The subject matter herein generally relates to nucleic acid testing, and particular to a method for monitoring droplets movement in an electrowetting on dielectric device.
A sample droplet of nucleic acid, for example, can be tested in an amplification reaction by an electrowetting on dielectric (EWOD) principle. An EWOD device controls the sample droplet to move along a specified path, driven by an electrode, thus a nucleic acid amplification step can be completed. The position of the droplet needs to be monitored for ensuring movement of the droplet along the specified path. In an abnormal state, such as a volume of the droplet being too big or too small, or the droplet carrying an abnormal electrical charge, or the environment including impurities or excess static electricity, or a change in temperature or humidity, the droplet may fail to move along the specified path, but the failure in movement may not be detected. The failure of the nucleic acid amplification step reduces the reliability of the EWOD device.
There is room for improvement in the art.
Implementations of the present disclosure will now be described, by way of example only, with reference to the attached figures.
The present disclosure is described with reference to accompanying drawings and the embodiments. It will be understood that the specific embodiments described herein are merely some embodiments, not all the embodiments.
It is understood that, the term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The terms “perpendicular”, “horizontal”, “left”, “right” are merely used for describing, but not being limited.
Unless otherwise expressly stated, all technical and scientific terminology of the present disclosure are the same as understood by persons skilled in the art. The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. The term “comprising” means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in a so-described combination, group, series, and the like.
The driving loop 3 includes some driving electrodes 31 disposed on a side surface of the first cover 11 adjacent to the channel 2, a first dielectric layer 33 disposed on a side of the driving electrodes 31 adjacent to the second cover 13, a detection electrode 32 disposed on a side surface of the second cover 13 adjacent to the channel 2, and a second dielectric layer 34 disposed on a side of the detection electrode 32 adjacent to the first cover 11. The driving electrodes 31 and the detection electrode 32 are disposed on opposite sides of the channel 2. By powering on and powering off the driving electrode 31 and the detection electrode 32, the droplet Dr in the channel 2 is moved along the specified path.
In one embodiment, as shown in
In one embodiment, the driving electrodes 31 are disposed on a side of the first cover 11 adjacent to the channel 2. The driving electrodes 31 can be formed by a metal etching manner or by electroplating.
In detail, the driving loop 3 is a thin film transistor (TFT) driving loop. Based on a conductivity of the droplet Dr and the electrowetting on dielectric (EWOD) principle, the droplet Dr is moved along the specified path in the channel 2. The TFTs enable a circuit between one of the driving electrodes 31 and the detection electrode 32 to be turned on or turned off, a voltage between the driving electrode 31 and the detection electrode 32 can be adjusted. A wetting property between the first dielectric layer 33 and the second dielectric layer 34 can be adjusted for controlling the droplet Dr to move along the specified path. In one embodiment, there are three driving electrodes 31, such as electrodes A-C, and the principle of the droplet Dr moving along the specified path is as below.
As shown in
Obviously, a liquid driving principle of the detection chip 10 changes the voltage for adjusting hydrophobic characteristics of the first and second dielectric layers 33/34. An adsorption capacity of the first and second dielectric layers 33/34 for adsorbing the droplet Dr is changed, which makes the droplet Dr move. Thus, when assembled and before use, the location of the droplet Dr needs to be established, then the droplet Dr can be moved along the specified path. The size of the droplet Dr also needs to be known.
The detection module 30 is electrically connected to the detection electrode 32. The detection module 30 receives the detection voltage Vout outputted by the detection electrode 32, and computes a recovery time T of the detection voltage Vout changing from a peak voltage Vp to a reference voltage Vr, in one cycle of a voltage period.
The determination module 40 is electrically connected to the detection module 30. The determination module 40 receives the recovery time T, and locates the position of the droplet Dr based on the recovery time T. The determination module 40 can also confirm a volume of the droplet Dr (see later).
In one embodiment, the first voltage V1 is a positive voltage, and the second voltage V2 is a negative voltage. The driving electrode 31 with the droplet Dr receives the negative voltage, and a next driving electrode 31 receives the positive voltage, the droplet Dr is driven along the specified path according to the EWOD principle. The third voltage V3 is a continuous square pulsed voltage. By applying the continuous square pulsed voltage on one of the driving electrodes 31, the droplet Dr being disposed on the driving electrode 31 which is receiving the continuous square pulsed voltage is confirmed, and a position and a volume of the droplet Dr also can be confirmed.
