It is desirable to reduce the power consumption of an image sensor. It may also be desirable to reduce the magnitude, e.g., voltage, of the voltage supply that drives the image sensor. For example, this can allow more flexibility in battery operated applications.
Lowering the voltage, however, can lower the dynamic range of the sensor.
The voltage can be boosted internally.
The present application defines increasing the pixel voltage dynamic range in a photosensor, such as an active pixel sensor. This is done by using two controlling lines to control each pixel. Each pixel line can have its own voltage, thereby enabling applying separate voltages to different parts of the pixel. By selectively controlling the voltages on the different parts, dynamic range boosting can be carried out.
In accordance with one embodiment, a reset transistor source/drain of a pixel of a CMOS imager is biased with a voltage signal on a line that supplies the voltage signal to a row of pixels of the imager, and the voltage signal is lowered during operation of the imager.
These and other aspects will be described in detail with reference to the accompanying drawings, wherein:
A single pixel of an active pixel sensor is shown in
A first reset controlling line 115 controls a reset transfer gate 105 to reset the charge from the photodiode 100 based on a floating reset diffusion 110. The diffusion is either floating when gate 105 is off, or connected to line 120, when gate 105 is on.
When gate 105 is off, the value on the floating diffusion 110 represents the charge on the photodiode 100. This charge level is buffered by a follower transistor 125, and also switched by an in pixel select transistor 130. Additional pixels and circuitry may be also placed in the pixel as disclosed in U.S. Pat. No. 5,471,515.
All of the elements in this device can be formed from MOS and CMOS transistors. These transistors have a significant threshold voltage between 0.6 and 0.9 volts. The output voltages from the floating diffusion 110, the source follower transistor 125 and other voltages may be reduced or shifted downward by these thresholds.
For a supply voltage of 3.3 volts, the voltage on the floating diffusion may extend between 1.2 volts and 2.7 volts, e.g. the dynamic range may equal 1.5 volts. A boosted reset pulse may be used to increase the floating diffusion level, for example by 0.5 volts. This could correspondingly increase the signal dynamic range.
The present application teaches a way to expand dynamic range, maintain low dark current, and provide an operational mode in which quantum efficiency is increased by all the photodiode PN junctions in the pixel being kept near zero potential during the integration time. The improved pixel uses a combination of three different techniques for increasing its performance.
A first technique uses in-pixel boosting. In the present technique, the photodiode voltage only increases during the time of integration.
The channel of the pixel source follower is filled with charge during reset. The charge dumps from the channel into the drain during the readout time. The readout line is kept grounded during reset.
In a typical active pixel sensor circuit, this can result in a large current, since the drain on the source follower shares its VDD with the drain of the reset transistor.
The present system may separate the biases to switching elements (e.g. transistors), within a single pixel. This is done by using an additional metal line in each pixel. The circuit as described herein also uses a shared reset/select line which forms a reset for a first line, and a select for a different line. In this way the drain of the reset transistor for a specific pixel is separated from the drain of the source follower transistor for that pixel. By applying pulses to the transistors at different times, the power supplies can be effectively separated.
The VDD lines are run horizontally. As described herein, a special dynamic readout regime is used to minimize the DC current along that line, and thereby minimize voltage drop along that line.
As shown in
Each VDD line, such as 205, is connected to two separate row drivers; here line N−1 and line N. As shown by waveform 209, this provides the VDD voltage only during the time of the two select pulses, i.e. during almost one row time. During the rest of the frame time, VDD remains grounded.
In operations, the VDDN−1 line 205 first rises at 210. This boosts the voltage on the floating diffusion on line N. This also boosts the reset on line N−1 and also begins the first selecting pulse time period. During the second selecting pulse time 226, the VDD line raises the level on the source follower 215.
The gate of the source follower 215 for line N−1 is connected to the photodiode 220 for line N.
After signal sampling is completed, the voltage on VDD line N−1 drops to 0 at 224 during the reset time for photodiode 220 for line N−1. This means that the floating diffusion for that photodiode 220 will be charged to the reset level when the output column is grounded and the surface potential under the source follower gate is minimum. This may increase the cell capacitance.
