This invention relates to the navigation of medical devices in the presence of radiopaque materials, and in particular to a method of navigating a medical device for the delivery of radiopaque materials.
The navigation of the distal end of a medical device through the body, whether by conventional mechanical means or magnetic means, is usually facilitated by x-ray imaging of the operating region. However, when there is radiopaque material in the operating region, it is often difficult to discern the distal end of the medical device. This occurs, for example when the medical device is delivering a radiopaque material, such as a radiopaque embolic material, or a radiopaque embolization coil. The presence of these materials in the medical device or in the operating region can make it difficult for the physician to “see” the distal end of the medical device on x-ray images, and thus make it difficult to quickly and accurately navigate the distal end of the medical device.
Broadly, the method of this invention relates the to navigation of medical devices in a subject's body. The method broadly comprises displaying an x-ray image of the operating region, including the distal end of the medical device; determining the location of the distal end of the medical device in a reference frame translatable to the displayed x-ray image; and displaying an enhanced indication of the distal end of the medical device on the x-ray image to facilitate the navigation of the distal end of the device in the operating region. The method of this invention allows a physician to more accurately track the position of the distal end of the medical device during navigation, this facilitates navigation, and particularly the accurate delivery of radiopaque materials in a subject's body.
a is a radiograph of an aneurysm phantom and catheter after radiopaque coils have been released into the aneurysm body;
b is a radiograph show in
The present invention relates to a method of navigating the distal end of a medical device through an operating region in a subject's body. Broadly, this method comprises displaying an x-ray or other image of the operating region, including the distal end of the medical device, for example as shown in
This method can be used with any type of medical device, such as a catheter, endoscope, guide wire, sampling (e.g. biopsy) device, drug or device delivery catheter, sensing device, or pacing device, etc. The method can be employed with conventional navigation, i.e. devices with preformed tips for manipulation in the body, or devices with pull or push wires for directing the distal tip of the medical device. The method can also be employed with non-conventional navigation modes such as magnetic navigation, (e.g. the application of an external magnetic field to orient the distal tip) or the use of magnetostrictive or electrostrictive devices to direct the distal tip of the medical device.
While described herein in terms of x-ray imaging and interference from radio opaque materials, this invention also applies to other imaging modalities where there is material present which interferes with the accurate imaging and display of the distal end of the medical device. In such cases, the distal tip can still be localized, and the position indicated independent of the local interference.
As shown schematically in
The step of determining the location of the distal end of the medical device can be accomplished in a number of ways, including transmitting signals between at least one reference location and the distal end of the medical device, and more preferably a plurality of reference locations and the distal end of the medical device.
The distal end of the medical device is preferably provided with a receiver having lead wires that extend to the proximal end of the device, where they are connected to the processor that can process the signals received from transmitters at the reference locations can determine the location of the distal tip in the frame of reference of the reference locations. The position of the distal tip can then be transferred to the frame of reference of the imaging system, and an indication of the location of the tip can displayed on x-ray image. This indication can be a highlighted outline of the distal end, a ring or circle to represent the end, an arrow, or some other indication that gives the user a more accurate view of the current position of the distal tip. For example, the contrast on the X-ray image can change from white to black to make the tip of the catheter blink to indicate its position. A positive indication of the tip position is particularly helpful when the medical device contains radiopaque material for delivering into the body. The radiopaque material can obscure the distal end of the device on x-ray images, impairing navigation.
Examples of a conventional catheter and a magnetically navigable catheter adapted for this method are shown in
In addition to being used in magnetic localization, the coil(s) 110 can also be used to change the magnetic moment of the distal end of the device to facilitate magnetic navigation of the distal end of the device in a magnetic field applied by an external magnet system, as disclosed in Garibaldi et al., U.S. Pat. No. 6,401,723, issued Jun. 11, 2002, incorporated herein by reference.
As shown in
In addition to being used in magnetic localization, the coil(s) 132 can also be used to change the magnetic moment of the distal end of the device to facilitate magnetic navigation of the distal end of the device in a magnetic field applied by an external magnet system, as disclosed in Garibaldi et al., U.S. Pat. No. 6,401,723, issued Jun. 11, 2002, incorporated herein by reference.
The coil(s) 110 in the catheter 100, and the coil(s) 132 in the catheter 120, and can act as receivers from signals transmitted from transmitters at fixed reference points, or as transmitters of signals to receivers at the fixed reference points.
