Method of obscuring cryptographic computations

Information

  • Patent Grant
  • 7739521
  • Patent Number
    7,739,521
  • Date Filed
    Thursday, September 18, 2003
    21 years ago
  • Date Issued
    Tuesday, June 15, 2010
    14 years ago
Abstract
Obscuring cryptographic computations may be accomplished by performing modular exponentiation of an exponent in a cryptographic computation such that memory accesses are independent of the exponent bit pattern, thereby deterring timing attacks.
Description

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.


BACKGROUND

1. Field


The present invention relates generally to cryptography and, more specifically, to deterring attacks based at least in part on observing cryptographic computations in a processing system.


2. Description


Public key cryptography is well-known and widely used today. In public key cryptography, each user has a public key and a private key. The public key is made public, while the private key remains secret. Encryption is performed with the public key, while decryption is done with the private key.


The most popular form of public key cryptography today is the Rivest, Shamir, Adleman (RSA) public key cryptosystem. Key generation in the RSA algorithm works as follows: take two large primes, p and q, and compute their product n=p*q; n is called the modulus. Choose a number, called the encryption exponent e, less than n and relatively prime to (p−1)*(q−1), which means e and (p−1)*(q−1) have no common factors except 1. Find another number, called the decryption exponent d, such that (e*d−1) is divisible by (p−1)*(q−1). The values e and d are also called the public and private exponents, respectively. The public key is the pair (n, e) and the private key is the exponent d. The factors p and q may be destroyed or kept with the private key.


Encryption and decryption may be performed as follows. Suppose Alice wants to send a plaintext message m (0≦m≦n−1) to Bob. Alice creates the ciphertext message c (0≦c≦n−1) by exponentiating c=me mod n, where e and n are Bob's public key. She sends c to Bob. To decrypt, Bob exponentiates m=cd mod n; the relationship between e and d ensures that Bob correctly recovers m. Since only Bob knows d, only Bob can decrypt this message.


RSA is also commonly used to exchange a symmetric key. A symmetric key may be used to encrypt data. The symmetric key may then be encrypted by a sender using the receiver's public key. In this usage, the message m is a specific formatting of the symmetric key. Once the receiver receives and decrypts the symmetric key, the receiver can then use the symmetric key to decrypt the data.


It is currently very difficult to obtain a private key d from the public key (n, e). However, if one could factor n into p and q, then one could obtain the private key d. Thus, the security of the RSA system is based on the assumption that such factoring is difficult.


Other attacks on the RSA system have been attempted. In some sophisticated attack scenarios, d may inferred from information gathered from observing a processing system performing the modular exponentiation operation used in decryption. In these scenarios, observing memory access patterns, cache line accesses, and/or branches taken in executing code within the processing system may give the attacker sufficient information to deduce the private key. Hence, obscuring cryptographic computations such that observation of the memory access patterns, cache line accesses, and/or branches taken in executing code while performing the computations provides no meaningful information to an attacker is desirable.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will become apparent from the following detailed description of the present invention in which:



FIG. 1 is a flow diagram illustrating obscuring cryptographic computations according to an embodiment of the present invention; and



FIG. 2 is a flow diagram illustrating obscuring cryptographic computations according to another embodiment of the present invention.





DETAILED DESCRIPTION

An embodiment of the present invention is a method for implementing a variant of the RSA algorithm in a secure manner to deter against attacks by obscuring cryptographic computations such that an attacker can gain no meaningful information by observing, for example, memory access patterns, cache line accesses, or code branches of a processing system. Embodiments of the present invention provide a method of performing an implementation of the RSA algorithm such that memory access is independent of the bit pattern of the exponents used. Embodiments of the present invention present a new way to protect against timing attacks. Embodiments of the present invention are also more efficient than previous methods.


Reference in the specification to “one embodiment” or “an embodiment” of the present invention means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” appearing in various places throughout the specification are not necessarily all referring to the same embodiment.


To decrypt a ciphertext message c using the RSA system to obtain the plaintext message m, operations are performed to compute cd mod n. An attacker may be able obtain c by capturing communications between a sender and a receiver, and n is known from the public key, but the difficulty in making the attack is in determining d. If an attacker can monitor or otherwise observe a processing system during a decryption operation, the attacker may be able to infer or deduce what d is. Once d is known, the attacker can decrypt any messages encrypted with the sender's corresponding public key. In some scenarios, observing memory access patterns, cache line accesses, and/or branches taken or not taken in executing code may help the attacker obtain d. In some instances, this observation may be made using a logic analyzer on a processing system performing the decryption operation.


One known implementation of the RSA algorithm for decryption is shown in Table 1. di will denote the i'th bit of d. Specifically,







d
=




i
=
0


k
-
1





d
i







2
i




,





where k is the number of bits in the binary representation of d. In other words, 2k−1≦d<2k.












