The present invention generally relates to mine ventilation equipment, and more particularly to a mechanism for opening a mine door.
Mine doors are frequently used throughout a mine to control ventilation. The doors are typically large and heavy, and they are often opened and closed using hydraulic or pneumatic mechanisms. Examples of such mechanisms are described in U.S. Pat. Nos. 6,425,820, 6,938,372 and 7,118,472. While such mechanisms are generally reliable, they do have certain drawbacks, including complexity and expense. Also, since mine doors are very heavy and subject to large opening and closing pressures due to air flow in the mine, prior mechanisms are designed to move a mine door at slow speeds, which can waste valuable time. Further, the failure of a complex hydraulic or pneumatic mechanism may take substantial time to repair, which can severely impede operations in the mine.
There is a need, therefore, for an improved mine-door opening mechanism.
This invention is directed to a mine door system comprising a mine door comprising at least one door leaf adapted to be hinged at one side to a door frame defining an entry. The system includes an articulated door-moving mechanism that articulates between a first configuration in which the mechanism applies a relatively small door-moving force to the at least one door leaf and moves it at a first speed and a second configuration in which the mechanism applies a larger door-moving force to the at least one door leaf and moves it at a second speed less than the first speed.
The present invention is directed to a method of opening a mine door leaf installed in a mine passageway having a high pressure zone and a low pressure zone. The method comprises the steps of operating a variable-throw crank mechanism in a first configuration having a first crank length to apply a first force to the mine door leaf to move it at a first speed, operating the variable-throw crank mechanism in a second configuration having a second crank length less than the first crank length to apply a second force greater than the first force to the mine door leaf to move it at a second speed slower than the first speed, and using a resistance pressure associated with the high and low pressure zones in the mine passageway to convert the variable-throw crank mechanism from the first configuration to the second configuration.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring now to the drawings,
The mine door system 20 comprises a mine door, generally designated 30, adapted to be mounted on a door frame 32 installed in the passageway 14. The door frame 32 defines an entry and comprises a pair of telescoping columns 36 at opposite sides of the door frame and a lintel 40 spanning the columns. The door 30 comprises first and second door leafs 30A, 30B mounted on respective columns 36 by hinges 44, for example, for back and forth swinging movement of the door leafs between a fully-closed position (
The technology of the present invention can be applied to both single-leaf door installations and double-leaf door installations.
The mine door system 20 also includes first and second articulated door-opening mechanisms, generally designated 54, 56 (
Referring to
The first door-opening mechanism 54 also includes a crank, generally designated 100, connected to the mechanical link 60 toward a second end 102 of the mechanical link 60, and preferably immediately adjacent the second end of the link, for rotational movement relative to the mechanical link about a second generally vertical axis 106 spaced from the first vertical axis 66 (see
As illustrated in
In the illustrated embodiment, the crank 100 is a variable-throw (variable-length) crank comprising first and second crank arms 150, 154 connected for pivotal movement relative to one another about a fourth generally vertical axis 158 located between the second and third vertical axes 106, 112, as viewed in
As will be described in more detail below, the variable-throw crank 100 articulates between a first configuration (e.g.,
The crank 100 assumes its first or “lengthened” configuration (e.g.,
The crank 100 assumes its second or “shortened” configuration (
Importantly, the change of the length of the crank 100 also affects the speed at which the door leaf 30A moves. In this regard, the speed at which the door moves is a function of both the angle of the crank 100 (as it rotates around axis 112) and the length of the crank. In particular, the crank-angle component of speed is substantially zero when the crank angle is zero, i.e., when the first, second, third, and fourth vertical axes 66, 106, 112, 158 are substantially aligned (“dead-center”). Desirably, the crank assumes a first dead-center position when the door leaf 30A is fully closed (
A holding device 200 holds the variable-throw crank 100 in its first (full-throw) configuration in which the second, third and fourth vertical axes 106, 112, 158 are substantially in alignment. In the illustrated embodiment, the holding device 200 is a helical torsion spring (also designated 200, for convenience) having a central vertical axis generally coincident with the fourth vertical axis 158. The spring 200 has first and second end portions 204 bent vertically for reception in vertical sleeves 208 mounted on the first and second crank arms 150, 154, respectively (see
Devices other than a torsion spring can be used for holding the crank 100 in its first configuration while allowing the articulated door-moving mechanism to move toward its second configuration when the force for opening the door exceeds a predetermined amount. By way of example, other types of springs can be used, such as a gas spring, coil spring, leaf spring, or other spring arrangement. A non-spring powered or fixed mechanical mechanism can also be used, such as a cam mechanism, or an eccentrically-operated mechanism, or a motor or other powered device which positively moves the crank 100 between its first and second configurations.
