I. Field of the Invention
The present invention relates to the field of microfabricated transducers. More specifically, the present invention relates to microfabricated transducers formed on the surface of a substrate and a method of packaging and isolating such transducers.
II. Description of the Related Art
Microfabricated transducers are devices made with the techniques of the semiconductor industry such as lithography, chemical vapor deposition, plasma etching, wet chemical etching and many others. These devices contain structures capable of converting energy from the electrical domain to another physical domain. Examples of other physical domains include but are not limited to the acoustic, chemical, and optical domains. Transducers can also convert energy from said physical domains into an electrical signal. Surface microfabricated transducers describe a subset of microfabricated transducers that are formed on and whose entire function is contained within the surface portion of the supporting substrate, typically a silicon wafer. The surface portion is typically considered to represent up to 2% of the thickness of the substrate (0.1-10 microns for a typical 500 micron silicon wafer).
One example of a surface microfabricated transducer is the acoustic transducer disclosed in U.S. patent application Ser. No. 09/315,896 filed on May 20, 1999 entitled “ACOUSTIC TRANSDUCER AND METHOD OF MAKING THE SAME.” and assigned to the same assignee as the present application. In operation, such a transducer, as shown in
Because transducers convert energy between the electrical and another domain, they need to be in physical contact with the domain of interest. An acoustic transducer, for example, needs to be exposed to the medium in which it is to launch and receive acoustic waves. A chemical sensor measuring concentration, such as a humidity sensor, needs to be exposed to the environment in which it is trying to measure humidity. An optical sensor, measuring light, needs a transparent window to provide exposure to the optical environment. Thus, the packaging of microfabricated transducers must provide not only electrical connections and protection to the transducers but also environmental exposure. Such complicated packaging can in many instances be more costly than the fabrication of the transducers themselves.
Therefore, a packaging methodology that takes advantage of the techniques used in transducer fabrication (sequences of film depositions, lithographic pattern definitions, and selective removal of film material) to reduce the cost of transducer packaging is highly desirable. Furthermore, in cases where many transducer elements are operated in an array configuration, such as in ultrasonic transducer arrays, droplet ejector arrays, etc, it may be desirable for the packaging to help isolate one element from the others. The packaging can help to mechanically or electrically isolate the elements. Further stilly the packaging may be flexible, such as flex circuits known in the arts and in this manner enable flexible transducer arrays capable of adopting curved configurations.
It has recognized by the present inventor that the relatively flat topology of surface microfabricated devices allows them to be packaged with many of the techniques and materials of the printed circuit board industry. The present inventor has further recognized that in the specific case of microfabricated ultrasonic transducers, cross-coupling between array elements could be problematic. Cross-coupling can occur electrically or acoustically. While special precautions can be taken during transducer and substrate preparation to reduce or eliminate electrical and acoustic cross-coupling through the substrate, a particular interface wave known as the Stonely wave is responsible for much of the cross coupling observed in microfabricated ultrasonic transducer arrays. This wave propagates in parallel to the interface of two materials. Because microfabricated ultrasonic transducers tend to have a displacement component in this direction, as shown in
What is needed therefore, is a method of packaging surface microfabricated transducers which provides protection and electrical connections to the transducer, exposes the transducer to the medium of interests and isolates the transducer from neighboring elements when relevant.
It is an object of the present invention to provide a method of packaging surface microfabricated transducers such that electrical connections, protection, and relevant environmental exposure are realized prior to the transducers' separation into discrete components.
It is an object of the present invention to provide a method of packaging surface microfabricated transducers such that array elements are isolated from each other.
It is an object of the present invention to provide a method of packaging arrays of surface microfabricated transducers such that the entire array is mechanically flexible.
It is an object of the present invention to provide a method of packaging surface microfabricated transducers and integrated circuitry such that the temperature they are exposed to during packaging harms neither the transducers nor the circuits.
It is an object of the present invention to provide an array of acoustic transducers isolated from each other such that acoustic waves coupling the elements cannot exist, and a method of packaging the same.
The present invention achieves the above objects, among others, by providing a method in which a packaging coating is applied to the surface of a transducer fabricated a wafer. The packaging coating is typically a relatively thick coating, such as polymer. This packaging coating is etched, typically using a combination of lithographic patterning and chemical etching, to result in a plurality of walls, having exposed areas between the adjacent walls to allow for environmental contact with the transducers. After the packaging coating is applied and etched, the wafer can then be diced as necessary to provide discrete components, arrays, or flexible arrays.
In addition, it is possible, using additional deposition and lithography steps, to allow for interconnects to be located within the packaging coating. Further stills if the entire process uses a sufficiently low thermal budget, microfabricated transducers integrated with electronics can be packaged in the same manner.
The features, objects and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein.
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention
The process of packaging surface microfabricated transducers 20 in accordance with a preferred embodiment of the present invention will now be described with reference to
Starting with
As shown in
Thereafter, as shown in
As show in
Thereafter, as shown with reference to
Another aspect of the present invention is the provision for packaging transducer arrays such that they are flexible. This can be achieved if polymer layers 30A and 30B are chosen such that they remain flexible after cure, as is known in the art of Flex Circuit manufacturing. As illustrated in
While the present invention has been described herein with reference to particular embodiments thereof, latitude of modification, various changes and substitutions are intended in the foregoing disclosure. Accordingly, it will be appreciated that in some instances some features of the invention will be employed without a corresponding use of other features without departing from the spirit and scope of the invention as set forth in the appended claims.
This application is a divisional of U.S. patent application Ser. No. 09/901,869 filed Jul. 6, 2001, now U.S. Pat. No. 7,360,292, issued on Apr. 22, 2008, which is a divisional of U.S. patent application Ser. No. 09/435,324 filed Nov. 5, 1999, now U.S. Pat. No. 6,867,535.
Number | Name | Date | Kind |
---|---|---|---|
4095232 | Cha | Jun 1978 | A |
4117424 | Coldren et al. | Sep 1978 | A |
4278000 | Saito et al. | Jul 1981 | A |
4281550 | Erikson | Aug 1981 | A |
4656384 | Magori | Apr 1987 | A |
4691117 | Greenwood et al. | Sep 1987 | A |
4737676 | Engel et al. | Apr 1988 | A |
4992692 | Dias | Feb 1991 | A |
5065629 | Koike et al. | Nov 1991 | A |
5131279 | Lang et al. | Jul 1992 | A |
5327895 | Hashimoto et al. | Jul 1994 | A |
5606971 | Sarvazyan | Mar 1997 | A |
5792058 | Lee et al. | Aug 1998 | A |
6014898 | Finsterwald et al. | Jan 2000 | A |
6049159 | Barthe et al. | Apr 2000 | A |
6246158 | Ladabaum | Jun 2001 | B1 |
6867535 | Ladabaum | Mar 2005 | B1 |
7154549 | Shizukuishi | Dec 2006 | B2 |
7364276 | Piatt et al. | Apr 2008 | B2 |
Entry |
---|
Newton's Telecom Dictionary, The Official Dictionary of Telecommunications & the Internet, 15th Updated, Expanded and Much Improved Edition, Aug. 1999, ISBN No. 1-57820-031-8, p. 735. |
Merriam-Webster's Collegiate Dictionary, Tenth Edition, 1993, p. 1063. |
http://en.wikipedia.org/wiki/Semiconductor Sep. 26, 2007, 8 pages total. |
Number | Date | Country | |
---|---|---|---|
20080313883 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09901869 | Jul 2001 | US |
Child | 12099581 | US | |
Parent | 09435324 | Nov 1999 | US |
Child | 09901869 | US |