TABLE I









1: Let k = log2 n
/* k is the number of bits in d */










2: x: = c
/* store ciphertext c in intermediate




value variable */



3: For i = 2 to k
/* loop through all bits in d */









4:  x:= x * x MOD n










5:  If dk−i = 1,
/* if i'th most significant bit of d is set */










6:
then x := x * c mod n









7: End For










8: m:= x
/* store recovered plaintext m */










The well-known implementation shown in Table I may be vulnerable to observations by an attacker because the memory reference to c in line 6 only occurs when the i'th bit of decryption exponent d is set to 1. When the i'th bit of decryption exponent d is 0, no memory access is made. If an attacker observes the memory access activity during decryption processing, the attacker may obtain the bit pattern for d. Furthermore, monitoring of whether the branch is taken at line 5 may provide the same information. Once the attacker learns d, the attacker can obtain m.


To avoid this scenario, an embodiment of the present invention performs decryption processing wherein memory access is independent of the decryption exponent bit pattern. Table II shows an embodiment of the present invention wherein lines 5 and 6 of the prior art method may be replaced by processing designed to obfuscate decryption computations.









TABLE II







© 2003 Intel Corporation








1: Let k = log2 n
/* k is the number of bits in d */








2: x: = c
/* store ciphertext c in intermediate value



variable */


3: For l − 2 to k
/* loop through all bits in d */







4:  x := x * x MOD n








5:  r := (c −1) * dk−l + 1
/* determine obscuring factor */


6:  x := x * r MOD n
/* use obscuring factor */







7: End For








8: m := x
/* store plaintext m */









In this embodiment, an obscuring factor r is used. By using this obscuring factor in the multiplication at line 6, there is no conditional memory access or branch pattern. Each iteration i through the bits of decryption exponent d involves a memory access to obtain c in line 5 and a multiplication in line 6, regardless of the bit pattern of d. Thus, no pattern may be observed by an attacker. When di=0, then r=1 in line 5, and a multiplication by 1 is performed in line 6. When di=1, then r=c in line 5, and a multiplication by c is performed in line 6. Furthermore, there is no branch activity (from evaluating an “if” statement) that can be observed to deduce d. At the end of processing in Table II, intermediate variable x stores the same value as at the end of processing in Table I (that is, the ciphertext c has been decrypted into plaintext m).



FIG. 1 is a flow diagram illustrating obscuring cryptographic computations according to an embodiment of the present invention. In general terms, lines 3 through 6 of Table II are represented as a flow diagram. At block 100, as part of decryption processing, a loop may be set up to iterate through each bit i in the decryption exponent d. At block 102, an intermediate value (initially storing ciphertext c) may be set to the intermediate value multiplied by the intermediate value mod n. At block 104, the current obscuring factor r may be determined using the i'th bit of decryption exponent d. In one embodiment, the obscuring factor r may be set to (c−1)*di+1. At block 106, the intermediate value may be set to the intermediate value multiplied by the current obscuring factor r mod n. At block 108, if there are more bits in d to process, the next i is selected and processing loops back to block 102 for the next iteration of the loop. If all bits of d have been processed, then processing ends at block 110.


Thus, a conditional multiplication operation during decryption processing has been replaced with an unconditional multiplication operation such that the end result is equivalent. The method thus performs the decryption operation where memory accesses are independent of the decryption exponent bit pattern and there are no branches to be observed.


In some computing systems, the time to perform a multiply operation by one or by zero may be different than the time to perform a multiply operation by a random number (such as c, for example). An attacker may be able to detect this difference in multiplication times to infer the decryption exponent. Another embodiment of the present invention obscures this evidence by changing the way the obscuring factor may be determined. In this embodiment, an arithmetic selection of r is performed by using logical operations to avoid a multiplication by di=0 that could occur in line 5 of Table II. This embodiment avoids the multiplications by one that could occur in line 6 of Table II by always multiplying by a random obscuring factor. Table III shows an embodiment of the present invention wherein the method of Table II may be modified to further obfuscate decryption computations.