The door-opening mechanism 54 is mounted in an enclosure or housing 220 secured in suitable fashion (e.g., welded or fastened) to the lintel 40 of the door frame 32. The housing 220 extends like a cantilever from the lintel 40 and is supported at its free (outer) end by a brace 224.
A suitable control system 250 (
To move the door leaf from its fully-open position (
Thus, in the illustrated embodiment, the variable-throw crank 100 is configured to pivot in one direction along a circular path of about 360 degrees as the door leaf moves from its fully-closed position to its fully-open position and then back to its fully-closed position. In other embodiments, a reversing motor (or other reversing drive) is used to rotate the crank (e.g., 180 degrees) in one direction to open the door leaf and in the opposite or reverse direction (e.g., 180 degrees) to close it.
It will be observed from the above that the operation of the crank 100 moves the door leafs 30A, 30B from a zero speed (at the first dead-center position) to a relatively high speed and back to a zero speed (at the second dead-center position) as the leafs move between their fully-open and fully-closed positions. Significantly, the transitions between these speeds are infinitely smooth to reduce jarring forces to the door system and surrounding structure. The crank can be a fixed-length crank or a variable-length crank to achieve this advantage, and this invention contemplates the use of both such embodiments.
The pivot or knuckle connection 76 between the two rigid members 70, 72 of the mechanical link 60 allows limited vertical movement between the door leaf 30A and the crank 100 as the door leaf opens and closes to avoid binding of the crank bearings 170, 178, 194.
The operation of the second door-opening mechanism 56 to open and close the second door leaf 30B is similar to the operation of the first door-opening mechanism 54 described above. As note previously, the opening and closing of the door leafs 30A, 30B are preferably sequenced such that the door leaf 30A with the astragal seal 50 starts its initial movement at least slightly before the initial opening movement of the other door leaf 30B to avoid damage to the seal, and such that the door leaf 30A with the astragal seal arrives back at its fully-closed position at least slightly after the other door leaf 30B has reached its fully-closed position to insure proper sealing.
The crank design of this invention provides advantages over conventional hydraulic or pneumatic door-operating systems. By way of example, the crank design is less complex and less costly. Additionally, the action of the variable-throw crank allows greater operating speed because it automatically reduces the momentum of the door leaf as it stops and starts. The crank design insures a very smooth transition from zero speed with corresponding low reaction back to the frame 32 as the door leaf gains momentum, a very high mid-stroke speed for a quick opening time, and a very smooth transition from high speed back to zero speed with little momentum delivered to the frame. The smoothness in transitioning between speeds (i.e., smooth acceleration and deceleration) reduces the risk of damage to the door frame 32, to the surrounding structure, and to the seals on the door leafs. Further, the crank design provides a large advantage in mechanical advantage or leverage when the door leaf is starting to open against a heavy air load. Then, when the air load is reduced (e.g., due to the door being open a little and the air able to flow through the opening), the speed of door movement automatically increases, trading thrust or force for speed. Also, the line of force exerted by the crank 100 and mechanical link 60 is more perpendicular (closer to perpendicular) to the door leaf when it is opening, and less perpendicular (farther away from perpendicular) as the door leaf is more fully opened. This is advantageous because the better the vector against the door leaf the more efficient the design, i.e., it takes less force to open the door leaf if you are pushing squarely against it, and more force if you are vectored off at an angle to it. After the air load is overcome and greater force is not required, the door trades the square vector for a more oblique one so the door speeds up and automatically trades force for speed as the load is reduced. As a result, the door leaf moves more slowly from its fully-closed position to its fully-open position and more rapidly from its fully-open position to its fully-closed position. By way of example but not limitation, the door leaf 30A may open in about eight seconds as the crank rotates through a first segment of about 180 degrees and close in about six seconds as it moves through a second segment of about 180 degrees.
It will also be observed that the connection of the mechanical link 60 to the door leaf 30A is more toward the center of the entry when the door is closed and swings to the side as the door is opened. This design is advantageous in that the mechanical and connection hardware is moved out of the center of the entry to provide greater clearance through the open entry but is still located to push at a point some distance from the hinge to get a significant mechanical advantage.
