distance from the skin remover unit 20 to the bone holder 16 to be varied without the skin remover unit 20 becoming misaligned, because the height adjustment is independent of the lateral adjustability. The change in distance of the skin remover unit 20 from the overhead conveyor and bone holder 16 will also result in a slight change in the elevation angle of the skin remover unit 20, and in its up- and downstream location along the second linear conveyor section 8 of the overhead conveyor. These slight positional changes do not affect the efficiency of the skin remover unit 20 or the apparatus 1.
Being able to set the desired vertical distance from the overhead conveyor and bone holder 16 to the fixed knife blade 40 and rotating gripper 38 is preferred for processing different animal parts from different animals. Animal parts vary in size and although the apparatus 1 is for processing chicken thighs, which do differ somewhat in length, it is also conceivable that the apparatus 1 may be used to process turkey thighs, which are larger, during another shift.
In use an outer surface of the animal part held by the bone holder 16 travelling through the conveyer path in the direction of conveyance, indicated by arrow 12, is first engaged by the perimeter surface 44 of the rotating gripper 38. A downward force is maintained on the animal part on the rotating gripper 38. The downward force, in this example, is gravity and results from the distance between the bone holder 16 and the skin remover unit 20 being set such that the outer surface of the animal part is first engaged by the perimeter surface 44 of the gripper roller 38. The outer surface of the animal part first engages the perimeter surface 44 at a position located approximately at a middle of the gripper roller 38, below the fixed knife blade 40, and above the rotating cleaning member 42. The downward force is further created by cooperation of the distance of the bone holder 16 with respect to the rotating gripper 38, the specific length of the animal part, its inherent stiffness, and its inherent flexibility. Therefore as the animal part travels along the conveying path it is pressed/urged by the bone holder 16 against the perimeter surface 44 of the rotating gripper 38. As the animal part, a chicken thigh in this example, is held securely by the bone holder 16, as the outer of the animal part is engaged by the perimeter surface 44 of the rotating gripper 38, the animal meat is pushed against the perimeter surface 44 of the rotating gripper 38 resulting in better engagement.
Next, a portion of skin of the animal part is entrapped between the perimeter surface 44 of the rotating gripper 38 and the first and second edges 48, 50 of the fixed knife blade 40. The skin of the animal is subsequently pulled away from underlying meat of the animal part. The skin to be detached is engaged by the perimeter surface 44 of the rotating gripper 38, and is directed downward along the rotating gripper 38 by the second edge 50 of the fixed knife blade 40. The first edge 48 of the fixed knife blade 40 continues separating and guiding the meat of the animal part away from the skin. As the skin is removed from the animal part portions of the removed skin will fall from the rotating gripper 38 on a generally downwardly inclined chute surface of the skin remover unit 20. If portions of the removed skin or fat remain engaged to the rotating gripper 38, the rotating cleaning member 42 and its protrusions 46 knock off the remaining removed skin from the rotating gripper 38, keeping the rotating gripper 38 clean.
Since the linear speed of the perimeter surface 44 of the rotating gripper 38 exceeds the linear speed of the overhead conveyor the entire part of animal meat can be processed during the short time it takes for the animal part to travel through the skin remover station comprising the skin remover unit 20.
After passing over the skin remover unit 20, the animal part held by the bone holder 16 enters the first tissue cutting station 22 followed by the second tissue cutting station 24. In this embodiment the first and second tissue cutting stations 22, 24 are mounted on a sub-frame 70, which is preferably height adjustably mounted on the machine frame 2.
The first tissue cutting station 22 comprises a circular rotating cutting blade driven by an electric motor. The rotating cutting blade is opposite a thigh bone guiding means which engages the knee knuckle and assists in positioning the individual knee ends of the animal part for cutting tissue by the circular cutting blade. The predetermined position is such that the back portion of the bone shaft directly adjacent to the knee knuckle passes against cutting blade, for cutting tissue that connects the meat to the bone. Thereby, such tissue is severed that is positioned adjacent the back of the knee knuckle end of the thigh bone.
Next the animal part progresses through the second tissue cutting station 24. The animal part successively passes through a first set of parallel knife blades, and a second set of parallel knife blades. The bone holders 16 are rotated through the turning gears 34 while passing through the second tissue cutting station 24.
The meat stripping and discharge station 26 includes the second carousel 10 that receives the bone holders 16 from the second linear conveyer section 8 after these have been advanced through the second tissue cutting station 24. The meat stripping and discharge station 26 also incorporates, in this embodiment, a third tissue cutting station 28.
