The present invention generally relates to medical devices and methods for reducing intraocular pressure in the animal eye. More particularly, the present invention relates to the treatment of glaucoma by permitting aqueous humor to flow out of the anterior chamber through a surgically implanted pathway.
The human eye is a specialized sensory organ capable of light reception and able to receive visual images. The trabecular meshwork serves as a drainage channel and is located in the anterior chamber angle formed between the iris and the cornea. The trabecular meshwork maintains a balanced pressure in the anterior chamber of the eye by draining aqueous humor from the anterior chamber.
About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.
In glaucomas associated with an elevation in eye pressure (intraocular hypertension), the source of resistance to outflow is mainly in the trabecular meshwork. The tissue of the trabecular meshwork allows the aqueous humor (“aqueous”) to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous is a transparent liquid that fills the region between the cornea, at the front of the eye, and the lens. The aqueous is continuously secreted by the ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the eye's front chamber. The eye's pressure is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) or uveal scleral outflow (minor route). The trabecular meshwork is located between the outer rim of the iris and the back of the cornea, in the anterior chamber angle. The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) causes most of the resistance to aqueous outflow.
Glaucoma is grossly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the angle of the anterior chamber remains open, but the exit of aqueous through the trabecular meshwork is diminished. The exact cause for diminished filtration is unknown for most cases of open-angle glaucoma. Primary open-angle glaucoma is the most common of the glaucomas, and it is often asymptomatic in the early to moderately advanced stage. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment. However, there are secondary open-angle glaucomas which may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
All current therapies for glaucoma are directed at decreasing intraocular pressure. Medical therapy includes topical ophthalmic drops or oral medications that reduce the production or increase the outflow of aqueous. However, these drug therapies for glaucoma are sometimes associated with significant side effects, such as headache, blurred vision, allergic reactions, death from cardiopulmonary complications, and potential interactions with other drugs. When drug therapy fails, surgical therapy is used. Surgical therapy for open-angle glaucoma consists of laser trabeculoplasty, trabeculectomy, and implantation of aqueous shunts after failure of trabeculectomy or if trabeculectomy is unlikely to succeed. Trabeculectomy is a major surgery that is widely used and is augmented with topically applied anticancer drugs, such as 5-flurouracil or mitomycin-C to decrease scarring and increase the likelihood of surgical success.
Approximately 100,000 trabeculectomies are performed on Medicare-age patients per year in the United States. This number would likely increase if the morbidity associated with trabeculectomy could be decreased. The current morbidity associated with trabeculectomy consists of failure (10-15%); infection (a life long risk of 2-5%); choroidal hemorrhage, a severe internal hemorrhage from low intraocular pressure, resulting in visual loss (1%); cataract formation; and hypotony maculopathy (potentially reversible visual loss from low intraocular pressure).
For these reasons, surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
The surgical techniques that have been tried and practiced are goniotomy/trabeculotomy and other mechanical disruptions of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation, and goniocurretage. These are all major operations and are briefly described below.
Goniotomy/Trabeculotomy: Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed due to cellular repair and fibrosis mechanisms and a process of “filling in.” Filling in is a detrimental effect of collapsing and closing in of the created opening in the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
Trabeculopuncture: Q-switched Neodymiun (Nd) YAG lasers also have been investigated as an optically invasive technique for creating full-thickness holes in trabecular meshwork. However, the relatively small hole created by this trabeculopuncture technique exhibits a filling in effect and fails.
Goniophotoablation/Laser Trabecular Ablation: Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172 and involves the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This was demonstrated not to succeed by clinical trial. Hill et al. used an Erbium:YAG laser to create full-thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341-346, 1991). This technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although morbidity was zero in both trials, success rates did not warrant further human trials. Failure was again from filling in of surgically created defects in the trabecular meshwork by repair mechanisms. Neither of these is a viable surgical technique for the treatment of glaucoma.
Goniocurretage: This is an ab interno (from the inside), mechanically disruptive technique that uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results were similar to trabeculotomy: it failed due to repair mechanisms and a process of filling in.
Although trabeculectomy is the most commonly performed filtering surgery, viscocanulostomy (VC) and non penetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are ab externo (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap. In the VC procedure, Schlemm's canal is cannulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels). In the NPT procedure, the inner wall of Schlemm's canal is stripped off after surgically exposing the canal.
Trabeculectomy, VC, and NPT involve the formation of an opening or hole under the conjunctiva and scleral flap into the anterior chamber, such that aqueous is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. These surgical operations are major procedures with significant ocular morbidity. When trabeculectomy, VC, and NPT are thought to have a low chance for success, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous through the surgical opening will continue. The risk of placing a glaucoma drainage device also includes hemorrhage, infection, and diplopia (double vision).
Examples of implantable shunts and surgical methods for maintaining an opening for the release of aqueous from the anterior chamber of the eye to the sclera or space beneath the conjunctiva have been disclosed in, for example, U.S. Pat. No. 6,059,772 to Hsia et al. and U.S. Pat. No. 6,050,970 to Baerveldt.
All of the above embodiments and variations thereof have numerous disadvantages and moderate success rates. They involve substantial trauma to the eye and require great surgical skill in creating a hole through the full thickness of the sclera into the subconjunctival space. The procedures are generally performed in an operating room and have a prolonged recovery time for vision.
The complications of existing filtration surgery have inspired ophthalmic surgeons to find other approaches to lowering intraocular pressure.
The trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous and, as such, are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue are altered and existing physiologic outflow pathways are utilized.
As reported in Arch. Ophthalm. (2000) 118:412, glaucoma remains a leading cause of blindness, and filtration surgery remains an effective, important option in controlling the disease. However, modifying existing filtering surgery techniques in any profound way to increase their effectiveness appears to have reached a dead end. The article further states that the time has come to search for new surgical approaches that may provide better and safer care for patients with glaucoma.