TABLE III







© 2003 Intel Corporation








1: Let k = log2 n
/* k is the number of bits in d */








2: Pick t at random MOD n
/* random number t */








3: y := c * t MOD n
/* store ciphertext c in intermediate value y using t */


4: w := c * t−1 MOD n
/* determine first obscuring factor w */


5: s := t−1 MOD n
/* determine second obscuring factor s */


6: For i = 0 to k−1
/* loop through all bits of d */







7:  y := y * y MOD n








8:  r := (w AND di) OR (s AND (NOT di))
/* determine third obscuring factor */








9:  y := r MOD n
/* use third obscuring factor r */







10: End For








11: m := y * s MOD n
/* compute plaintext m using second obscuring factor */









In the embodiment shown in Table III, a random number t is picked, wherein t is between 1 and n−1. The third obscuring factor r will evaluate to either the first obscuring factor w (when di=1) or the second obscuring factor s (when di=0). This embodiment eliminates the multiplication by one inherent in the embodiment of Table II. It is unlikely that either w or s will be zero or one, considering that t is picked at random from a large number set (1 . . . n−1). In some embodiments, n may comprise 21024 bits. Note that at each iteration of the For loop, the y calculated in this embodiment will satisfy y=x*t mod n, where x is the value calculated in a given iteration i of the embodiment shown in Table II.



FIG. 2 is a flow diagram illustrating obscuring cryptographic computations according to an embodiment of the present invention. In general terms, lines 2 through 11 of Table III are represented as a flow diagram. At block 200, as part of decryption processing, a random number t may be picked in the range 1 to n−1. At block 202, an intermediate value may be determined using the plaintext message m, random number t, and the modulus n. At block 204, first and second obscuring factors may be determined. The first obscuring factor w may be set to the plaintext m* random number t mod n. The second obscuring factor s may be set to the inverse of the random number t mod n. A loop may be set up to iterate through each bit i in the decryption exponent d. At block 208, the intermediate value determined at block 202 may be set to the intermediate value multiplied by the intermediate value mod n. At block 210, the third obscuring factor r may be determined using the i'th bit of decryption exponent d, the first obscuring factor w, and the second obscuring factor s. In one embodiment, the third obscuring factor r may be set to (w AND di) OR (s AND (NOT di)). At block 212, the intermediate value may be set to the intermediate value multiplied by the current third obscuring factor r mod n. At block 214, if there are more bits in d to process, the next i is selected and processing loops back to block 208 for the next iteration of the loop. If all bits of d have been processed, then processing continues with block 216. At block 216, plaintext m may be obtained by computing the intermediate value multiplied by the second obscuring factor mod n.


Thus, in this embodiment, a conditional multiplication operation during decryption processing has also been replaced with an unconditional multiplication operation such that the end result is equivalent. The method performs the decryption operation (in this example) where memory accesses are independent of the decryption exponent bit pattern and there are no branches to be observed. However, in this embodiment, no pattern of multiplying by ones or zeros may be detected.


One known method of computing modular exponentiation is called the window method (also known as the m-ary sliding window method). In the window method, the exponent (such as the decryption exponent d or the encryption exponent e) may be divided into blocks of bits, where v is the number of bits per block. Each block is a “window” into a portion of the exponent. The window method employs a pre-computation of the powers of the message (such as the ciphertext c for decryption or the plaintext m for encryption) from 1 to 2v−1. Then, for each bit in the exponent, a squaring operation is performed. Finally, for each window in the exponent, a multiply operation is performed using the appropriate pre-computed power of the message corresponding to the current window and the current window's bits. The appropriate pre-computed power of the message is typically accessed from memory prior to performing the multiply operation.


When using the embodiment of the present invention shown in Table II as applied to the window method, a multiply operation may be performed if the window into the exponent d has a value that is not all zeroes. In order to obfuscate the memory access when obtaining the appropriate pre-computed power of the message (e.g., c), in an embodiment of the present invention all of the powers of the message from 1 to 2v may be obtained from memory for each multiply operation even though only one of the powers is actually used in a given iteration. By obtaining all powers for each multiply operation, the memory accesses are independent of which of the powers is being used in a particular multiply operation. Hence, this deters an attacker from obtaining information about the message which may be used to deduce the decryption exponent d. The appropriate power of the message may be selected according to ca where a is the value of the current window into the exponent. This is illustrated in Table IV.









TABLE IV







© 2003 Intel Corporation


1: v: = the number of bits in the window.


2: c0 = 1








3: For i = 1 to 2v-1
/* loop through each integer less than 2v */








4:
ci = ci−1 * c MOD n /* compute ci = ci MOD n */







5: End for








6: k: = log2 n
/* k is the number of bits in d */







7: Compute kv and rn such that k−1 = v*kv + rv and 0 ≦ rv <v   /* kv is


the quotient and rv is the remainder when k−1 is divided by v */








8: x: = c
/* store ciphertext c in intermediate value variable */


9: For j = 0 to rv
/* special loop for the top window which may have







fewer than v bits in it*/








10:
x:=x * xMODn







11: End for











12:





w
:=




j
=
0



r
v

-
1





d

vk
v





2
j





/

*




w





is





the





value





of





the





top





window



,

which





has






r

v











bits





in















it */


13: Set bj := 0 for j = 0 to rv − 1.