In this example, conventional meat stripper units 68 each have gripper plates closing around the bone shaft adjacent to the knee knuckle, and then undergo a vertically downward movement which strips the meat from the bone. At the bottom of the bone, the gripper plates open slightly to allow the gripper plates to pass over the hip knuckle region of the thigh bone. Because the tissue holding the meat to the hip knuckle region of the thigh bone has already been severed sufficiently, the continued downward movement of the meat stripper unit will remove the meat from the thigh bone. This removed meat may then be collected by gravity in a collecting tray or alternatively by a collecting conveyer placed underneath the second carousel 10.
In order to further reduce waste and ensure that no meat clings to the thigh bone, in this example, the animal part passes through a third tissue cutting station 28 after the meat stripping station 26. Any tissue still holding any meat is cut, and also collected by gravity in the collecting tray or alternatively by the collecting conveyer placed underneath the second carousel 10.
After removal of all the meat, the bone holders 16 continue their movement around the second carousel 10 and release the bone part from which the meat has been removed. Suitable means may additionally be provided to collect the discharged thigh bones, such as trays or conveyors (not shown but conventional).
Accordingly method of mechanically removing skin from animal parts that have a bone part extending therein is disclosed. The method includes: providing at least one bone holder 16 depending from an overhead conveyor for movement through a given path; providing an animal part with the bone part therein; holding the animal part from the at least one bone holder 16 by engagement of its bone part by the at least one bone holder 16; moving the animal part through the given path; engaging an outer surface of the animal part, when moving through the given path, with a perimeter surface 44 of a rotating gripper 38; maintaining a downward force on the animal part on the rotating gripper 38; entrapping a portion of skin of the animal part between the perimeter surface 44 of the rotating gripper 38 and a fixed knife blade 40; and pulling the skin away from underlying meat of the animal part.
It is thus believed that the operation and construction of the present invention will be apparent from the foregoing description. To the skilled person in this field of the art it will be clear that the invention is not limited to the embodiment represented and described here, but that within the framework of the appended claims a large number of variants are possible. Also kinematic inversions are considered inherently disclosed and to be within the scope of the present invention. The terms comprising and including when used in this description or the appended claims should not be construed in an exclusive or exhaustive sense but rather in an inclusive sense. Expressions such as: “means for . . . ” should be read as: “component configured for . . . ” or “member constructed to . . . ” and should be construed to include equivalents for the structures disclosed. The use of expressions like: “critical”, “preferred”, “especially preferred” etc. is not intended to limit the invention. Features which are not specifically or explicitly described or claimed may be additionally included in the structure according to the present invention without deviating from its scope.