In a preferred embodiment of the invention, low frequency magnetic fields are generated in a plurality of coils placed around the patient, as originally proposed by Van Steenwyk, et al in U.S. Pat. No. 4,173,228, and further developed by Acker, et al in U.S. Pat. No. 5,558,091 and others (the disclosures of which are incorporated by reference). The coils are capable of generating magnetic fields of about 1 Gauss or 10−4 Tesla at the location of the catheter tip, and are typically operated at a plurality of frequencies in the one to ten kilo-Hertz range. Sensing of the a.c. magnetic field is simply a matter of measuring the voltage induced by the changing applied magnetic field in a small coil near the catheter distal tip. Signals from the individual external coils occur at distinct frequencies and/or at distinct times, and mathematical triangulation-type algorithms are then used to locate the tip relative to the frame of reference of the external coil set. Measured voltages on the order of one milli-Volt are adequate to locate the tip to within a fraction of one millimeter. The voltage induced in the sense coil is given by:
V=−∂Φ/∂t=−NA∂B/∂t=−2πfBNA (1)
where
The receive coil(s) at the tip of the catheter contains a total length of wire equal to the average circumference of the coil times the number of turns, and is equal to nine feet in the preferred embodiment above. If AWG #55 copper wire is used to wind this coil, the resistance will be about 300 Ohms. Gold is much more biocompatible than copper, and is preferred. A gold coil will have a resistance of about 420 Ohms in the preferred embodiment. While the higher resistance will generate more thermal noise for a given input signal, the noise scales as the square root of the resistance and is only about 20% higher for gold than for copper. Gold has another very important advantage over copper. The gold coil is radiopaque, and will mark the position of the coil when X-ray guidance is employed. Without this feature, a gold or platinum marker would be required at the catheter tip, which would further lengthen the stiff part of the tip. The combination radiopaque and location sensing coil enables a visual check on the accuracy of the electromagnetic localization when the coil is visible under fluoroscopy, because an accurate electromagnetic location mark should fall on top of the radiopaque tip when displayed on the X-ray monitor. Conventional guidance using X-ray fluoroscopy can be employed until the tip becomes obscured by other radiopaque materials, after which electromagnetic localization can be employed. In short, there are advantages to having a bi-modal localization capability in the tip coil. While platinum is a more conventional radiopaque marker material, a platinum coil in the preferred embodiment would have a resistance of about 1,900 Ohms, and would generate about 250% more thermal noise than the copper coil for a given input signal. Thus, a gold coil is preferred material.
Of course, the distal end of the medical device could be provided with a transmitter, that transmits to receivers at the reference locations, or multiple transmitters or multiple receivers can be provided on the medical device.
In the case of a radio opaque transmitter or receiver on the medical device, the enhanced indication of the distal tip may be an indication of the location of this coil, thus the user “sees” the coil on images, and where there is interference the method of the invention provides an enhanced display of the location of the coil, so the user has the same reference point, regardless of whether the coil can actually be seen in the image.
Other methods of localizing the distal end of the medical device can be used, such as ultrasound or electric-potential.
The step of determining the location of the distal end of the medical device can also be accomplished by displacing the distal end of the device slightly, and through processing the images before and after the displacement determining the position of the distal end of the medical device. This allows the position of the distal end to be determined in the frame of reference of the x-ray image, so that the position of the distal tip of the medical device can be readily indicated on the display. In the case of a conventionally navigated medical device, the displacement can be by rotating the proximal end, by advancing an/or retracting the proximal end, or by manipulating the tip with push wires or pull wires. In the case of non-conventionally navigated device, the distal tip can be displaced by operating an electrostrictive or magnetostrictive element.
Examples of a conventional catheter and a magnetically navigable catheter adapted for this method are shown in
In addition to being used in displacing the distal end of the catheter 140, the coil(s) 150 can also be used to change the magnetic moment of the distal end of the device to facilitate magnetic navigation of the distal end of the device in a magnetic field applied by an external magnet system, as disclosed in Garibaldi et al., U.S. Pat. No. 6,401,723, issued Jun. 11, 2002, incorporated herein by reference.