14: bw = 1.











15:





r
:=





j
=
0



r
v

-
1





c
j




b
j





/

*




determine





obscuring





factor





r


=


c
w

*
/






















16: x := x * r MOD n
/* use obscuring factor */








17: For i = 1 to kv
/* loop for all of the windows of v bits each */







18:  For j = 0 to v








19:
x:=x * x MOD n  /* perform the squares for this window */







20: End for











21:





w
:=




j
=
0


v
-
1





d

v


(


k
v

-
i

)






2
j





/

*




w





is





the





value





of






i
'


th





window




*
/





















22: Set bj := 0 for j = 0 to v − 1.


23: bw = 1.











24:





r
:=





j
=
0


v
-
1





c
j




b
j





/

*




determine





obscuring





factor





r


=


c
w

*
/





















25: x := x * r MOD n    /* use obscuring factor */


26: End For


27: m:= x /* store plaintext m */









According to this embodiment, a conditional selection of the power of the message at a given iteration of the window method is replaced by the action of obtaining all powers of the message at each iteration, and then choosing the appropriate power to use for a given iteration.


When using the embodiment of the present invention shown in Table III as applied to the window method, each of the pre-computed powers of the message (e.g., c) may be multiplied by s(2^v−1) mod n. This is illustrated in Table V.









TABLE V







© 2003 Intel Corporation


1: v: = the number of bits in the window.








2: Pick t at random MOD n
/* random number t */








3: s := t−1 MOD n
/* determine second obscuring factor s */















4


:







s
v


=


s


2
^
v

-
1







MOD





n










5: g0 = 1.


6: c0 = sv.








7: For i = 1 to 2v−1
/* loop through each integer less than 2v to determine







all 2v obscuring factors*/








8:
gi = gi−1 * c MOD n





9:





c
j

=



g
j

*

s
v






MOD






n




/

*




compute






c
j


=


c
i







s


2
^
v

-
1







MOD





n




*
/
















10: End for


11: k: = log2n  /*k is the number of bits in d*/


12: Compute kv and rv such that k−1 = v*kv + rv and 0 ≦ rv < v   /* kv is


the quotient and rv is the remainder when k−1 is divided by v */








13: y := c * t MOD n
/* store ciphertext c in intermediate value y







using t */


14: For j = 0 to rv   /* special loop for the top window which may have


fewer than v bits in it*/


15:  y:=y *y MOD n


16: End for











17:





w
:=




j
=
0



r
v

-
1





d

vk
v





2
j





/

*




w





is





the





value





of





the





top





window



,

which





has






r

v











bits





in















it */


18: Set bj := 0 for j = 0 to rv − 1.


19: bw = 1.


20: r = (c0 AND b0) OR (c1 AND b1 ) OR ... OR (crv−1 AND brv−1)








21: y := y * r MOD n
/* use obscuring factor */


22: h = 2v − 2rv








23: y := y * th MOD n
/* Correction factor needed for first window since it is


less that v bits */


24: For i = 1 to kv
/* loop for all of the windows of v bits each */


25: For j = 0 to v







26:  y:= y * y MOD n   /* perform the squares for this window */


27: End for











28:





w
:=




j
=
0


v
-
1





d

v


(


k
v

-
i

)






2
j





/

*




w





is





the





value





of






i
'


th





window




*
/





















29: Set bj := 0 for j = 0 to v − 1.


30: bw = 1.


31: r =(c0 AND b0) OR (c1 AND b1) OR ... OR (cv−1 AND bv−1)


32: y := y * r MOD n   /* use obscuring factor */


33: End For


34: m := y * s MOD n /* compute ptaintext m using second obscuring factor */









Although the embodiments shown in Tables II, III, IV, and V illustrate decryption processing as an example, embodiments of the present invention may also be used to protect encryption processing as well. Further, embodiments of the present invention may be used in other cryptographic systems where exponentiation is used. For example, exponentiation is used in the well-known Diffie-Hellman key exchange, and also in the well-known Digital Signature Algorithm (DSA). In both of these algorithms, there is a modular exponentiation operation in which the exponent used is a randomly generated secret. Embodiments of the present invention may be used to deter attacks against these systems, and against any systems using a modular exponentiation operation.


Additionally, RSA may also be used for digital signatures. Embodiments of the present invention may be used for deterring attacks on digital signatures using RSA. In this scenario, a signer starts with a message m that he or she wants to sign. The signer transforms m into h, using a hashing and formatting protocol. The signer then computes the signature of h by s=hd mod n. The signer sends the signature s and the message m to a verifier. The verifier transforms m into h, using the same hashing and formatting protocol. The verifier then computes h′=se mod n, and would accept the signature if h=h′. The modular exponentiations in the signing computations s=hd mod n, and h′=se mod n, may also be obscured using the techniques disclosed herein.