Number | Date | Country | Kind |
---|---|---|---|
2009718 | Oct 2012 | NL | national |
Number | Name | Date | Kind |
---|---|---|---|
3956794 | Verbakel | May 1976 | A |
3969790 | Smorenburg | Jul 1976 | A |
3979793 | Hazenbroek | Sep 1976 | A |
3983601 | Verbakel | Oct 1976 | A |
3990128 | van Mil | Nov 1976 | A |
4011573 | Braico | Mar 1977 | A |
4034440 | van Mil | Jul 1977 | A |
4096950 | Brook | Jun 1978 | A |
4118829 | Harben, Jr. | Oct 1978 | A |
4131973 | Verbakel | Jan 1979 | A |
4147012 | van Mil | Apr 1979 | A |
4153971 | Simonds | May 1979 | A |
4153972 | Harben et al. | May 1979 | A |
4178659 | Simonds | Dec 1979 | A |
4203178 | Hazenbroek | May 1980 | A |
4283813 | House | Aug 1981 | A |
4292709 | van Mil | Oct 1981 | A |
4388811 | Zebarth | Jun 1983 | A |
4395795 | Hazenbroek | Aug 1983 | A |
4406037 | Hazenbroek | Sep 1983 | A |
4418444 | Meyn et al. | Dec 1983 | A |
4418445 | Meyn et al. | Dec 1983 | A |
4434526 | van Mil | Mar 1984 | A |
4439891 | van Mil | Apr 1984 | A |
4468838 | Sjöström et al. | Sep 1984 | A |
4510886 | van Mil | Apr 1985 | A |
4514879 | Hazenbroek | May 1985 | A |
4516290 | van Mil | May 1985 | A |
4524489 | van Mil | Jun 1985 | A |
4558490 | Hazenbroek et al. | Dec 1985 | A |
4559672 | Hazenbroek et al. | Dec 1985 | A |
4567624 | van Mil | Feb 1986 | A |
4570295 | van Mil | Feb 1986 | A |
4574429 | Hazenbroek | Mar 1986 | A |
4577368 | Hazenbroek | Mar 1986 | A |
D283289 | Hazenbroek | Apr 1986 | S |
4593432 | Hazenbroek | Jun 1986 | A |
4597133 | van de Nieuwelaar | Jul 1986 | A |
4597136 | Hazenbroek | Jul 1986 | A |
4635317 | van der Eerden | Jan 1987 | A |
4639973 | van der Eerden | Feb 1987 | A |
4639974 | Olson | Feb 1987 | A |
4639975 | van der Eerden | Feb 1987 | A |
4646384 | van der Eerden | Mar 1987 | A |
4651383 | van der Eerden | Mar 1987 | A |
4653147 | van der Eerden | Mar 1987 | A |
4682386 | Hazenbroek et al. | Jul 1987 | A |
4704768 | Hutting et al. | Nov 1987 | A |
4723339 | van de Nieuwelaar et al. | Feb 1988 | A |
4724581 | van de Nieuwelaar | Feb 1988 | A |
4736492 | Hazenbroek et al. | Apr 1988 | A |
RE32697 | Hazenbroek et al. | Jun 1988 | E |
4765028 | van de Nieuwelaar et al. | Aug 1988 | A |
4766644 | van den Nieuwelaar et al. | Aug 1988 | A |
4769872 | Hazenbroek et al. | Sep 1988 | A |
4779308 | van de Nieuwelaar et al. | Oct 1988 | A |
4788749 | Hazenbroek et al. | Dec 1988 | A |
4811456 | Heuvel | Mar 1989 | A |
4811458 | v.d. Nieuwelaar et al. | Mar 1989 | A |
4811462 | Meyn | Mar 1989 | A |
4813101 | Brakels et al. | Mar 1989 | A |
4884318 | Hazenbroek | Dec 1989 | A |
4893378 | Hazenbroek et al. | Jan 1990 | A |
4894885 | Markert | Jan 1990 | A |
4896399 | Hazenbroek | Jan 1990 | A |
4899421 | Van Der Eerden | Feb 1990 | A |
4918787 | Hazenbroek | Apr 1990 | A |
4928351 | van den Nieuwelaar et al. | May 1990 | A |
4935990 | Linnenbank | Jun 1990 | A |
4939813 | Hazenbroek | Jul 1990 | A |
4958694 | van den Nieuwelaar et al. | Sep 1990 | A |
4965908 | Meyn | Oct 1990 | A |
4972549 | van den Nieuwelaar et al. | Nov 1990 | A |
4993113 | Hazenbroek | Feb 1991 | A |
4993115 | Hazenbroek | Feb 1991 | A |