There is a great clinical need for the treatment of glaucoma by a method that is faster, safer, and less expensive than currently available modalities, and by implanting a device having pressure sensing capability for transporting aqueous from the anterior chamber to Schlemm's canal.
Glaucoma surgical morbidity would greatly decrease if one were to bypass the focal resistance to outflow of aqueous only at the point of resistance, and to utilize remaining, healthy aqueous outflow mechanisms. This is in part because episcleral aqueous humor exerts a backpressure that prevents intraocular pressure from going too low, and one could thereby avoid hypotony. Thus, such a surgery would virtually eliminate the risk of hypotony-related maculopathy and choroidal hemorrhage. Furthermore, visual recovery would be very rapid, and the risk of infection would be very small, reflecting a reduction in incidence from 2-5% to about 0.05%.
Techniques performed in accordance with embodiments herein may be referred to generally as “trabecular bypass surgery.” Advantages of the present invention include lowering intraocular pressure in a manner which is simple, effective, disease site-specific, and can potentially be performed on an outpatient basis.
In accordance with one embodiment, trabecular bypass surgery (TBS) creates an opening, a slit, or a hole through trabecular meshwork with minor microsurgery. TBS has the advantage of a much lower risk of choroidal hemorrhage and infection than prior techniques, and it uses existing physiologic outflow mechanisms. In some aspects, this surgery can potentially be performed under topical or local anesthesia on an outpatient basis with rapid visual recovery. To prevent “filling in” of the hole, a biocompatible elongated device is placed within the hole and serves as a stent. U.S. Pat. No. 6,638,239, the entire contents of which are incorporated herein by reference, discloses trabecular bypass surgery.
In accordance with one embodiment, a trabecular shunt for transporting aqueous humor is provided. The trabecular shunt includes a hollow, elongate tubular element, having an inlet section and an outlet section. In one embodiment, the outlet section includes two bifurcatable segments or elements, adapted to be positioned and stabilized inside Schlemm's canal. In another embodiment, the outlet section is an axially linear section prior to and during implantation, and becomes two bifurcated segments after implantation.
In one embodiment, the trabecular shunt is placed inside a delivery apparatus. When the trabecular shunt is deployed from the delivery apparatus into the eye, the two bifurcatable elements of the outlet section bifurcate in substantially opposite directions. In one embodiment, a deployment mechanism within the delivery apparatus includes a push-pull type plunger.
In another embodiment, a delivery applicator may be placed inside a lumen of the hollow, elongate tube of the trabecular shunt. The delivery applicator may include a deployment mechanism for causing the two bifurcatable elements of the outlet section to bifurcate. In some embodiments, the delivery applicator may be a guidewire, an expandable basket, an inflatable balloon, or the like.
In accordance with another embodiment, at least one of the two bifurcatable elements is made of a shape-memory material, such as Nitinol or a shape-memory plastic. The shape-memory material has a preshape and a shape-transition temperature, such that the shape-memory trabecular shunt bifurcates to its preshape when it is heated to above the shape-transition temperature. The preshape of the two bifurcatable elements material may be at an angle with respect to the inlet section, preferably between about 70 degrees and about 110 degrees. An external heat source may be provided, which is adapted for heating the shape-memory material to above the shape-transition temperature of the shape-memory material.
In some embodiments, the trabecular shunt may be made of one or more of the following materials: polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polyimide, polysilison, silicone, polyurethane, Nylon™, polypropylene, hydroxyapetite, precious metal, Nitinol, stainless steel, biodegradable materials, and biocompatible materials. Further, the outlet section of the trabecular shunt may be configured as a coil, mesh, spiral, or other appropriate configuration as will be apparent to those of skill in the art. Further, the outlet section of the trabecular shunt may be porous, semi-permeable, fishbone, and/or of a continuous, solid form. The outlet section of the trabecular shunt may have a cross-sectional shape that is elliptical (e.g., oval), round, circular, D-shape, semi-circular, or irregular (asymmetrical) shape.
In one embodiment, at least one of the two bifurcatable elements has a tapered distal end, adapted for insertion ease. The trabecular shunt may have its surface coated with a coating material selected from one or more of the following: polytetrafluoroethylene (e.g., Teflon™), polyimide, hydrogel, heparin, hydrophilic compound, anti-angiogenic factor, anti-proliferative factor, therapeutic drugs, and the like. The surface coating material may also provide a mechanism for site-specific therapies.
In one embodiment, the device of the invention may include a flow-restricting member for restricting at least one component in fluid. The flow-restricting member may be a filter comprising one or more filtration materials selected from the following: expanded polytetrafluoroethylene, cellulose, ceramic, glass, Nylon, plastic, fluorinated material, or the like. The flow-restricting member may advantageously be a filter selected from the following group of filter types: hydrophobic, hydrophilic, membrane, microporous, and non-woven. The flow-restricting member acts to limit or prevent the reflux of any undesired component or contaminant of blood, such as red blood cells or serum protein, from the aqueous veins into the anterior chamber. It is useful to restrict one or more of the following components or contaminants: platelets, red blood cells, white blood cells, viruses, bacteria, antigens, and toxins.
In some embodiments, the trabecular shunt may include a pressure sensor for measuring the pressure of the anterior chamber of an eye of a patient. The pressure sensor may further include an electromagnetic (e.g., radiofrequency) transmitter, for wirelessly transmitting pressure measurements to a pressure receiver outside the patient's body.
Some embodiments relate to an apparatus for measuring intraocular pressure. The apparatus may comprise a compressible chamber sized to be placed in the anterior chamber of an eye. The chamber may be configured to change in at least a first dimension in response to a change in intraocular pressure such that the change in the first dimension is indicative of the change in intraocular pressure. In some embodiments, a second dimension of the compressible chamber remains substantially constant during the change in intraocular pressure.