As shown in
The coil 172 is preferably made of a radio opaque material (or with other imaging modalities a material that is imaged by such imaging modality so that the distal tip is viewable in the displayed image without the need for a separate marker. Gold and Platinum and alloys of gold or platinum are suitable for this purpose. Alternatively, a radio opaque (or other imagable) marker is provided.
In addition to being used in displacing the distal end of the catheter 160, the coil(s) 172 can also be used to change the magnetic moment of the distal end of the device to facilitate magnetic navigation of the distal end of the device in a magnetic field applied by an external magnet system, as disclosed in Garibaldi et al., U.S. Pat. No. 6,401,723, issued Jun. 11, 2002, incorporated herein by reference.
The coil(s) 150 in the catheter 140, and the coil(s) 172 in the catheter 160, and can be selectively connected to a source of electric power to change the magnetic moment of the distal end of the catheter, thereby temporarily displacing the distal end of the catheter so that the location of the distal end of the catheter can be located by signal processing.
In the case of a magnetically navigated medical device, in which the medical device has a magnetically responsive element for aligning with an applied magnetic field the displacement of the distal tip can be effected by changing the direction or intensity of the applied magnetic fields from the external source magnet. An auxiliary magnet can also be provided outside the body to change the position of the distal end of the medical device. This auxiliary magnet could be a permanent magnet, but is preferably an electromagnet so that the field can be turned on and off. An auxiliary coil could alternatively be provided on the medical device, to temporarily change the magnetic moment of the medical device to displace the medical device within the magnetic field of the external source magnets.
As shown in
The method of the present invention is particularly useful for navigating medical devices that deliver radiopaque materials, such as flowable, settable embolic materials, or embolizing coils. In these cases the radiopaque material inside the medical device can make it difficult to accurately locate the distal end of the device in an x-ray image. It can be even more difficult after radiopaque material has been ejected from the medical device into the operating region. Thus, for example, in navigating the distal end of a catheter to the site of a vascular defect, such as an aneurysm, the user may not be able to accurately identify the distal end of the catheter, impairing navigation. Once radiopaque material (e.g., a flowable, settable embolic material or embolizing coils) has been ejected from the catheter, it can even more difficult to identify the distal end of the catheter to complete the procedure. The present invention solves this difficulty by accurately locating the tip, and indicating the position of the tip on the displayed x-ray image of the operating region. The user can then determine how best to position the distal tip to complete the procedures.
This application is a continuation of U.S. patent application Ser. No. 10/186,264, filed Jun. 28, 2002, now U.S. Pat. No. 7,248,914, entitled “Method of Navigating Medical Devices In The Presence Of Radiopaque Material”, of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3358676 | Frei et al. | Dec 1967 | A |
4173228 | Van Steenwyk et al. | Nov 1979 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5558091 | Acker et al. | Sep 1996 | A |
5654864 | Ritter et al. | Aug 1997 | A |
5729129 | Acker | Mar 1998 | A |
