Method of molding chalcogenide glass lenses

Information

  • Patent Grant
  • 5346523
  • Patent Number
    5,346,523
  • Date Filed
    Wednesday, March 31, 1993
    31 years ago
  • Date Issued
    Tuesday, September 13, 1994
    29 years ago
Abstract
An infrared transmitting chalcogenide glass lens having precision optical surfaces of different curvature radii is molded. A pair of molds having different curvature radiuses from each other, and a bushing which controls the thickness of the lens is provided. A block of chalcogenide glass is placed within the cavity. The upper mold, the lower mold and the block of glass are heated with the mold having a smaller curvature radius being at a higher temperature than the other mold. The glass is then pressed, cooled, and the resulting lens is removed from the mold assembly.
Description

FIELD OF THE INVENTION
The present invention relates to a method of molding an infrared beam transmitting chalcogenide glass lens.
BACKGROUND OF THE INVENTION
An infrared beam transmitting lens is generally produced by cutting, grinding and polishing a block of silicon single crystal.
On the other hand, a visible beam transmitting lens is produced through the steps of heating and pressing a preform of oxide glass by a molding apparatus. An exemplary molding apparatus which is suitable for this application is illustrated in FIG. 1. This apparatus is also described in U.S. Pat. No. 4,854,958 which is incorporated herein by reference. In the exemplary molding apparatus, a preform of oxide glass 1 is placed in a cavity which is surrounded by an upper mold 2, a lower mold 3 and a bushing 4. The optical surfaces 5 are fabricated in the ends of the molds. Heating is provided by means of an induction heating coil 6, the molds and the glass preform are brought to a temperature at which the glass exhibits a viscosity between 10.sup.8 -10.sup.12 poises, a load is applied to the molds by mold carriers 7 and 8, and the motion of the molds is defined by bushing 4 and frame 9. The temperature of the mold is monitored and controlled by thermocouple 10. In this case, the upper and the lower surfaces of the glass preform are heated to the same temperature and pressed.
Prior methods for producing infrared beam transmitting lenses have often required many processes and expensive hand work. Prior methods for producing visible beam transmitting lenses have often resulted in low production rates when chalcogenide glass lenses having precision optical surfaces of different curvature radii on its both sides have been formed. This is because the viscosity of chalcogenide glass falls more rapidly than that of oxide glass as its temperature increases.
SUMMARY OF THE INVENTION
A glass lens is molded by heating and pressing a block of chalcogenide glass with an appropriate apparatus. The apparatus is provided with a pair of molds having different curvature radiuses, and the temperature of the mold having a smaller curvature radius is set higher than that of the other mold.
In this manner, a spheric or aspheric infrared beam transmitting lens having a different curvature radii on each of its two ends and with high precision can be produced.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts a sectional view of an apparatus suitable for molding an oxide glass in accordance with the prior art.
FIG. 2 represents a sectional view of an apparatus employed in a first exemplary embodiment of the present invention.
FIG. 3 represents a sectional view of an apparatus employed in a second exemplary embodiment of the present invention.
FIG. 4 represents a sectional view of an apparatus employed in a third exemplary embodiment of the present invention.