In one embodiment, a controller (not shown) controls the power switch module 20 to turn on one of the driving electrodes 31 and the driving electrodes 31 for sequential detection, thus a position and a volume of the droplet Dr can be accurately continued.
When the detection electrode 32 outputs the detection voltage Vout to the detection module 30, the detection module 30 forms a voltage line cured in time, and computes the recovery time T of the detection voltage Vout changing from the peak voltage Vp to the reference voltage Vr in one cycle of the voltage period. The detection module 30 outputs the recovery time T to the determination module 40. The determination module 40 locates the position of the droplet Dr based on the recovery time T, and also confirms the volume of the droplet Dr.
Based on a self-capacitance technology the capacitance differences of the driving electrodes 31 in the driving loop 3 are detected, thus the position and the volume of the droplet Dr are confirmed.
Formulas for computing the capacitance are shown as below.
C
liquid=(Dliquid×S)/d Formula 1
C
liquid-1=(Dliquid1×S)/d Formula 2
C
liquid-2=(Dliquid2×S)/d Formula 3
C=C
di-B
+C
di-T
+C
liquid-1
/C
liquid-2 Formula 4
Cliquid represents a capacitance of a liquid in the channel 2, Dliquid represents a dielectric coefficient of the liquid in the channel 2, S represents an area of a single driving electrode 31, d represents a thickness of the liquid in the channel 2, which is usually considered as a height of the channel 2. Dliquid1 represents the dielectric coefficient of silicon oil, which is around 2.8. Dliquid2 represents the dielectric coefficient of the nucleic acid droplet Dr which is around 85. C represents a sum of capacitances of different driving electrodes 31.
A difference between the sum of capacitances of the driving electrodes 31 is used for confirming whether there is or is not the droplet Dr on the driving electrodes 31. For example, there is silicon oil on the electrode A, and the droplet Dr is disposed on the electrode B, the sum of capacitances CA of the corresponding driving loop 3 with the electrode A sums the capacitances of the first dielectric capacitor Cdi-B, the second dielectric capacitor Cdi-T and the 2.8, which is the dielectric coefficient of silicon oil. The sum of capacitance CA of the corresponding driving loop 3 with the electrode B sums the capacitances of the first dielectric capacitor Cdi-B, the second dielectric capacitor Cdi-T, and the 85, which is the dielectric coefficient of the droplet Dr. There is a considerable difference between the sum of capacitance CA of the corresponding driving loop 3 with the electrode A and the sum of capacitance CB of the corresponding driving loop 3 with the electrode B, and by comparing the sum of capacitance CA of the corresponding driving loop 3 with the electrode A and the sum of capacitance CB of the corresponding driving loop 3 with the electrode B, the position of the droplet Dr is established and confirmed. The difference between the sum of capacitance CA and the sum of capacitance CB is determined by the recovery time T of the detection voltage Vout changing from the peak voltage Vp to the reference voltage VT in one cycle of the voltage period. The dielectric coefficient of the droplet Dr is larger than the dielectric coefficient of silicon oil, and the sum of capacitance of the corresponding driving loop 3 with the droplet Dr on the driving electrode 31 is larger than the sum of capacitance of the corresponding driving loop 3 with the silicon oil on the driving electrode 31. The recovery time T of the detection voltage Vout changing from the peak voltage Vp to the reference voltage Vf in one cycle of the voltage period is longer. There is a time difference between the recovery time T of the driving loop 3 with the droplet Dr on the driving electrode 31 and the recovery time T of the driving loop 3 with silicon oil on the driving electrode 31. Therefore, the recovery time T can be used for determining a position of the droplet Dr. Based on the sum of capacitances, the actual number of the driving electrodes 31 covered by the droplet Dr can be confirmed. By combining the number of the driving electrodes 31 covered by the droplet Dr, the area S of the single driving electrode 31, and the height of the channel 2, a volume of the droplet Dr can be easily computed.
As shown in
The driving electrodes 31 are divided into three separate types. The three types of the driving electrodes 31 are in a first timing sequence T1, a second timing sequence T2, and a third timing sequence T3, which are fixed timing sequences. In the first timing sequence T1, the power switch module 20 provides the positive voltage (the first voltage V1) to the driving electrodes 31. In the second timing sequence T2, the power switch module 20 provides the negative voltage (the second voltage V2) to the driving electrodes 31. In the third timing sequence T3, the power switch module 20 provides the continuous square pulsed voltage (the third voltage V3) to the driving electrodes 31. During movement of the droplet Dr, the driving electrodes 31 are under different timing sequences. When the driving electrode 31 supporting the droplet Dr is in the second timing sequence T2, the two driving electrodes 31 adjacent to the droplet Dr are respectively under the first timing sequence T1 and the second timing sequence T3. For example, the driving electrodes 31 include six electrodes A-F, and the movement of the droplet Dr in the channel 2 is as below.