5868674 | Glowinski et al. | Feb 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
6014580 | Blume et al. | Jan 2000 | A |
6015414 | Werp et al. | Jan 2000 | A |
6128174 | Ritter et al. | Oct 2000 | A |
6148823 | Hastings | Nov 2000 | A |
6152933 | Werp et al. | Nov 2000 | A |
6157853 | Blume et al. | Dec 2000 | A |
6165193 | Greene et al. | Dec 2000 | A |
6212419 | Blume et al. | Apr 2001 | B1 |
6216030 | Howard et al. | Apr 2001 | B1 |
6241671 | Ritter et al. | Jun 2001 | B1 |
6253770 | Acker et al. | Jul 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6296604 | Garibaldi et al. | Oct 2001 | B1 |
6298257 | Hall et al. | Oct 2001 | B1 |
6298259 | Kucharczyk et al. | Oct 2001 | B1 |
6304768 | Blume et al. | Oct 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6330467 | Creighton, IV et al. | Dec 2001 | B1 |
6352363 | Munger et al. | Mar 2002 | B1 |
6364823 | Garibaldi et al. | Apr 2002 | B1 |
6375606 | Garibaldi et al. | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6401723 | Garibaldi et al. | Jun 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6459924 | Creighton, IV et al. | Oct 2002 | B1 |
6475223 | Werp et al. | Nov 2002 | B1 |
6505062 | Ritter et al. | Jan 2003 | B1 |
6507751 | Blume et al. | Jan 2003 | B2 |
6522909 | Garibaldi et al. | Feb 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6527782 | Hogg et al. | Mar 2003 | B2 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6542766 | Hall et al. | Apr 2003 | B2 |
6562019 | Sell | May 2003 | B1 |
6626902 | Kucharczyk et al. | Sep 2003 | B1 |
6630879 | Creighton, IV et al. | Oct 2003 | B1 |
6662034 | Segner et al. | Dec 2003 | B2 |
6677752 | Creighton, IV et al. | Jan 2004 | B1 |
6702804 | Ritter et al. | Mar 2004 | B1 |
6733511 | Hall et al. | May 2004 | B2 |
6755816 | Ritter et al. | Jun 2004 | B2 |
6817364 | Garibaldi et al. | Nov 2004 | B2 |
6827723 | Carson | Dec 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6902528 | Garibaldi et al. | Jun 2005 | B1 |
6911026 | Hall et al. | Jun 2005 | B1 |
6940379 | Creighton | Sep 2005 | B2 |
6968846 | Viswanathan | Nov 2005 | B2 |
6975197 | Creighton, IV | Dec 2005 | B2 |
6980843 | Eng et al. | Dec 2005 | B2 |
7008418 | Hall et al. | Mar 2006 | B2 |
7010338 | Ritter et al. | Mar 2006 | B2 |
7019610 | Creighton, IV et al. | Mar 2006 | B2 |
7020512 | Ritter et al. | Mar 2006 | B2 |
7048716 | Kucharczyk et al. | May 2006 | B1 |
7066924 | Garibaldi et al. | Jun 2006 | B1 |
7137976 | Ritter et al. | Nov 2006 | B2 |
7161453 | Creighton, IV | Jan 2007 | B2 |
7189198 | Harburn et al. | Mar 2007 | B2 |
7190819 | Viswanathan | Mar 2007 | B2 |
7211082 | Hall et al | May 2007 | B2 |
7248914 | Hastings et al. | Jul 2007 | B2 |
7264584 | Ritter et al. | Sep 2007 | B2 |
7477763 | Willis et al. | Jan 2009 | B2 |
20010038683 | Ritter et al. | Nov 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020100486 | Creighton, IV et al. | Aug 2002 | A1 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20030125752 | Werp et al. | Jul 2003 | A1 |
20030231789 | Willis et al. | Dec 2003 | A1 |
20040006301 | Sell et al. | Jan 2004 | A1 |
20040019447 | Shachar | Jan 2004 | A1 |
20040030244 | Garibaldi et al. | Feb 2004 | A1 |
20040064153 | Creighton, IV et al. | Apr 2004 | A1 |
20040068173 | Viswanathan | Apr 2004 | A1 |
20040133130 | Ferry et al. | Jul 2004 | A1 |
20040147829 | Segner et al. | Jul 2004 | A1 |
20040157082 | Ritter et al. | Aug 2004 | A1 |
20040158972 | Creighton, IV et al. | Aug 2004 | A1 |
20040186376 | Hogg et al. | Sep 2004 | A1 |
20040249262 | Werp et al. | Dec 2004 | A1 |
20040249263 | Creighton, IV | Dec 2004 | A1 |
20040260172 | Ritter et al. | Dec 2004 | A1 |
20040267106 | Segner et al. | Dec 2004 | A1 |
20050004585 | Hall et al. | Jan 2005 | A1 |