Some embodiments relate to a method of measuring intraocular pressure, the method comprising measuring a dimension of a compressible chamber located in the anterior chamber of an eye, the chamber configured to change in the dimension in response to a change in intraocular pressure.
Some embodiments relate to a method of monitoring intraocular pressure, the method comprising placing a compressible chamber into the anterior chamber of an eye, the chamber configured to change in at least one dimension in response to a change in intraocular pressure. Some embodiments further comprise measuring the at least one dimension to determine intraocular pressure.
Some embodiments relate to an intraocular pressure sensor comprising a compressible element that is implanted inside an anterior chamber of an eye, wherein at least one external dimension of the element is correlated to compressing pressure reading. The compressible element is anchored to a tissue of the eye, preferably to an iris of the eye, wherein the element is positioned without obstruction of vision.
In one embodiment, the element further comprises an interior enclosure filled with a compressible fluid, wherein the compressible fluid is a gas. In another embodiment, the compressible element comprises a shape of a sphere, an ellipsoid shape, a torus shape or other convenient shape. In still another embodiment, at least a portion of the surface of the compressible element is rendered radiopaque.
Some embodiments relate to an intraocular pressure sensor comprising an implanted compressible element having at least one external dimension and an external measuring means for remotely viewing and measuring the at least one external dimension of the element. In one embodiment, the external measuring means is a slit lamp, an ultrasound imaging apparatus, a laser light apparatus, or the like. In an alternate embodiment, the intraocular pressure sensor comprises an implanted compressible element having at least one external dimension and a measuring means for viewing and measuring the at least one external dimension of the element, wherein the measuring means is implanted or is one component of an implanted stent in an eye.
Some embodiments relate to a method for measuring an intraocular pressure of an eye, comprising: providing a compressible element that is implanted inside an anterior chamber of the eye, wherein at least one external dimension of the element is correlated to compressing pressure reading; implanting the element inside the eye; using an external measuring means for remotely viewing and measuring the at least one external dimension of the element; and calculating the intraocular pressure of the eye by correlating the measured external dimension to the compressing pressure reading.
Some embodiments relate to a method of providing a sensor and an implant in an eye for treatment and monitoring of glaucoma. The method may comprise providing a delivery device, the delivery device comprising at least one implant having an inlet and an outlet section, the inlet section being in fluid communication with the outlet section and configured to conduct fluid from the anterior chamber of an eye to Schlemm's canal. The method may further comprise positioning the at least one implant in the eye such that the inlet section is in the anterior chamber of the eye and the outlet section is in Schlemm's canal and positioning the sensor in the eye to measure the intraocular pressure of the eye.
Some embodiments relate to a trabecular stent system for glaucoma treatment, the stent system comprising: an elongate tubular implant extending between an anterior chamber and Schlemm's canal for transporting fluid from said anterior chamber to said Schlemm's canal of an eye; and an intraocular pressure sensor in association with the implant, said sensor comprising a compressible element, wherein at least one external dimension of the element is correlated to compressing pressure reading.
In another embodiment of the system for treating glaucoma, the system may comprise an implant that is configured such that, in use, the implant conducts fluid from the anterior chamber of an eye to the Schlemm's canal of the eye and a pressure sensor that is configured to be wholly implanted in the eye.
In a further embodiment, the trabecular stent system further comprises a signal transmitter, said transmitter transmitting a sensed signal from said sensor indicative of the sensed pressure to a receiver. In some embodiments, the receiver is located outside of the eye or inside the eye. In some embodiments, the signal comprises a radiofrequency signal.
Some embodiments relate to a system for treating glaucoma, comprising: an intraocular pressure sensor, said sensor comprising a compressible element, wherein at least one external dimension of the element is correlated to compressing pressure reading; an elongate tubular implant for transporting fluid between an anterior chamber and Schlemm's canal; and a delivery applicator, said intraocular pressure sensor and said implant being positioned within said delivery applicator for delivering into the anterior chamber for implantation.
Among the advantages of trabecular bypass surgery in accordance with the invention is its simplicity. The microsurgery may potentially be performed on an outpatient basis with rapid visual recovery and greatly decreased morbidity. There is a lower risk of infection and choroidal hemorrhage, and there is a faster recovery, than with previous techniques.
Further features and advantages of the present invention will become apparent to one of skill in the art in view of the Detailed Description that follows, when considered together with the attached drawings and claims.
The anterior chamber 20 of the eye 10, which is bound anteriorly by the cornea 12 and posteriorly by the iris 13 and lens 26, is filled with aqueous. Aqueous is produced primarily by the ciliary body 16, then moves anteriorly through the pupil 14 and reaches the anterior chamber angle 25, formed between the iris 13 and the cornea 12. In a normal eye, the aqueous is removed from the anterior chamber 20 through the trabecular meshwork 21. Aqueous passes through trabecular meshwork 21 into Schlemm's canal 22 and thereafter through the aqueous veins 23, which merge with blood-carrying veins and into systemic venous circulation. Intraocular pressure is maintained by the intricate balance between secretion and outflow of the aqueous in the manner described above. Glaucoma is, in most cases, characterized by the excessive buildup of aqueous in the anterior chamber 20, which leads to an increase in intraocular pressure. Fluids are relatively incompressible, and pressure is directed relatively equally throughout the eye.
As shown in
In one embodiment, a method of placing a trabecular shunt into an opening through trabecular meshwork, the method comprises advancing and positioning a trabecular shunt having two distal bifurcatable elements through the opening. In a further embodiment, a method of placing a trabecular shunt into an opening through diseased trabecular meshwork for transporting aqueous humor at the level of the trabecular meshwork and using an existing outflow pathway, the method comprises advancing and positioning a trabecular shunt having a pressure sensor for measuring the pressure of the anterior chamber of the eye through the opening. In one embodiment, the method may further comprise transmitting the measured pressure to a pressure receiver outside the body of the patient.