5001812 | Hazenbroek | Mar 1991 | A |
5013431 | Doets | May 1991 | A |
5015213 | Hazenbroek | May 1991 | A |
5019013 | Hazenbroek | May 1991 | A |
5026983 | Meyn | Jun 1991 | A |
5035673 | Hazenbroek | Jul 1991 | A |
5037351 | van den Nieuwelaar et al. | Aug 1991 | A |
5041054 | van den Nieuwelaar et al. | Aug 1991 | A |
5045022 | Hazenbroek | Sep 1991 | A |
5060596 | Esbroeck | Oct 1991 | A |
5064402 | Koops | Nov 1991 | A |
5067927 | Hazenbroek et al. | Nov 1991 | A |
5069652 | Hazenbroek | Dec 1991 | A |
5074823 | Meyn | Dec 1991 | A |
5088959 | Heemskerk | Feb 1992 | A |
5090940 | Adkison | Feb 1992 | A |
5098333 | Cobb | Mar 1992 | A |
5104351 | van den Nieuwelaar et al. | Apr 1992 | A |
5122090 | van de Nieuwelaar et al. | Jun 1992 | A |
5123871 | van den Nieuwelaar et al. | Jun 1992 | A |
5125498 | Meyn | Jun 1992 | A |
5147240 | Hazenbroek et al. | Sep 1992 | A |
5147241 | Rudin | Sep 1992 | A |
5154664 | Hazenbroek et al. | Oct 1992 | A |
5154665 | Hazenbroek | Oct 1992 | A |
RE34149 | Markert | Dec 1992 | E |
5173076 | Hazenbroek | Dec 1992 | A |
5173077 | van den Nieuwelaar et al. | Dec 1992 | A |
5176563 | van den Nieuwelaar et al. | Jan 1993 | A |
5176564 | Hazenbroek | Jan 1993 | A |
5178890 | van den Nieuwelaar et al. | Jan 1993 | A |
5186679 | Meyn | Feb 1993 | A |
5188559 | Hazenbroek | Feb 1993 | A |
5188560 | Hazenbroek | Feb 1993 | A |
5194035 | Dillard | Mar 1993 | A |
5197917 | Verbakel et al. | Mar 1993 | A |
5199922 | Korenberg et al. | Apr 1993 | A |
5222905 | Van den Nieuwelaar et al. | Jun 1993 | A |
5242324 | Koops | Sep 1993 | A |
5248277 | Bos et al. | Sep 1993 | A |
5256101 | Koops | Oct 1993 | A |
5269721 | Meyn | Dec 1993 | A |
5277649 | Adkison | Jan 1994 | A |
5277650 | Meyn | Jan 1994 | A |
5279517 | Koops | Jan 1994 | A |
5290187 | Meyn | Mar 1994 | A |
5299975 | Meyn | Apr 1994 | A |
5299976 | Meyn | Apr 1994 | A |
5318428 | Meyn | Jun 1994 | A |
5326311 | Persoon et al. | Jul 1994 | A |
5334083 | van den Nieuwelaar et al. | Aug 1994 | A |
5336127 | Hazenbroek | Aug 1994 | A |
5340351 | Minderman et al. | Aug 1994 | A |
5340355 | Meyn | Aug 1994 | A |
5342237 | Kolkman | Aug 1994 | A |
5344359 | Kolkman | Sep 1994 | A |
5344360 | Hazenbroek | Sep 1994 | A |
5366406 | Hobbel et al. | Nov 1994 | A |
5370574 | Meyn | Dec 1994 | A |
5372246 | van Aalst | Dec 1994 | A |
RE34882 | Meyn | Mar 1995 | E |
5401210 | Manmoto et al. | Mar 1995 | A |
5429549 | Verrijp et al. | Jul 1995 | A |
5439702 | French | Aug 1995 | A |
5453045 | Hobbel et al. | Sep 1995 | A |
5462477 | Ketels | Oct 1995 | A |
5470194 | Zegers | Nov 1995 | A |
5487700 | Dillard | Jan 1996 | A |
5490451 | Nersesian | Feb 1996 | A |
5505657 | Janssen et al. | Apr 1996 | A |
5549521 | van den Nieuwelaar et al. | Aug 1996 | A |
D373883 | Dillard | Sep 1996 | S |
5569067 | Meyn | Oct 1996 | A |
5595066 | Zwanikken et al. | Jan 1997 | A |
5605503 | Martin | Feb 1997 | A |
5643072 | Lankhaar et al. | Jul 1997 | A |
5643074 | Linnenbank | Jul 1997 | A |
5672098 | Veraart | Sep 1997 | A |
5676594 | Joosten | Oct 1997 | A |
5704830 | Van Ochten | Jan 1998 | A |
5713786 | Kikstra | Feb 1998 | A |
5713787 | Schoenmakers et al. | Feb 1998 | A |
5741176 | Lapp et al. | Apr 1998 | A |
5755617 | van Harskamp et al. | May 1998 | A |
5759095 | De Weerd | Jun 1998 | A |