The control system 250 controls the operation of the motors 124 of both door-opening mechanisms 54, 56, preferably independent of one another. As a result, the control system 250 is able to control the movement of each door leaf independent of the other door leaf to achieve the desired opening and closing times of each door leaf, the sequence of movement of one door leaf relative to the other door leaf, and any other variations in movement that may be desirable.
The motors 124 can be reversing motors rather than non-reversing motors. However, a non-reversing motor arrangement is typically less expensive. Further, rotating the crank 100 in one direction only has a leverage advantage. If the crank is arranged to turn so that the throw starts to move outward, toward the center of the entry as the mechanism starts to open the door, the crank 100 and mechanical link 60 automatically start to get a better purchase through a more perpendicular vector to the door leaf. Also, since the crank 100 keeps turning in the same direction to close the door leaf that it did to open it, the design automatically trades the opening force vector for a closing speed vector, which is desirable. Force is not needed to close the door leaf, only to open it since the pressure differential across the door leaf tends to close it.
As previously noted, in the illustrated embodiment the door-opening mechanisms 54, 56 are substantially identical. However, in other embodiments, the second door-opening mechanism 56 may differ from the first mechanism 54. By way of example, the first door-opening mechanism 54 may include a variable-length crank mechanism, as described above, and the second door-opening mechanism may not include a variable-length crank mechanism. In that case, the first mechanism could be operated to open the first door leaf 30A first to relieve the air load on the door, and the second mechanism then operated.
Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions, products, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is a continuation of U.S. application Ser. No. 12/708,948, filed Feb. 19, 2010 now U.S. Pat. No. 8,800,204, the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
584809 | Anthony | Jun 1897 | A |
988622 | Bowman | Apr 1911 | A |
1291910 | Johnson | Jan 1919 | A |
1318349 | Boos | Oct 1919 | A |
1376248 | Boggio | Apr 1921 | A |
1446340 | Ferguson | Feb 1923 | A |
1510600 | Miller | Oct 1924 | A |
1563827 | Boggio | Dec 1925 | A |
1620669 | Littlejohn | Mar 1927 | A |
1748448 | Gurney | Feb 1930 | A |
1903384 | Cooke | Apr 1933 | A |
2257759 | Niemann | Oct 1941 | A |
2924449 | Leimer et al. | Feb 1960 | A |
3654873 | Floehr | Apr 1972 | A |
3708915 | Davey | Jan 1973 | A |
4185415 | LaConte | Jan 1980 | A |
4522321 | Kinoshita | Jun 1985 | A |
4610046 | Buschur et al. | Sep 1986 | A |
5018304 | Longoria | May 1991 | A |
5040331 | Merendino et al. | Aug 1991 | A |
5618080 | Sullivan et al. | Apr 1997 | A |
5752344 | Richmond | May 1998 | A |
5930954 | Hebda | Aug 1999 | A |
6067753 | Hebda | May 2000 | A |
6105447 | Linn | Aug 2000 | A |
6425820 | Kennedy et al. | Jul 2002 | B1 |
6766616 | Richter | Jul 2004 | B2 |
6883275 | Hellinga et al. | Apr 2005 | B2 |
6938372 | Kennedy et al. | Sep 2005 | B2 |
6955594 | Kennedy et al. | Oct 2005 | B2 |
7118472 | Kennedy et al. | Oct 2006 | B2 |
7293819 | Duffy | Nov 2007 | B2 |
8161681 | Treihaft | Apr 2012 | B2 |
8169169 | Hass et al. | May 2012 | B2 |
8341889 | Faulkner et al. | Jan 2013 | B2 |
20020092237 | Hebda | Jul 2002 | A1 |
20040261319 | Kennedy et al. | Dec 2004 | A1 |
20100223853 | Daniel-Wayman et al. | Sep 2010 | A1 |
Entry |
---|
Articulate-Define The American Heritage® Dictionary of the English Language, Fourth Edition copyright © 2000 by Houghton Mifflin Company. Updated in 2009. Published by Houghton Mifflin Company. All rights reserved. http://www.thefreedictionary.com/articulate, 3 pgs. |
Configuration-Define The American Heritage® Dictionary of the English Language, Fourth Edition copyright © 2000 by Houghton Mifflin Company. Updated in 2009. Published by Houghton Mifflin Company. All rights reserved http://www.thefreedictionary.com/Configuration, 3 pgs. |
Four-bar analysis (Hebda, Spreadsheet, Clarence W. Mayott, PhD, May 10, 2012), 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20140311042 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12708948 | Feb 2010 | US |
Child | 14321408 | US |