Abita et al. in U.S. Pat. No. 6,579,235, the entire contents of which are incorporated herein by reference, disclose a device and methods for measuring intraocular pressure of a patient including a sensor and an instrument external to the patient to determine the intraocular pressure.
Wolfgang et al. in U.S. Patent Application publication 2004/0116794, the entire contents of which are incorporated herein by reference, disclose a wireless intraocular pressure sensor device for detecting excessive intraocular pressure above a predetermined threshold pressure.
In a co-pending application Ser. No. 10/636,797 filed Aug. 7, 2003, entitled “Implantable Ocular Pump to Reduce Intraocular Pressure,” the entire contents of which are incorporated herein by reference, an implant and a pressure sensor feedback system for regulating intraocular pressure of an eye is disclosed.
Montegrande et al. in U.S. Patent Application publication 2003/0225318, the entire contents of which are incorporated herein by reference, disclose an intraocular pressure sensor for sensing pressure within an eye and for generating a sensor signal representative of the pressure.
Jeffries et al., U.S. Patent Application publication 2003/0078487, the entire contents of which are incorporated herein by reference, disclose an intraocular pressure measuring system that includes a pressure sensor and an external device that wirelessly communicates with the pressure sensor.
The trabecular shunt transports aqueous at the level of the trabecular meshwork and partially uses existing the outflow pathway for aqueous, i.e., utilizing the entire outflow pathway except for the trabecular meshwork, which is bypassed by the trabecular shunt 31. In this manner, aqueous is transported into Schlemm's canal and subsequently into the aqueous collectors and the aqueous veins so that the intraocular pressure is properly maintained within a therapeutic range.
In one embodiment, the trabecular shunt 31 comprises a hollow, elongated tubular element having an inlet section 32 and an outlet section 33, wherein the outlet section 33 may comprise two bifurcatable elements 34, 35 that are adapted to be bifurcated, positioned, and stabilized inside Schlemm's canal. The hollow elongated tubular element may comprise at least one lumen 36 for transporting aqueous from the anterior chamber 20 of an eye to the Schlemm's canal 22. A “bifurcatable” segment is defined in the present invention as a segment, or components thereof, that can change direction away or evert from a reference axis. The “bifurcating” operation may be achieved by mechanical forces and/or through the shape-memory property of a material.
For stabilization purposes, the outer surface of the outlet section 33 may comprise a stubbed surface, ribbed surface, a surface with pillars, textured surface, or the like. The outer surface of the trabecular shunt 31 is biocompatible and tissue-compatible so that the interaction between the outer surface of the shunt and the surrounding tissue of Schlemm's canal is minimal, and inflammation is reduced.
In another embodiment, the trabecular shunt 31 may comprise a flow-restricting element for restricting at least one component in fluid, wherein the flow-restricting element may be a filter selected from a group of filtration materials comprising expanded polytetrafluoroethylene, cellulose, ceramic, glass, Nylon, plastic, and fluorinated material. Furthermore, the flow-restricting element may be a filter selected from a group of filter types comprising a hydrophobic filter, hydrophilic filter, membrane filter, microporous filter, non-woven filter, and the like. In accordance with the present invention, components in blood that may be restricted by the flow-restricting element can include the following: platelet, red blood cell, white blood cell, virus, antigen, serum protein, and toxin. The flow-restricting element may also be in the form of, for example, a check valve, a slit valve, a micropump, a semi-permeable membrane, and the like. The purpose of the flow-restricting element is to keep an undesired foreign material from back flowing into the anterior chamber.
U.S. Pat. No. 6,077,298 and U.S. patent application Ser. No. 09/452,963, filed Dec. 2, 1999, the entire contents of which are incorporated herein by reference, disclose a medical device made of shape-memory Nitinol having a shape-transition temperature. The shape-memory material may be used in the construction of a trabecular shunt 31. In one embodiment, a trabecular shunt comprises a hollow elongated tubular element having an inlet section and an outlet section, wherein the outlet section comprises two bifurcatable elements adapted to be positioned and stabilized inside Schlemm's canal. At least one of the two bifurcatable elements may be made of a shape-memory material such as shape-memory Nitinol or shape-memory plastic material. In a preferred embodiment, the shape-memory Nitinol has a preshape and a shape-transition temperature, wherein the shape-memory Nitinol bifurcates to its preshape when the shape-memory Nitinol is heated to above the shape-transition temperature, the preshape of the shape-memory Nitinol being at an angle with respect to the inlet section.
The shape-transition temperature for the shape-memory Nitinol is preferably between about 39° C. and about 90° C. The shape-transition temperature is more preferred between about 39° C. and 45° C. so as to minimize tissue damage. The angle between the inlet section and the outlet section is preferably between about 70 degrees and about 110 degrees so as to conform to the counter of Schlemm's canal. An external heat source may be provided and adapted for heating the shape-memory Nitinol to above the shape-transition temperature of the shape-memory Nitinol. Examples of such external heat sources include a heating pad, a warm cloth, a bag of warm water, remotely deliverable heat, electromagnetic field, and the like. In another embodiment, the shape-memory Nitinol may be embedded within a biocompatible material selected from, for example, silicone, polyurethane, porous material, expanded polytetrafluoroethylene, semi-permeable membrane, elastomer, and mixture of the biocompatible material thereof. In general, the bifurcatable elements are relatively flexible and soft so that they do not impart undesired force or pressure onto the surrounding tissue during and after the deployment state.