Another embodiment of the invention can be used on an alternative exponentiation algorithm. The algorithm described in this invention processes the bits of the exponent starting with the high order bits. This is the most common implementation. However, an alternate exponentiation algorithm processes bits starting from the low order bits. The invention described here can be applied to that algorithm as well.


Embodiments of the present invention implement modular exponentiation for either encryption or decryption in the RSA algorithm (and may be applied to other cryptographic systems) in a secure manner even if an attacker has knowledge of what memory is accessed and what code branches (if any) are taken during execution of the algorithm. The invention thus provides better security than prior art implementations.


Although the following operations may be described as a sequential process, some of the operations may in fact be performed in parallel or concurrently. In addition, in some embodiments the order of the operations may be rearranged without departing from the spirit of the invention.


The techniques described herein are not limited to any particular hardware or software configuration; they may find applicability in any computing or processing environment. The techniques may be implemented in hardware, software, or a combination of the two. The techniques may be implemented in programs executing on programmable machines such as mobile or stationary computers, personal digital assistants, set top boxes, cellular telephones and pagers, and other electronic devices, that each include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code is applied to the data entered using the input device to perform the functions described and to generate output information. The output information may be applied to one or more output devices. One of ordinary skill in the art may appreciate that the invention can be practiced with various computer system configurations, including multiprocessor systems, minicomputers, mainframe computers, and the like. The invention can also be practiced in distributed computing environments where tasks may be performed by remote processing devices that are linked through a communications network.


Each program may be implemented in a high level procedural or object oriented programming language to communicate with a processing system. However, programs may be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted.


Program instructions may be used to cause a general-purpose or special-purpose processing system that is programmed with the instructions to perform the operations described herein. Alternatively, the operations may be performed by specific hardware components that contain hardwired logic for performing the operations, or by any combination of programmed computer components and custom hardware components. The methods described herein may be provided as a computer program product that may include a machine readable medium having stored thereon instructions that may be used to program a processing system or other electronic device to perform the methods. The term “machine readable medium” used herein shall include any medium that is capable of storing or encoding a sequence of instructions for execution by the machine and that cause the machine to perform any one of the methods described herein. The term “machine readable medium” shall accordingly include, but not be limited to, solid-state memories, optical and magnetic disks, and a carrier wave that encodes a data signal. Furthermore, it is common in the art to speak of software, in one form or another (e.g., program, procedure, process, application, module, logic, and so on) as taking an action or causing a result. Such expressions are merely a shorthand way of stating the execution of the software by a processing system cause the processor to perform an action of produce a result.


While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments of the invention, which are apparent to persons skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention.