DETAILED DESCRIPTION
EMBODIMENT 1
The first exemplary embodiment of the present invention will be described referring to FIG. 2.
In FIG. 2, a chalcogenide glass disc 11 was placed within the cavity surrounded by a pair of molds, namely, an upper mold 12, and a lower mold 13, and a bushing 14 which defined the thickness of the glass lens.
An optical surface 15 fabricated in the end of the upper mold had a convex surface with a diameter of 7 mm, a curvature radius of 5 mm, and a surface roughness of less than 0.01 .mu.m. An optical surface 16 fabricated in the end of the lower mold had a concave surface with a diameter of 7 mm, a curvature radius of 100 mm, and a surface roughness of less than 0.01 .mu.m. Press cylinders 17 having heaters 18 were provided in the end of the molds to press the glass disc. Heaters 18 were adapted to heat molds 12 and 13 the temperatures of which were monitored and controlled by thermocouples 19. The glass which was used had a composition, in atomic weight percent, of 20% Ge, 80% Se. The softening temperature of the glass (i.e. where the glass exhibits a viscosity of 4.5.times.10.sup.7 poise) was 240.degree. C. In the apparatus of FIG. 2, the upper mold 12 was heated to 270.degree. C., the lower mold 13 was heated to 250.degree. C., and a load of 100 kg/cm.sup.2 was applied to the molds for three minutes.
The mold assembly was cooled while still maintaining the load. Subsequently, the pressed lens was removed from the mold assembly and annealed.
The finished article was a meniscus chalcogenide glass lens having a surface roughness of less than 0.01 .mu.m, a diameter of 7 mm, a thickness of 2.5 mm and curvature radii of 5 mm and 100 mm. Furthermore, there were no surface trapped bubbles.
EMBODIMENT 2
The second exemplary embodiment of the present invention will be described referring to FIG. 3.
In FIG. 3, the softening temperature of glass gob 20 was 265.degree. C. The glass which was used had a composition, in atomic weight percent, of 40% As and 60% Se. In the apparatus of FIG. 3, the upper mold 12 was heated to 295.degree. C., the lower mold 13 was heated to 275.degree. C., and a load of 100 kg/cm.sup.2 was applied to the molds for three minutes. The mold assembly was cooled while still maintaining the load, and subsequently, the pressed lens was removed from the mold assembly and annealed.
The finished article was a meniscus chalcogenide glass lens having a surface roughness of less than 0.01 .mu.m, a diameter of less than 7 mm, a thickness of 2.5 mm and curvature radii of 5 mm and 100 mm. Furthermore, there were no surface trapped bubbles. The molding method of the present embodiment required less processing than that of the first exemplary embodiment.
EMBODIMENT 3
The third exemplary embodiment of the present invention will be described referring to FIG. 4.
In FIG. 4, the softening temperature of three pieces of pulverized glass was 300.degree. C. Furthermore, the composition of the glass was, in atomic weight percent, 10% Ge, 30% As, 60% Se. The molding assembly of the present exemplary embodiment was placed within a container 22, and the container was evacuated with vacuum pump 23. Furthermore, the upper optical surface was heated to 400.degree. C, the lower optical surface was heated to 375.degree. C., and a load of 100 kg/cm.sup.2 was applied to the molds for three minutes. The mold assembly was cooled while still maintaining the load. Subsequently, the pressed lens was removed from the mold assembly and annealed.
The finished article was a meniscus chalcogenide glass lens having a surface roughness of less than 0.01 .mu.m, a diameter of 7 mm, a thickness of 2.5 mm and curvature radii of 5 mm and 100 mm. Furthermore, there were no surface trapped bubbles. The molding method of the present embodiment required less processing than that of the second embodiment.
As observed above, desirable molding temperatures were 10.degree.-100.degree. C. higher than the softening temperature of the glass. It was observed that the molding time was undesirably long and the optical surface of the mold was not precisely transcribed to the glass when the molding was carried out at less than 10.degree. C. higher than softening temperature. On the other hand, unwanted adhesion of glass to the mold or flow between clearances in the mold assembly occurred when the molding was carried out at a temperature more than 100.degree. C. higher than softening temperature.
Articles similar to those obtained in accordance with the embodiments described above were obtained using glass having a composition in atomic weight percent of 30% Ge, 70% Se and a softening temperature of 390.degree. C. or a composition in atomic weight percent of 30% Ge, 60% S, and 10% I and with a softening temperature of 505.degree. C. Articles similar to the finished articles obtained with the embodiments set forth above relating to a spherical lens were also obtained in the form of aspherical lenses.
Claims
  • 1. A method of molding a chalcogenide glass lens, comprising the steps of:
  • providing a mold assembly having a mold cavity which includes a pair of molds having different curvature radiuses,
  • placing a block of chalcogenide glass within said cavity,
  • heating said pair of molds having different curvature radiuses from each other and said block of chalcogenide glass, in such manner that the temperature of the mold having smaller curvature radius is higher than the temperature of the other mold,
  • pressing said block of chalcogenide glass to form a molded chalcogenide glass lens, and
  • removing the molded chalcogenide glass lens from said mold assembly.
  • 2. A method of molding a chalcogenide glass lens according to claim 1, wherein the temperatures of said pair of molds are 10.degree.-100.degree. C. higher than the softening temperature of said block of chalcogenide glass.
  • 3. A method of molding a chalcogenide glass lens, comprising the steps of:
  • providing a mold assembly having a mold cavity which includes a pair of molds having different curvatures radiuses from each other
  • placing a plurality of pulverized chalcogenide glass pieces within said mold cavity,
  • placing said mold assembly within a container
  • evacuating said container,
  • heating said pair of molds having different curvature radiuses and said pulverized chalcogenide glass pieces in such manner that the temperature of the mold having the smaller curvature radius is higher than the temperature of the other mold,
  • pressing said plurality of pulverized glass pieces to form the chalcogenide glass lens, and
  • removing the chalcogenide glass lens from the mold assembly.
  • 4. A method of molding a chalcogenide glass lens according to claim 3, wherein the temperatures of said pair of molds are 10.degree.-100.degree. C. higher than the softening temperature of said pieces of pulverized chalcogenide glass.
Priority Claims (2)
Number Date Country Kind
4-076490 Mar 1992 JPX
5-019803 Feb 1993 JPX
US Referenced Citations (11)
Number Name Date Kind
2410616 Webb Nov 1946
3794704 Strong Feb 1974
3833347 Angle et al. Sep 1974
3900328 Parsons et al. Aug 1975
4139677 Blair et al. Feb 1979
4435200 Joormann et al. Mar 1984
4778505 Hirota et al. Oct 1988
4854958 Marechal et al. Aug 1989
5032160 Murata et al. Jul 1991
5173100 Shigyo et al. Dec 1992
5228894 Sato et al. Jul 1993
Foreign Referenced Citations (1)
Number Date Country
2-160631 Jun 1990 JPX