For illustration purposes, a fishbone type outlet section is shown to render the bifurcatable elements flexible and soft during the deployment state.
The trabecular shunt of the present invention may have a length between about 0.5 mm to over a few millimeters. The outside diameter of the trabecular shunt may range from about 30 μm to about 500 μm or more. The lumen diameter is preferably in the range of about 20 μm to about 150 μm, or larger. The trabecular shunt may have a plurality of lumens to facilitate multiple-channel flow. The outlet section may be curved or angled at an angle between about 30 degrees to about 150 degrees, and preferably at about 70 degrees to about 110 degrees, with reference to the inlet section 32.
In one embodiment, means for forming a hole/opening in the trabecular meshwork 21 may comprise using a microknife, a pointed guidewire, a sharpened applicator, a screw shaped applicator, an irrigating applicator, or a barbed applicator. Alternatively, the trabecular meshwork may be dissected off with an instrument similar to a retinal pick or microcurrette. The opening may alternately be created by retrograde fiberoptic laser ablation.
In a preferred embodiment of the trabecular meshwork surgery, the patient is placed in the supine position, prepped, draped and anesthesia obtained. In one embodiment, a small (generally less than 1-mm) self-sealing incision is made. Through the cornea opposite the shunt placement site, an incision is made in the trabecular meshwork with an irrigating knife. The shunt is then advanced through the corneal incision across the anterior chamber held in a delivery apparatus or delivery applicator under gonioscopic (lens) or endoscopic guidance. The apparatus or applicator is withdrawn from the patient and the surgery is concluded. The delivery apparatus or applicator may be within a size range of 20 to 40 gauge, and preferably about 30 gauge.
In a further alternate embodiment, a method for increasing aqueous humor outflow in an eye of a patient to reduce intraocular pressure therein may comprise the following: (a) creating an opening in trabecular meshwork; (b) inserting a trabecular shunt into the opening, wherein the trabecular shunt comprises a hollow elongated tubular element having an inlet section and an outlet section, and wherein the outlet section comprises two bifurcatable elements adapted to be positioned and stabilized inside Schlemm's canal; and (c) bifurcating the two bifurcatable elements to substantially two opposite directions.
The method may further comprise placing the trabecular shunt inside a delivery apparatus during a delivery state, wherein the two bifurcatable elements are self-bifurcatable in two substantially opposite directions when the trabecular shunt is deployed from the delivery apparatus. The method may further comprise placing a delivery applicator inside a lumen of a hollow elongated tubular element, wherein the delivery applicator comprises a deployment mechanism for causing the two bifurcatable elements to move in two substantially opposite directions.
The method may further comprise measuring and transmitting pressure of the anterior chamber of an eye, wherein the trabecular shunt comprises a pressure sensor for measuring and transmitting pressure. The means for measuring and transmitting pressure of an anterior chamber of an eye to an external receiver may be incorporated within a device that is placed inside the anterior chamber for sensing and transmitting the intraocular pressure. Any suitable micro pressure sensor or pressure sensor chip known to those of skill in the art may be utilized.
As shown in
The IOP sensor element can comprise a biocompatible material, such as a medical grade silicone, for example, the material sold under the trademark Silastic™, which is available from Dow Corning Corporation of Midland, Mich., or polyurethane, which is sold under the trademark Pellethane™, which is also available from Dow Corning Corporation. In an alternate embodiment, at least a portion of the sensor element can comprise other biocompatible materials (biomaterials), such as polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, tetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, mixture of biocompatible materials, and the like. In a further alternate embodiment, a composite biocompatible material by surface coating the above-mentioned biomaterial can be used, wherein the coating material may be selected from a group consisting of polytetrafluoroethylene (PTFE), polyimide, hydrogel, heparin, therapeutic drugs, and the like.
Some embodiments relate to an intraocular pressure sensor comprising a compressible element that is implanted inside an anterior chamber of an eye, wherein at least one external dimension of the element is correlated to a compressing pressure reading, and an external measuring means for remotely viewing and measuring the at least one external dimension of the element. Some embodiments provide a pressure sensor element 71 in response to a remote sensing and measuring instrument for measuring the IOP indirectly. In this embodiment, the sensor element does not need supplemental energy or electromechanical means for powering the sensor element. It is thus a passive IOP sensing device.
In one preferred embodiment, the IOP pressure sensor element 71 comprises an enclosure with compressible fluid (for example, a gas) entrapped within the enclosure. The sensor element 71 has a length D2, a width D1 and a depth D3 as shown in
In one embodiment, the edge portion 73 along the width D1 is more pressure-sensitive than the central portion 72 along the width D1 enabling viewing the total width as a function of compressing pressure by a physician. In this embodiment, a greater pressure in the eye would result in a change of length in the width D1 along the edge portion 73 of the sensor 71 than the change of the central portion 72. In some embodiments, the construction material at the edge portion can be different from that at the central portion. In another embodiment, the thickness at the edge portion 73 can be different from that at the central portion 72. In a further embodiment, the shape and size of the passive IOP sensor element 71 is suitably configured to yield the precalibrated correlation of the dimensions of the sensor 71 as a function of the compressing pressure (designated as P). Some embodiments relate to an IOP sensor element comprising a compressible enclosure, wherein compressible gas is enclosed within the enclosure, and wherein a dimension of the enclosure is correlated with a compressing pressure.
A compressible element of the ellipsoid shape has a major diameter D1 and a minor diameter D3 (similar to the one shown in
In a preferred embodiment, the IOP pressure sensor is substantially a sphere in shape, rather than being elliptical. In this spheroid embodiment (not shown), the dimensions D1, D2, and D3 are substantially equal. This embodiment has the advantage of compressing substantially equally in all or nearly all dimensions in response to an increase in intraocular pressure, so one may perhaps easily measure a diameter in order to obtain a reading that correlates with IOP.