Claims
  • 1. A method comprising: performing modular exponentiation in a cryptographic computation such that memory accesses are independent of the numerical value of the exponent, wherein said performing modular exponentiation is to comprise replacing a conditional multiplication operation with an unconditional multiplication operation and the unconditional multiplication operation is to be based on an obscuring factor; and determining the obscuring factor for each bit of the exponent by adding one to a result of multiplying a quantity by a selected bit of the exponent, the quantity comprising a message minus one.
  • 2. The method of claim 1, wherein the exponent comprises at least one of a signature exponent and a decryption exponent in a RSA cryptographic system, and the cryptographic computation is at least one of signature and decryption.
  • 3. The method of claim 2, wherein the cryptographic computation comprises cd mod n, wherein c comprises a ciphertext message, d comprises the decryption exponent, and n comprises a modulus that is a product of two prime numbers.
  • 4. The method of claim 1, wherein the modular exponentiation is performed as part of a Diffie-Hellman key exchange process.
  • 5. The method of claim 1, wherein the modular exponentiation is performed as part of a Digital Signature Algorithm (DSA) process.
  • 6. The method of claim 1, further comprising applying a window method as part of performing the modular exponentiation and retrieving pre-computed powers from one to 2v of a message from a memory, where v is the size of a window into the exponent's bits.
  • 7. A method comprising: setting an intermediate value to a message; andfor each bit i in the exponent, setting the intermediate value to the intermediate value multiplied by the intermediate value mod a modulus, wherein the modulus comprises a product of two prime numbers, determining a current obscuring factor using the i'th bit of the exponent, and setting the intermediate value to the intermediate value multiplied by the current obscuring factor mod the modulus, wherein determining the current obscuring factor comprises determining the current obscuring factor by adding one to a result of multiplying a quantity by a selected bit of the exponent, the quantity comprising the message minus one.
  • 8. The method of claim 7, wherein the exponent comprises at least one of a signature exponent and a decryption exponent in a RSA cryptographic system, and the cryptographic computation is at least one of signature and decryption.
  • 9. The method of claim 7, further comprising applying a window method as part of performing the modular exponentiation and retrieving pre-computed powers from one to 2v of the message from a memory, where v is the size of a window into the exponent's bits.
  • 10. An article comprising: a non-transitory storage medium having a plurality of machine readable instructions, wherein when the instructions are executed by a processor, the instructions provide for obscuring cryptographic computations by performing modular exponentiation of an exponent in a cryptographic computation such that memory accesses are independent of the numerical value of the exponent, wherein a current obscuring factor is to be determined by adding one to a result of multiplying a quantity by a selected bit of the exponent, the quantity to comprise a message minus one.
  • 11. The article of claim 10, wherein performing modular exponentiation comprises replacing a conditional multiplication operation with an unconditional multiplication operation.
  • 12. The article of claim 10, further comprising instructions for applying a window method as part of performing the modular exponentiation and retrieving pre-computed powers from one to 2v of a message from a memory, where v is the size of a window into the exponent's bits.