20050020911 | Viswanathan et al. | Jan 2005 | A1 |
20050021063 | Hall et al. | Jan 2005 | A1 |
20050033162 | Garibaldi et al. | Feb 2005 | A1 |
20050043611 | Sabo et al. | Feb 2005 | A1 |
20050065435 | Rauch et al. | Mar 2005 | A1 |
20050096589 | Shachar | May 2005 | A1 |
20050113628 | Creighton, IV et al. | May 2005 | A1 |
20050113812 | Viswanathan et al. | May 2005 | A1 |
20050113846 | Carson | May 2005 | A1 |
20050119556 | Gillies et al. | Jun 2005 | A1 |
20050119687 | Dacey, Jr. et al. | Jun 2005 | A1 |
20050182315 | Ritter et al. | Aug 2005 | A1 |
20050256398 | Hastings et al. | Nov 2005 | A1 |
20050273130 | Sell | Dec 2005 | A1 |
20060004382 | Hogg et al. | Jan 2006 | A1 |
20060009735 | Viswanathan et al. | Jan 2006 | A1 |
20060025676 | Viswanathan et al. | Feb 2006 | A1 |
20060025679 | Viswanathan et al. | Feb 2006 | A1 |
20060025719 | Viswanathan et al. | Feb 2006 | A1 |
20060036125 | Viswanathan et al. | Feb 2006 | A1 |
20060036163 | Viswanathan | Feb 2006 | A1 |
20060036213 | Viswanathan et al. | Feb 2006 | A1 |
20060041178 | Viswanathan et al. | Feb 2006 | A1 |
20060041179 | Viswanathan et al. | Feb 2006 | A1 |
20060041180 | Viswanathan et al. | Feb 2006 | A1 |
20060041181 | Viswanathan et al. | Feb 2006 | A1 |
20060041245 | Ferry et al. | Feb 2006 | A1 |
20060058646 | Viswanathan | Mar 2006 | A1 |
20060061445 | Creighton, IV et al. | Mar 2006 | A1 |
20060074297 | Viswanathan | Apr 2006 | A1 |
20060079745 | Viswanathan | Apr 2006 | A1 |
20060079812 | Viswanathan | Apr 2006 | A1 |
20060094956 | Viswanathan | May 2006 | A1 |
20060100505 | Viswanathan | May 2006 | A1 |
20060114088 | Shachar | Jun 2006 | A1 |
20060116633 | Shachar | Jun 2006 | A1 |
20060144407 | Aliberto et al. | Jul 2006 | A1 |
20060144408 | Ferry | Jul 2006 | A1 |
20060145799 | Creighton, IV | Jul 2006 | A1 |
20060270915 | Ritter et al. | Nov 2006 | A1 |
20060270948 | Viswanathan et al. | Nov 2006 | A1 |
20060278248 | Viswanathan | Dec 2006 | A1 |
20070016010 | Creighton, IV et al. | Jan 2007 | A1 |
20070016131 | Munger et al. | Jan 2007 | A1 |
20070019330 | Wolfersberger | Jan 2007 | A1 |
20070021731 | Garibaldi et al. | Jan 2007 | A1 |
20070021742 | Viswanathan | Jan 2007 | A1 |
20070021744 | Creighton, IV | Jan 2007 | A1 |
20070030958 | Munger | Feb 2007 | A1 |
20070032746 | Sell | Feb 2007 | A1 |
20070038064 | Creighton, IV | Feb 2007 | A1 |
20070038065 | Creighton, IV et al. | Feb 2007 | A1 |
20070038074 | Ritter et al. | Feb 2007 | A1 |
20070038410 | Tunay | Feb 2007 | A1 |
20070040670 | Viswanathan | Feb 2007 | A1 |
20070043455 | Viswanathan et al. | Feb 2007 | A1 |
20070049909 | Munger | Mar 2007 | A1 |
20070055124 | Viswanathan et al. | Mar 2007 | A1 |
20070055130 | Creighton, IV | Mar 2007 | A1 |
20070060829 | Pappone | Mar 2007 | A1 |
20070060916 | Pappone | Mar 2007 | A1 |
20070060962 | Pappone | Mar 2007 | A1 |
20070060966 | Pappone | Mar 2007 | A1 |
20070060992 | Pappone | Mar 2007 | A1 |
20070062546 | Viswanathan et al. | Mar 2007 | A1 |
20070062547 | Pappone | Mar 2007 | A1 |
20070073288 | Hall et al. | Mar 2007 | A1 |
20070088197 | Garibaldi et al. | Apr 2007 | A1 |
20070135804 | Ritter | Jun 2007 | A1 |
20070137656 | Viswanathan | Jun 2007 | A1 |
20070146106 | Creighton, IV | Jun 2007 | A1 |
20070149946 | Viswanathan | Jun 2007 | A1 |
20070161882 | Pappone | Jul 2007 | A1 |
20070167720 | Viswanathan | Jul 2007 | A1 |
20070179492 | Pappone | Aug 2007 | A1 |
20070197899 | Ritter et al. | Aug 2007 | A1 |
20070197901 | Viswanathan | Aug 2007 | A1 |
20070197906 | Ritter | Aug 2007 | A1 |
20070225589 | Viswanathan | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080077007 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10186264 | Jun 2002 | US |
Child | 11781236 | US |