In the case of a compressible tubular wheel (such as a torus) as shown in
In one embodiment, the passive IOP sensor element is a sphere, a spherical ball, an ellipsoid ball, a torus type spherical tube or other dimensional element, preferably a nearly perfect sphere, whose sphere diameter changes in all directions uniformly with a change in external pressure. In a further embodiment, the sphere could be situated and viewed from any angle. The sphere could float in the eye, on a tether perhaps, and still be accurately sensed without elaborate positioning requirements. The spheres or element 71, 75 are biocompatible and suitable for implantation in an eye.
In one embodiment, at least a part of the surface of the enclosure is rendered radiopaque for X-ray visualization. In another embodiment, at least a part of the surface of the enclosure is colored or coated with a visualizable material for external signal viewing. The external means for remotely viewing and measuring the at least one external dimension of the element can be a slit lamp, an ultrasound imaging apparatus, a laser light apparatus, the X-ray imaging apparatus or the like. The enclosure with enclosed gas is also visible by ultrasound.
Some aspects of the invention relate to a trabecular stent system 83 for glaucoma treatment, the stent system may comprise an elongate tubular implant that is configured to extend between an anterior chamber and Schlemm's canal for transporting fluid from said anterior chamber to said Schlemm's canal of an eye. The system may also comprise an intraocular pressure sensor in association with the implant, and the sensor may comprise a compressible element that has at least one external dimension that is correlated to compressing pressure reading (as shown in a relationship figure in the block 86). The trabecular stent system may further comprise a signal transmitter (such as a radiofrequency transmitter 74), and the transmitter may transmit a sensed signal 84 from the sensor indicative of the sensed pressure to a receiver 85. The receiver may be located either outside of the eye or inside the eye.
In a co-pending application Ser. No. 10/910,962, filed Aug. 4, 2004, entitled “Implantable Ocular Pump to Reduce Intraocular Pressure,” the entire contents of which are incorporated herein by reference, disclosed are energy sources for powering a micropump on a trabecular stent. In a co-pending application Ser. No. 10/636,797, filed Aug. 7, 2003, entitled “Implantable Ocular Pump to Reduce Intraocular Pressure,” the entire contents of which are incorporated herein by reference, disclosed is conversion of mechanical stress, such as a group comprising blink pressure pulses, ocular pressure pulses, body motion, head motions, and eye motions, to piezoelectricity.
Some embodiments relate to a method for measuring an intraocular pressure of an eye that may comprise the following: (a) provide a compressible element that is implanted inside an anterior chamber of the eye, wherein at least one external dimension of the element is correlated to compressing pressure reading; (b) implanting the element inside the eye; (c) using an external measuring means for remotely viewing and measuring the at least one external dimension of the element; and (d) calculating the intraocular pressure of the eye by correlating the measured external dimension to the compressing pressure reading.
From the foregoing description, it should be appreciated that a novel approach for the surgical treatment of glaucoma has been disclosed for reducing IOP and sensing and measuring IOP from outside of the eye has been disclosed for measuring intraocular pressure. While the invention has been described with reference to specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications of the invention may occur to those who are skilled in the art, without departing from the true spirit or scope of the invention. The breadth and scope of the invention should be defined only in accordance with the appended claims and their equivalents.
The present application is a divisional application of U.S. patent application Ser. No. 10/950,175, filed Sep. 24, 2004, now U.S. Pat. No. 7,678,065 B2, entitled “Implant with Intraocular Pressure Sensor for Glaucoma Treatment,” which is a continuation-in-part application of U.S. patent application Ser. No. 10/626,181, filed Jul. 24, 2003, entitled “Implant with Pressure Sensor for Glaucoma Treatment,” now U.S. Pat. No. 6,981,958, which is a continuation application of U.S. patent application Ser. No. 09/847,523, filed May 2, 2001, entitled “Bifurcatable Trabecular Shunt for Glaucoma Treatment,” now U.S. Pat. No. 6,666,841. The parent U.S. patent application Ser. No. 10/950,175, filed Sep. 24, 2004 also claims benefit from U.S. Provisional Application No. 60/505,680 filed Sep. 24, 2003, entitled “Intraocular Pressure Sensor.” The present application claims priority to each of these applications and the entireties of each of these priority applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2031754 | Bacigalupi | Feb 1936 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
4037604 | Newkirk | Jul 1977 | A |
4113088 | Binkhorst | Sep 1978 | A |
4168697 | Cantekin | Sep 1979 | A |
4175563 | Arenberg et al. | Nov 1979 | A |
4366582 | Faulkner | Jan 1983 | A |
4402681 | Haas et al. | Sep 1983 | A |
4428746 | Mendez | Jan 1984 | A |
4468216 | Muto | Aug 1984 | A |
4501274 | Skjaerpe | Feb 1985 | A |
4521210 | Wong | Jun 1985 | A |
4554918 | White | Nov 1985 | A |
4560383 | Leiske | Dec 1985 | A |
4583224 | Ishii et al. | Apr 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4632842 | Karwoski et al. | Dec 1986 | A |