  • 13. An article comprising: a non-transitory storage medium having a plurality of machine readable instructions, wherein when the instructions are executed by a processor, the instructions provide for obscuring cryptographic computations by performing modular exponentiation of an exponent in a cryptographic computation such that memory accesses are independent of the exponent bit pattern, the instructions causing setting an intermediate value to a message; and for each bit i in the exponent, setting the intermediate value to the intermediate value multiplied by the intermediate value mod a modulus, wherein the modulus comprises a product of two prime numbers, determining a current obscuring factor using the i'th bit of the exponent, and setting the intermediate value to the intermediate value multiplied by the current obscuring factor mod the modulus, wherein determining the current obscuring factor is to comprise adding one to a result of multiplying a quantity by a selected bit of the exponent, the quantity to comprise the message minus one.
  • 14. The article of claim 13, wherein the exponent comprises at least one of a signature exponent and a decryption exponent in a RSA cryptographic system, and the cryptographic computation is at least one of signature and decryption.
  • 15. The article of claim 13, further comprising instructions for applying a window method as part of performing the modular exponentiation and retrieving pre-computed powers from one to 2v of a message from a memory, where v is the size of a window into the exponent's bits.
US Referenced Citations (211)
Number Name Date Kind
3699532 Schaffer et al. Oct 1972 A
3996449 Attanasio et al. Dec 1976 A
4037214 Birney et al. Jul 1977 A
4162536 Morley Jul 1979 A
4207609 Luiz et al. Jun 1980 A
4247905 Yoshida et al. Jan 1981 A
4276594 Morley Jun 1981 A
4278837 Best Jul 1981 A
4307447 Provanzano et al. Dec 1981 A
4319233 Matsuoka et al. Mar 1982 A
4319323 Ermolovich et al. Mar 1982 A
4347565 Kaneda et al. Aug 1982 A
4366537 Heller et al. Dec 1982 A
4403283 Myntti et al. Sep 1983 A
4419724 Branigin et al. Dec 1983 A
4430709 Schleupen Feb 1984 A
4521852 Guttag Jun 1985 A
4529870 Chaum Jul 1985 A
4571672 Hatada et al. Feb 1986 A
4621318 Maeda Nov 1986 A
4759064 Chaum Jul 1988 A
4795893 Ugon Jan 1989 A
4802084 Ikegaya et al. Jan 1989 A
4825052 Chemin et al. Apr 1989 A
4907270 Hazard Mar 1990 A
4907272 Hazard Mar 1990 A
4910774 Barakat Mar 1990 A
4975836 Hirosawa et al. Dec 1990 A
5007082 Cummins Apr 1991 A
5022077 Bealkowski et al. Jun 1991 A
5075842 Lai Dec 1991 A
5079737 Hackbarth Jan 1992 A
5187802 Inoue et al. Feb 1993 A
5230069 Brelsford et al. Jul 1993 A
5237616 Abraham et al. Aug 1993 A
5255379 Melo Oct 1993 A
5287363 Wolf et al. Feb 1994 A
5293424 Holtey et al. Mar 1994 A
5295251 Wakui et al. Mar 1994 A
5317705 Gannon et al. May 1994 A
5319760 Mason et al. Jun 1994 A
5361375 Ogi Nov 1994 A
5386552 Garney Jan 1995 A
5421006 Jablon et al. May 1995 A
5434999 Goire et al. Jul 1995 A
5437033 Inoue et al. Jul 1995 A
5442645 Ugon et al. Aug 1995 A
5455909 Blomgren et al. Oct 1995 A
5459867 Adams et al. Oct 1995 A
5459869 Spilo Oct 1995 A
5469557 Salt et al. Nov 1995 A
5473692 Davis Dec 1995 A
5479509 Ugon Dec 1995 A
5504922 Seki et al. Apr 1996 A
5506975 Onodera Apr 1996 A
5511217 Nakajima et al. Apr 1996 A
5522075 Robinson et al. May 1996 A
5528231 Patarin Jun 1996 A
5533126 Hazard Jul 1996 A
5555385 Osisek Sep 1996 A
5555414 Hough et al. Sep 1996 A
5560013 Scalzi et al. Sep 1996 A
5564040 Kubala Oct 1996 A
5566323 Ugon Oct 1996 A
5568552 Davis Oct 1996 A
5574936 Ryba et al. Nov 1996 A
5582717 Di Santo Dec 1996 A
5604805 Brands Feb 1997 A
5606617 Brands Feb 1997 A
5615263 Takahashi Mar 1997 A
5628022 Ueno et al. May 1997 A
5628023 Bryant et al. May 1997 A
5633929 Kaliski, Jr. May 1997 A
5657445 Pearce Aug 1997 A
5668971 Neufeld Sep 1997 A
5684948 Johnson et al. Nov 1997 A
5706469 Kobayashi Jan 1998 A
5717903 Bonola Feb 1998 A
5720609 Pfefferle Feb 1998 A
5721222 Bernstein et al. Feb 1998 A
5729760 Poisner Mar 1998 A
5737604 Miller et al. Apr 1998 A
5737760 Grimmer, Jr. et al. Apr 1998 A
5740178 Jacks et al. Apr 1998 A
5752046 Oprescu et al. May 1998 A
5757919 Herbert et al. May 1998 A
5764969 Kahle et al. Jun 1998 A
5796835 Saada Aug 1998 A
5796845 Serikawa et al. Aug 1998 A
5805712 Davis Sep 1998 A
5809546 Greenstein et al. Sep 1998 A
5825875 Ugon Oct 1998 A
5825880 Sudia et al. Oct 1998 A
5835594 Albrecht et al. Nov 1998 A
5844986 Davis Dec 1998 A
5852717 Bhide et al. Dec 1998 A
5854913 Goetz et al. Dec 1998 A
5867577 Patarin Feb 1999 A
5872994 Akiyama et al. Feb 1999 A
5890189 Nozue et al. Mar 1999 A
5900606 Rigal et al. May 1999 A
5901225 Ireton et al. May 1999 A
5903752 Dingwall et al. May 1999 A
5919257 Trostle Jul 1999 A
5935242 Madany et al. Aug 1999 A
5935247 Pai et al. Aug 1999 A
5937063 Davis Aug 1999 A