5766063 | Hazenbroek et al. | Jun 1998 | A |
5782685 | Hazenbroek et al. | Jul 1998 | A |
5785588 | Jacobs et al. | Jul 1998 | A |
5803802 | Jansen | Sep 1998 | A |
5810651 | De Heer et al. | Sep 1998 | A |
5810653 | Van Craaikamp et al. | Sep 1998 | A |
5813908 | Craaikamp | Sep 1998 | A |
5827116 | Al et al. | Oct 1998 | A |
5833527 | Hazenbroek et al. | Nov 1998 | A |
5865672 | Hazenbroek | Feb 1999 | A |
5875738 | Hazenbroek et al. | Mar 1999 | A |
5947811 | Hazenbroek et al. | Sep 1999 | A |
5951393 | Barendregt | Sep 1999 | A |
5975029 | Morimoto et al. | Nov 1999 | A |
5976004 | Hazenbroek | Nov 1999 | A |
5980377 | Zwanikken et al. | Nov 1999 | A |
6007416 | Janssen et al. | Dec 1999 | A |
6007417 | Jones et al. | Dec 1999 | A |
6024636 | Hazenbroek et al. | Feb 2000 | A |
6027403 | Hazenbroek et al. | Feb 2000 | A |
6027404 | Wols | Feb 2000 | A |
6029795 | Janssen et al. | Feb 2000 | A |
6033299 | Stone et al. | Mar 2000 | A |
6062972 | Visser | May 2000 | A |
6095914 | Cornelissen et al. | Aug 2000 | A |
6126534 | Jacobs et al. | Oct 2000 | A |
6126536 | Kielwasser | Oct 2000 | A |
6132304 | Aarts et al. | Oct 2000 | A |
6142863 | Janssen et al. | Nov 2000 | A |
6152816 | van den Nieuwelaar et al. | Nov 2000 | A |
6176772 | Hazenbroek et al. | Jan 2001 | B1 |
6179702 | Hazenbroek | Jan 2001 | B1 |
6190250 | Volk et al. | Feb 2001 | B1 |
6193595 | Volk et al. | Feb 2001 | B1 |
6220953 | Cornelissen et al. | Apr 2001 | B1 |
6231436 | Bakker | May 2001 | B1 |
6254471 | Meyn | Jul 2001 | B1 |
6254472 | Meyn | Jul 2001 | B1 |
6277021 | Meyn | Aug 2001 | B1 |
6299524 | Janssen et al. | Oct 2001 | B1 |
6306026 | Post | Oct 2001 | B1 |
6322438 | Barendregt et al. | Nov 2001 | B1 |
6358136 | Volk et al. | Mar 2002 | B1 |
6371843 | Volk et al. | Apr 2002 | B1 |
6375560 | Verrijp | Apr 2002 | B1 |
6383069 | Volk et al. | May 2002 | B1 |
6398636 | Jansen et al. | Jun 2002 | B1 |
6446352 | Middelkoop et al. | Sep 2002 | B2 |
6478668 | Visser et al. | Nov 2002 | B2 |
6530466 | Murata et al. | Mar 2003 | B2 |
6599179 | Hazenbroek et al. | Jul 2003 | B1 |
6612919 | Jansen et al. | Sep 2003 | B2 |
6656032 | Hazenbroek et al. | Dec 2003 | B2 |
6726556 | Gooren et al. | Apr 2004 | B2 |
6736717 | Annema et al. | May 2004 | B1 |
6764393 | Hazenbroek et al. | Jul 2004 | B1 |
6783451 | Aandewiel et al. | Aug 2004 | B2 |
6811478 | van den Nieuwelaar et al. | Nov 2004 | B2 |
6811480 | Moriarty | Nov 2004 | B2 |
6811802 | van Esbroeck et al. | Nov 2004 | B2 |
6830508 | Hazenbroek et al. | Dec 2004 | B2 |
6837782 | Hetterscheid et al. | Jan 2005 | B2 |
6899613 | van den Nieuwelaar et al. | May 2005 | B2 |
6912434 | van den Nieuwelaar et al. | Jun 2005 | B2 |
6986707 | Van Den Nieuwelaar et al. | Jan 2006 | B2 |
7018283 | Schmidt et al. | Mar 2006 | B2 |
7029387 | van den Nieuwelaar et al. | Apr 2006 | B2 |
7059954 | Annema et al. | Jun 2006 | B2 |
7063611 | Nolten et al. | Jun 2006 | B2 |
7066806 | de Heer et al. | Jun 2006 | B2 |
7070493 | Hazenbroek et al. | Jul 2006 | B2 |
7115030 | van Hillo et al. | Oct 2006 | B2 |
7125330 | Beeksma et al. | Oct 2006 | B2 |
7128937 | van den Nieuwelaar et al. | Oct 2006 | B2 |
7133742 | Cruysen et al. | Nov 2006 | B2 |
7172781 | Kish | Feb 2007 | B2 |
7232365 | Annema et al. | Jun 2007 | B2 |