4634418 | Binder | Jan 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722724 | Schocket | Feb 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Moltena | Jun 1988 | A |
4787885 | Binder | Nov 1988 | A |
4804382 | Turina et al. | Feb 1989 | A |
4820626 | Williams et al. | Apr 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4846793 | Leonard et al. | Jul 1989 | A |
4853224 | Wong | Aug 1989 | A |
4863457 | Lee | Sep 1989 | A |
4870953 | DonMicheal et al. | Oct 1989 | A |
4883864 | Scholz | Nov 1989 | A |
4886488 | White | Dec 1989 | A |
4900300 | Lee | Feb 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4997652 | Wong | Mar 1991 | A |
5005577 | Frenekl | Apr 1991 | A |
5041081 | Odrich | Aug 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5095887 | Leon et al. | Mar 1992 | A |
5098443 | Parel et al. | Mar 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5129895 | Vassiliadis et al. | Jul 1992 | A |
5164188 | Wong | Nov 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5207685 | Cinberg et al. | May 1993 | A |
5246451 | Trescony et al. | Sep 1993 | A |
5248231 | Denham et al. | Sep 1993 | A |
5290295 | Querals et al. | Mar 1994 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5318513 | Leib et al. | Jun 1994 | A |
5334137 | Freeman | Aug 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5346464 | Camras | Sep 1994 | A |
5360399 | Stegmann | Nov 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5370641 | O'Donnell, Jr. | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5443505 | Wong et al. | Aug 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5472440 | Beckman | Dec 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5486165 | Stegmann | Jan 1996 | A |
5502052 | DeSantis | Mar 1996 | A |
5516522 | Peyman et al. | May 1996 | A |
5520631 | Nordquist et al. | May 1996 | A |
5547993 | Miki | Aug 1996 | A |
5557453 | Schalz et al. | Sep 1996 | A |
5558629 | Baerveldt et al. | Sep 1996 | A |
5558630 | Fisher | Sep 1996 | A |
5558637 | Allonen et al. | Sep 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
RE35390 | Smith | Dec 1996 | E |
5599534 | Himmelstein et al. | Feb 1997 | A |
5601094 | Reiss | Feb 1997 | A |
5601549 | Miyagi | Feb 1997 | A |
5626558 | Suson | May 1997 | A |
5626559 | Solomon | May 1997 | A |
5629008 | Lee | May 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5643321 | McDevitt | Jul 1997 | A |
5651783 | Reynard | Jul 1997 | A |
5652014 | Galin et al. | Jul 1997 | A |
5652236 | Krauss | Jul 1997 | A |
5663205 | Ogawa et al. | Sep 1997 | A |
5665114 | Weadock et al. | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5676679 | Simon et al. | Oct 1997 | A |
5681275 | Ahmed | Oct 1997 | A |
5681323 | Arick | Oct 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5702419 | Berry et al. | Dec 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5723005 | Herrick | Mar 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5741333 | Frid | Apr 1998 | A |
5743868 | Brown et al. | Apr 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5766242 | Wong et al. | Jun 1998 | A |
5766243 | Christensen et al. | Jun 1998 | A |
5767079 | Glaser et al. | Jun 1998 | A |
5785674 | Mateen | Jul 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5810870 | Myers et al. | Sep 1998 | A |
5814620 | Robinson et al. | Sep 1998 | A |
5824072 | Wong | Oct 1998 | A |
5830139 | Abrue | Nov 1998 | A |
5830171 | Wallace | Nov 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836939 | Negus et al. | Nov 1998 | A |
5840041 | Petter et al. | Nov 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Ritcher et al. | Feb 1999 | A |
5869468 | Freeman | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5882327 | Jacob | Mar 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5891084 | Lee | Apr 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5908449 | Bruchman et al. | Jun 1999 | A |
5925342 | Adorante et al. | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5952378 | Stjernschantz et al. | Sep 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5981598 | Tatton | Nov 1999 | A |
5984913 | Kritzinger et al. | Nov 1999 | A |
6004302 | Brierley | Dec 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6033418 | Gordon et al. | Mar 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6045557 | White et al. | Apr 2000 | A |
6050970 | Baeverldt | Apr 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6059772 | Hsia et al. | May 2000 | A |
6059812 | Clerc et al. | May 2000 | A |
6060463 | Freeman | May 2000 | A |
6063116 | Kelleher | May 2000 | A |
6063396 | Kelleher | May 2000 | A |
6071286 | Mawad | Jun 2000 | A |
6077299 | Adelberg et al. | Jun 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6110912 | Kaufman et al. | Aug 2000 | A |
6123668 | Abreu | Sep 2000 | A |
6142990 | Burk | Nov 2000 | A |
6159458 | Bowman et al. | Dec 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6168575 | Soltanpour | Jan 2001 | B1 |
6174305 | Mikus et al. | Jan 2001 | B1 |
6177427 | Clark et al. | Jan 2001 | B1 |
6184250 | Klimko et al. | Feb 2001 | B1 |
6186974 | Allan et al. | Feb 2001 | B1 |
6187016 | Hedges et al. | Feb 2001 | B1 |
6193656 | Jeffries et al. | Feb 2001 | B1 |
6194415 | Wheeler et al. | Feb 2001 | B1 |
6197056 | Schachar | Mar 2001 | B1 |
6201001 | Wang et al. | Mar 2001 | B1 |
6203513 | Yaron et al. | Mar 2001 | B1 |
6217895 | Guo et al. | Apr 2001 | B1 |
6228873 | Brandt et al. | May 2001 | B1 |
6231597 | Deem et al. | May 2001 | B1 |
6231853 | Hillman et al. | May 2001 | B1 |
6241721 | Cozean et al. | Jun 2001 | B1 |
6251090 | Avery et al. | Jun 2001 | B1 |
6254612 | Hieshima | Jul 2001 | B1 |
6261256 | Ahmed | Jul 2001 | B1 |
6266182 | Morita | Jul 2001 | B1 |
6268398 | Ghosh et al. | Jul 2001 | B1 |