5944821 Angelo Aug 1999 A
5953502 Helbig, Sr. Sep 1999 A
5956408 Arnold Sep 1999 A
5970147 Davis Oct 1999 A
5978475 Schneier et al. Nov 1999 A
5978481 Ganesan et al. Nov 1999 A
5987557 Ebrahim Nov 1999 A
6014745 Ashe Jan 2000 A
6035374 Panwar et al. Mar 2000 A
6044478 Green Mar 2000 A
6055637 Hudson et al. Apr 2000 A
6058478 Davis May 2000 A
6061794 Angelo et al. May 2000 A
6064740 Curiger et al. May 2000 A
6075938 Bugnion et al. Jun 2000 A
6085296 Karkhanis et al. Jul 2000 A
6088262 Nasu Jul 2000 A
6092095 Maytal Jul 2000 A
6093213 Favor et al. Jul 2000 A
6101584 Satou et al. Aug 2000 A
6108644 Goldschlag et al. Aug 2000 A
6115816 Davis Sep 2000 A
6125430 Noel et al. Sep 2000 A
6131166 Wong-Insley Oct 2000 A
6148379 Schimmel Nov 2000 A
6158546 Hanson et al. Dec 2000 A
6173417 Merrill Jan 2001 B1
6175924 Arnold Jan 2001 B1
6175925 Nardone et al. Jan 2001 B1
6178509 Nardone et al. Jan 2001 B1
6182089 Ganapathy et al. Jan 2001 B1
6188257 Buer Feb 2001 B1
6192455 Bogin et al. Feb 2001 B1
6199152 Kelly et al. Mar 2001 B1
6205550 Nardone et al. Mar 2001 B1
6212635 Reardon Apr 2001 B1
6222923 Schwenk Apr 2001 B1
6249872 Wildgrube et al. Jun 2001 B1
6252650 Nakamura Jun 2001 B1
6269392 Cotichini et al. Jul 2001 B1
6272533 Browne Aug 2001 B1
6272637 Little et al. Aug 2001 B1
6275933 Fine et al. Aug 2001 B1
6282650 Davis Aug 2001 B1
6282651 Ashe Aug 2001 B1
6282657 Kaplan et al. Aug 2001 B1
6292874 Barnett Sep 2001 B1
6298442 Kocher et al. Oct 2001 B1
6301646 Hostetter Oct 2001 B1
6308270 Guthery Oct 2001 B1
6314409 Schneck et al. Nov 2001 B2
6321314 Van Dyke Nov 2001 B1
6327652 England et al. Dec 2001 B1
6330670 England et al. Dec 2001 B1
6339815 Feng et al. Jan 2002 B1
6339816 Bausch Jan 2002 B1
6357004 Davis Mar 2002 B1
6363485 Adams et al. Mar 2002 B1
6374286 Gee et al. Apr 2002 B1
6374317 Ajanovic et al. Apr 2002 B1
6378068 Foster et al. Apr 2002 B1
6378072 Collins et al. Apr 2002 B1
6389537 Davis et al. May 2002 B1
6397242 Devine et al. May 2002 B1
6397379 Yates, Jr. et al. May 2002 B1
6412035 Webber Jun 2002 B1
6421702 Gulick Jul 2002 B1
6435416 Slassi Aug 2002 B1
6445797 McGough Sep 2002 B1
6463535 Drews Oct 2002 B1
6463537 Tello Oct 2002 B1
6499123 McFarland et al. Dec 2002 B1
6505279 Phillips et al. Jan 2003 B1
6507904 Ellison et al. Jan 2003 B1
6529909 Bowman-Amuah Mar 2003 B1
6535988 Poisner Mar 2003 B1
6557104 Vu et al. Apr 2003 B2
6560627 McDonald et al. May 2003 B1
6609199 DeTreville Aug 2003 B1
6615278 Curtis Sep 2003 B1
6633963 Ellison et al. Oct 2003 B1
6633981 Davis Oct 2003 B1
6651171 England et al. Nov 2003 B1
6678825 Ellison et al. Jan 2004 B1
6684326 Cromer et al. Jan 2004 B1
7058808 Zolotorev et al. Jun 2006 B1
20010021969 Burger et al. Sep 2001 A1
20010027511 Wakabayashi et al. Oct 2001 A1
20010027527 Khidekel et al. Oct 2001 A1
20010037450 Metlitski et al. Nov 2001 A1
20020007456 Peinado et al. Jan 2002 A1
20020023032 Pearson et al. Feb 2002 A1
20020147916 Strongin et al. Oct 2002 A1
20020166061 Falik et al. Nov 2002 A1
20020169717 Challener Nov 2002 A1
20030018892 Tello Jan 2003 A1
20030074548 Cromer et al. Apr 2003 A1
20030115453 Grawrock Jun 2003 A1
20030126442 Glew et al. Jul 2003 A1
20030126453 Glew et al. Jul 2003 A1
20030159056 Cromer et al. Aug 2003 A1
20030188179 Challener et al. Oct 2003 A1
20030196085 Lampson et al. Oct 2003 A1
20040117539 Bennett et al. Jun 2004 A1
Foreign Referenced Citations (39)
Number Date Country
42 17 444 Dec 1992 DE
0 473 913 Mar 1992 EP
0 600 112 Jun 1994 EP
0 602 867 Jun 1994 EP
0 892 521 Jan 1999 EP
0 930 567 Jul 1999 EP
0 961 193 Dec 1999 EP
0 965 902 Dec 1999 EP
1 030 237 Aug 2000 EP
1 055 989 Nov 2000 EP
1 056 014 Nov 2000 EP
1 085 396 Mar 2001 EP
1 146 715 Oct 2001 EP
1 209 563 May 2002 EP
1 271 277 Jan 2003 EP
2000-76139 Mar 2000 JP
WO 9524696 Sep 1995 WO
WO 9729567 Aug 1997 WO
WO 9812620 Mar 1998 WO
WO 9834365 Aug 1998 WO
WO 9844402 Oct 1998 WO
WO 9905600 Feb 1999 WO
WO 9909482 Feb 1999 WO
WO 9918511 Apr 1999 WO
WO 9957863 Nov 1999 WO
WO 9965579 Dec 1999 WO
WO 0021238 Apr 2000 WO
WO 0062232 Oct 2000 WO
WO 0127723 Apr 2001 WO
WO 0127821 Apr 2001 WO
WO 0163994 Aug 2001 WO
WO 0175564 Oct 2001 WO
WO 0175565 Oct 2001 WO
WO 0175595 Oct 2001 WO
WO 0201794 Jan 2002 WO
WO 0217555 Feb 2002 WO
WO 02060121 Aug 2002 WO
WO 02086684 Oct 2002 WO
WO 03058412 Jul 2003 WO
Related Publications (1)
Number Date Country
20050084098 A1 Apr 2005 US