After reset is completed, the voltage on the VDD line N−1 is raised again to begin the period 226. The surface potential under the source follower gate is then maximized, thereby minimizing the capacitance of the source follower gate.
Reference sampling then occurs during time period 226. At the end of the reference sampling, the voltage on VDD line n−1 drops down at 227 and remains low for the remainder of the frame period.
If the capacitances of the photodiode and of the source follower gate are approximately equal, then the pixel can be boosted by half of the potential swing under the source follower gate. This could reach 1 volt for VDD=3.3 volts and a typical reset boosting.
The line 230 shows the photodiode boosting that occurs. During the reset pulse, the output is boosted by an amount 232. Importantly, the drains of the reset transistor 225 and the source follower 215 for the same photodiode are connected to different VDD lines. The joint VDD contact for the reset transistor drain of one photodiode is connected to the source follower drain of another photodiode. For example,
It could be undesirable to have a steady current from the VDD row driver to ground throughout the horizontal VDD line and vertical output column. In order to avoid this, a special dynamic source follower mode may be used. In
This system as described above can increase dynamic range, improve quantum efficiency, and reduce power consumption by reduction of the source follower static DC current.
Although only a few embodiments have been disclosed in detail above, other modifications are possible. All such modifications are intended to be encompassed within the following claims.
For example, other photoreceptors, such as photogates, pinned photodiodes, or other devices could be used. The photogate could require a separate transfer gate to be added.
The present application is a divisional application of U.S. patent application Ser. No. 09/653,527, filed on Aug. 31, 2000, now U.S. Pat. No. 7,116,366, which claims the benefit of U.S. Provisional application No. 60/151,619, filed Aug. 31, 1999, the disclosure of which is incorporated herein by reference.This application is a continuation reissue of application Ser. No. 12/484,039, filed on Jun. 12, 2009 now abandoned, which is a reissue of application Ser. No. 10/901,114 filed Jul. 29, 2004 now U.S. Pat. No. 7,230,645, which is a divisional application of U.S. patent application Ser. No. 09/653,527, filed on Aug. 31, 2000, which issued as U.S. Pat. No. 7,116,366, which claims the benefit of U.S. Provisional application No. 60/151,619, filed Aug. 31, 1999, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5153420 | Hack et al. | Oct 1992 | A |
5539461 | Andoh et al. | Jul 1996 | A |
5614744 | Merrill | Mar 1997 | A |
5869857 | Chen | Feb 1999 | A |
5898168 | Gowda et al. | Apr 1999 | A |
5900623 | Tsang et al. | May 1999 | A |
6097022 | Merrill et al. | Aug 2000 | A |
6211510 | Merrill et al. | Apr 2001 | B1 |
6410899 | Merrill et al. | Jun 2002 | B1 |
6423994 | Guidash | Jul 2002 | B1 |
6512543 | Kuroda et al. | Jan 2003 | B1 |
6535247 | Kozlowski et al. | Mar 2003 | B1 |
6580063 | Okamoto | Jun 2003 | B1 |
6603513 | Berezin | Aug 2003 | B1 |
6618083 | Chen et al. | Sep 2003 | B1 |
6950131 | Kleinhans et al. | Sep 2005 | B1 |
7057150 | Zarnowski et al. | Jun 2006 | B2 |
7116365 | Ueno et al. | Oct 2006 | B1 |
7116366 | Berezin et al. | Oct 2006 | B1 |
7116368 | Berezin et al. | Oct 2006 | B2 |
20010030704 | Kimura | Oct 2001 | A1 |
20020001037 | Miyawaki et al. | Jan 2002 | A1 |
20040141076 | Ueno et al. | Jul 2004 | A1 |
20050041127 | Ueno et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60151619 | Aug 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09653527 | Aug 2000 | US |
Child | 10901114 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12484039 | Jun 2009 | US |
Child | 10901114 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10901114 | Jul 2004 | US |
Child | 13556829 | US | |
Parent | 10901114 | Jul 2004 | US |
Child | 12484039 | US |