7232366 | Van Den Nieuwelaar et al. | Jun 2007 | B2 |
7249998 | van Esbroeck et al. | Jul 2007 | B2 |
7261629 | Holleman | Aug 2007 | B2 |
7284973 | van Esbroeck et al. | Oct 2007 | B2 |
7302885 | Townsend | Dec 2007 | B2 |
7344437 | Van Den Nieuwelaar et al. | Mar 2008 | B2 |
D565941 | Peters et al. | Apr 2008 | S |
7357707 | de Vos et al. | Apr 2008 | B2 |
7476148 | McQuillan et al. | Jan 2009 | B2 |
7494406 | van Esbroeck et al. | Feb 2009 | B2 |
7530888 | Annema et al. | May 2009 | B2 |
7572176 | Petersen et al. | Aug 2009 | B2 |
7662033 | Ritter et al. | Feb 2010 | B1 |
7662034 | Van Hillo et al. | Feb 2010 | B2 |
7717773 | Woodford et al. | May 2010 | B2 |
7740527 | Harben | Jun 2010 | B1 |
7744449 | van Esbroeck et al. | Jun 2010 | B2 |
7824251 | van den Nieuwelaar et al. | Nov 2010 | B2 |
7942730 | Hagendoorn et al. | May 2011 | B2 |
8272927 | Gasbarro | Sep 2012 | B2 |
20010023171 | Hazenbroek et al. | Sep 2001 | A1 |
20020055328 | Schmidt et al. | May 2002 | A1 |
20020058470 | Schmidt et al. | May 2002 | A1 |
20020090905 | Moriarty | Jul 2002 | A1 |
20020168930 | Jansen et al. | Nov 2002 | A1 |
20030008606 | Hazenbroek et al. | Jan 2003 | A1 |
20030084856 | Hazenbroek et al. | May 2003 | A1 |
20030092372 | Aandewiel et al. | May 2003 | A1 |
20040198209 | Hazenbroek et al. | Oct 2004 | A1 |
20040235409 | Nolten et al. | Nov 2004 | A1 |
20050037704 | Heer et al. | Feb 2005 | A1 |
20050037705 | Beeksma et al. | Feb 2005 | A1 |
20050048894 | van Hillo et al. | Mar 2005 | A1 |
20050186897 | Holleman | Aug 2005 | A1 |
20050221748 | Hillo et al. | Oct 2005 | A1 |
20060099899 | Hazenbroek et al. | May 2006 | A1 |
20060217051 | Gerrits | Sep 2006 | A1 |
20070082595 | de Vos et al. | Apr 2007 | A1 |
20070221071 | Kuijpers et al. | Sep 2007 | A1 |
20070224306 | van Esbroeck et al. | Sep 2007 | A1 |
20080017050 | van Esbroeck et al. | Jan 2008 | A1 |
20080125025 | Van Den Nieuwelaar et al. | May 2008 | A1 |
20080171506 | Nieuwelaar et al. | Jul 2008 | A1 |
20090239457 | Jansen et al. | Sep 2009 | A1 |
20090320761 | Grave et al. | Dec 2009 | A1 |
20100022176 | Van De Nieuwelaar et al. | Jan 2010 | A1 |
20100029186 | Janssen et al. | Feb 2010 | A1 |
20100048114 | Van Den Nieuwelaar et al. | Feb 2010 | A1 |
20100062699 | Sorensen et al. | Mar 2010 | A1 |
20100075584 | Aandewiel et al. | Mar 2010 | A1 |
20100081366 | De Vos et al. | Apr 2010 | A1 |
20100120344 | Van Den Nieuwelaar et al. | May 2010 | A1 |
20100151779 | Bakker | Jun 2010 | A1 |
20100221991 | Hagendoorn | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0 736 255 | Oct 1996 | EP |
0 786 208 | Jul 1997 | EP |
1 353 155 | Oct 2003 | EP |
1 440 618 | Jul 2004 | EP |
1 538 113 | Jun 2005 | EP |
2 018 809 | Jan 2009 | EP |
2 181 841 | May 2010 | EP |
2 529 177 | Dec 1983 | FR |
1 395 722 | May 1975 | GB |
WO 0059311 | Oct 2000 | WO |
WO 0244670 | Jun 2002 | WO |
Entry |
---|
European Search Report—NL 200574, Jan. 3, 2011, Foodmate B.V. |
Written Opinion—NL 2004574, Jan. 3, 2011, Foodmate B.V. |
PCT/NL2011/050267—International Preliminary Report on Patentability, Oct. 23, 2012, Foodmate B.V. |
Search Report in Netherlands Application No. 2006075 dated Jan. 12, 2011. |
Office Action in EP Application No. 12 703 612.7 dated May 26, 2014. |
Number | Date | Country | |
---|---|---|---|
20140120816 A1 | May 2014 | US |