6274138 | Bandman et al. | Aug 2001 | B1 |
6287256 | Park et al. | Sep 2001 | B1 |
6287313 | Sasso | Sep 2001 | B1 |
6299895 | Hammang et al. | Oct 2001 | B1 |
6306120 | Tan | Oct 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6342058 | Portney | Jan 2002 | B1 |
6348042 | Warren, Jr. | Feb 2002 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6378526 | Bowman et al. | Apr 2002 | B1 |
6413540 | Yaacobi | Jul 2002 | B1 |
6416777 | Yaacobi | Jul 2002 | B1 |
6423001 | Abreu | Jul 2002 | B1 |
6428501 | Reynard | Aug 2002 | B1 |
6436427 | Hammang et al. | Aug 2002 | B1 |
6443893 | Schnakenberg et al. | Sep 2002 | B1 |
6450937 | Mercereau et al. | Sep 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6517483 | Park et al. | Feb 2003 | B2 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6530896 | Elliott | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544249 | Yu et al. | Apr 2003 | B1 |
6548078 | Guo et al. | Apr 2003 | B2 |
6558342 | Yaron et al. | May 2003 | B1 |
6579235 | Abita et al. | Jun 2003 | B1 |
6582453 | Tran et al. | Jun 2003 | B1 |
6585680 | Bugge | Jul 2003 | B2 |
6589203 | Mitrev | Jul 2003 | B1 |
6595945 | Brown | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6629981 | Bui et al. | Oct 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6696415 | Gendron et al. | Feb 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6712764 | Jeffries et al. | Mar 2004 | B2 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6780165 | Kadziauskas et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6796942 | Kreiner et al. | Sep 2004 | B1 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6890300 | Lloyd et al. | May 2005 | B2 |
6926670 | Rich et al. | Aug 2005 | B2 |
6939299 | Petersen et al. | Sep 2005 | B1 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6981958 | Gharib et al. | Jan 2006 | B1 |
7033603 | Nelson et al. | Apr 2006 | B2 |
7041077 | Shields | May 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7131945 | Fink et al. | Nov 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7252006 | Tai et al. | Aug 2007 | B2 |
7291125 | Coroneo | Nov 2007 | B2 |
7662123 | Shields | Feb 2010 | B2 |
7708711 | Tu et al. | May 2010 | B2 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020026200 | Savage | Feb 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020099434 | Buscemi et al. | Jul 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020188308 | Tu et al. | Dec 2002 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030069637 | Lynch et al. | Apr 2003 | A1 |
20030088260 | Smedley et al. | May 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030187385 | Bergheim et al. | Oct 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040050392 | Tu et al. | Mar 2004 | A1 |
20040092548 | Embleton et al. | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040225250 | Yablonski | Nov 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040254521 | Simon | Dec 2004 | A1 |
20050038334 | Lynch et al. | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050159660 | Montegrande et al. | Jul 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20070032734 | Najafi et al. | Feb 2007 | A1 |
20070112263 | Fink et al. | May 2007 | A1 |
20070123767 | Montegrande et al. | May 2007 | A1 |
20070129623 | Fleischman et al. | Jun 2007 | A1 |
20070191863 | De Juan, Jr. et al. | Aug 2007 | A1 |
20070202186 | Yamamoto et al. | Aug 2007 | A1 |
20070233037 | Gifford, III et al. | Oct 2007 | A1 |
20080027304 | Pardo et al. | Jan 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080183121 | Smedley et al. | Jul 2008 | A2 |
20080234624 | Bergheim et al. | Sep 2008 | A2 |
20080306429 | Shields et al. | Dec 2008 | A1 |
20090036819 | Tu et al. | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090069648 | Irazoqui et al. | Mar 2009 | A1 |
20090275924 | Lattanzio et al. | Nov 2009 | A1 |
20100056979 | Smedley et al. | Mar 2010 | A1 |
20100092536 | Hunter et al. | Apr 2010 | A1 |
20100145180 | Abreu | Jun 2010 | A1 |
20100152565 | Thomas et al. | Jun 2010 | A1 |
20100161004 | Najafi et al. | Jun 2010 | A1 |
20100173866 | Hee et al. | Jul 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20100274259 | Yaron et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
200072059 | Jul 2001 | AU |
2244646 | Feb 1999 | CA |
198 40 047 | Mar 2000 | DE |
0 858 788 | Aug 1998 | EP |
0 898 947 | Mar 1999 | EP |
1 114 627 | Jul 2001 | EP |
2 710 269 | Mar 1995 | FR |
2 721 499 | Dec 1995 | FR |
2 296 663 | Jul 1996 | GB |
11-123205 | May 1999 | JP |
WO 8900869 | Feb 1989 | WO |
WO 9118568 | Dec 1991 | WO |
WO 9219294 | Nov 1992 | WO |
WO 9413234 | Jun 1994 | WO |
WO 9421205 | Sep 1994 | WO |
WO 9508310 | Mar 1995 | WO |
WO 9620742 | Jul 1996 | WO |
WO 9830181 | Jul 1998 | WO |
WO 9835639 | Aug 1998 | WO |
WO 9926567 | Jun 1999 | WO |
WO 9930641 | Jun 1999 | WO |
WO 9938470 | Aug 1999 | WO |
WO 9938470 | Aug 1999 | WO |
WO 0013627 | Mar 2000 | WO |
WO 0064389 | Nov 2000 | WO |
WO 0064390 | Nov 2000 | WO |
WO 0064391 | Nov 2000 | WO |
WO 0064393 | Nov 2000 | WO |
WO 0072788 | Dec 2000 | WO |
WO 0150943 | Jul 2001 | WO |
WO 0178631 | Oct 2001 | WO |
WO 0178656 | Oct 2001 | WO |
WO 02074052 | Sep 2002 | WO |
WO 03015659 | Feb 2003 | WO |
WO 03073968 | Sep 2003 | WO |
WO 2009012406 | Jan 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100106073 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
60505680 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10950175 | Sep 2004 | US |
Child | 12651929 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09847523 | May 2001 | US |
Child | 10626181 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10626181 | Jul 2003 | US |
Child | 10950175 | US |