As shown in
As shown in
As shown in
The driving electrodes 31 are divided into two groups, which are respectively under a fourth timing sequence T4 and a fifth timing sequence T5. Under the fourth timing sequence T4, the power switch module 20 provides the positive voltage (the first voltage V1) and the continuous square pulsed voltage (the third voltage V3) to the driving electrodes 31. Under the fifth timing sequence T5, the power switch module 20 provides the negative voltage (the second voltage V2) and the continuous square pulsed voltage (the third voltage V3) to the driving electrodes 31. For example, as shown in
As shown in
Each driving electrode 31 receives a continuous square pulsed voltage (the third voltage V3), the number of the driving electrodes 31 covered by the droplet Dr is confirmed by the recovery time T. The volume of the droplet Dr is computed according to the area S of the single driving electrode 31 and the height d of the channel 2. For example, the driving electrodes 31 include electrodes A-F. Each electrode has a common size of contact area.
In a first embodiment, as shown in
In a third embodiment as shown in
It is understood that, the movement and the detection of the droplet Dr are detected at the same time, and the volume of the droplet Dr is also computed at the same time, thus an efficiency of the detection is improved.
In the present disclosure, the EWOD device 100 executes a self-detection of the detection chip 10 by the internal circuit of the EWOD device 100, and no external detection device is required. The method for detecting the movement and the position of the droplet Dr in the EWOD device 100 is simple, and easily operated. The result of detection is more accurate. The method has higher efficiency, and determination of position and volume of the droplet Dr is more accurate.
A method for detecting a movement and a position of the droplet Dr in the EWOD device 100 is also provided. The movement detection and the position detection can be executed at the same time or in a time-sharing manner. The method includes at least the following steps, which also may be followed in a different order:
In a step of driving the droplet Dr includes:
The power switch module 20 provides a first voltage V1 and the second voltage V2 to each driving electrode 31, the droplet Dr is driven by the first voltage V1 and the second voltage V2 to move along a specified path.
The first voltage V1 is a positive voltage, the second voltage V2 is a negative voltage. The power switch module 20 provides the negative voltage to the driving electrode 31 covered by the droplet Dr, and provides the positive voltage to the next driving electrode 31 in the specified path where the droplet Dr is going to cover, the other driving electrodes 31 are applied with the negative voltage, thus the droplet Dr moves from the current driving electrode 31 to the next driving electrode 31.
In a step of detecting the droplet Dr includes:
In a first step, the power switch module 20 provides the third voltage V3 to the specified driving electrode 31. The specified driving electrode 31 couples with the detection electrode 32, thus the detection electrode 32 outputs a detection voltage Tout (coupled voltage).
In a second step, the detection module 30 receives the detection voltage Vout outputted by the detection electrode 32, and computes a recovery time T of the detection voltage Vout changing from a peak voltage Yp to a reference voltage Vr in one cycle of a voltage period.
In a third step, the determination module 40 receives the recovery time T, and locates the position of the droplet Dr based on the recovery time T. The determination module 40 can also confirms a volume of the droplet Dr.
The EWOD device 100 can execute a self-detection for detecting the internal circuits. Based on a self-capacitance technology, the droplet Dr in the channel 2 is detected. In detail by using the recovery time T of the in the driving loop 3, whether the movement of the droplet Dr in the EWOD device 100 is along the specified path is confirmed, and the position and the volume of the droplet Dr in the EWOD device 100 are also confirmed. The method for detecting the circuit m the EWOD device 100 is simple, and easily for operated. The result of detection is more accurate. The method has higher efficiency, in the position and the volume of the droplet Dr is more accurate.
Besides, many variations and modifications can be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims. The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best use the invention and various described embodiments with various modifications as are suited to the particular use contemplated.
Number | Date | Country | Kind |
---|---|---|---|
202110746169.1 | Jul 2021 | CN | national |
Number | Date | Country | |
---|---|---|---|
63085368 | Sep 2020 | US | |
63085385 | Sep 2020 | US | |
63137597 | Jan 2021 | US |