1. Field of the Invention
The present invention relates to a high-speed shear for transversely cutting rolled strip with knife carriers which are drivable for rotation and are arranged in pairs opposite each other.
2. Description of the Related Art
High-speed shears of the above-described type are generally known in the art.
For example, DE 196 37 862 A1 describes a flying shear with knife edges arranged on oppositely located drums, wherein the knife edges can be accelerated to the feeding speed of the strip to be cut and can be moved towards each other for carrying out a cut. The invention on which this shear is based resides in that the drums arranged on opposite sides can be accelerated by a driving device provided for at least one of the drums to a circumferential speed corresponding to the speed of the strip to be cut, and that at least one of the drums is provided with a separately controllable adjusting device.
DE 197 46 528 A1 describes a high-speed shear which includes two drums, wherein one of the drums is equipped or constructed as a chisel knife and the other is equipped or constructed as an anvil interacting with the other drum. The two drums are moved towards each other for cutting a continuously rolled strip by means of a controlled adjusting device. The synchronization of the two drums is effected by means of electric, electronic or gear-technological means.
EP 0 904 877 A2 discloses a high-speed shear with knife drums which have slightly different diameters and are driven with a slight speed difference through an external branched gear unit. Using an adjusting device through spreading levers, the drums are moved into the cutting position with oppositely located positions of the knives and, after the cut of the rolled strip has been carried out, the drums are moved once again apart from each other.
Finally, DE-OS 26 54 866 describes a flying shear with coupled knife drums. The shear includes a drum turning device with a force transmission coupling both drums for speeds synchronous with the running speed of the supplied material, and a drum adjusting device for adjusting a cutting drum between an open position and a cutting position, and a control device for the motor of the adjusting device, wherein the control device controls the start of the first cutting drum and the adjustment into the cutting position and the return movement of the drum into the initial position. The means for coupling the drums, the drum adjusting device as well as the control device required for the drum adjusting device are of extremely complicated construction which is susceptible to problems. When force transmission takes place, four gear wheels are in engagement with each other, so that a play of the sides of the gear teeth caused by the engagement may lead to an angular deviation of the interacting drum knife and, thus, to damage or to unclean cuts.
Therefore, starting from the prior art discussed above, it is the primary object of the present invention to further develop a high-speed shear for cutting hot-rolled and/or cold-rolled strip in such a way that exact cuts can be securely carried out at strip speeds of up to about 20 m/sec even if the strip thickness is as little as, for example, 0.8 mm, and that the structural, mechanical and especially gear-technological and control-technological requirements for achieving these cuts are minimized.
In accordance with the present invention, in a high-speed shear of the above-described type, the knife carriers on both sides are mounted in a shear cassette on shafts of gear wheels with a fixed axial distance between them. The shear cassette is mounted within an outer frame and the shear cassette is provided with lifting means for raising or lowering the shear cassette within the outer frame.
In accordance with the solution provided by the present invention, both drums are mounted in a single closed rigid structural component, which means that the distances traveled by the component under force are short and the synchronization gear wheels always remain in engagement. The knife carriers can be moved into a horizontal position and the shear cassette can be moved into a transfer position, so that an opening is provided which allows the beginning of the strip to travel through, even if the beginning of the strip has an upwardly bent front edge. The danger of damage to the shear resulting from upwardly bent strips is reduced.
In accordance with a method for operating the shear, the two knife carriers are moved into the horizontal position and the shear cassette is moved into a raised transfer position within the outer frame when a strip end enters or travels through.
In accordance with a further development of the method, the start-up of the shear is carried out with rotary acceleration of the rate of rotation, wherein the knife carriers are adjusted so as to be at a distance from each other through eccentric bushings and the shear cassette is raised or lowered with its bearing chocks.
It is advantageous that the acceleration time for the start-up of the shear is determined by the step-up ratio between the eccentric bushings and the knife carriers.
In accordance with a further development of the concept of the present invention, the gear geometry of the synchronization gear wheels of the knife carriers is selected in such a way that a displacement in a direction parallel to the axis of the knife carriers of, for example, plus/minus 15 mm is permitted.
In accordance with an advantageous feature, a synchronous rotation of both knife carriers of less than 0.5 mm can be maintained for an exact arch-shaped cut with a small strip thickness of, for example, 0.8 mm.
In accordance with a further development of the present invention, exactly mounted arch-shaped knives are used for the flying shear at a strip speed of 20 m/sec for carrying out an arch-shaped cut with two knives.
Finally, in accordance with another further development of the method of the invention, the tension of the strip for cutting the strip is effected between two pairs of drivers.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding of the invention, its operating advantages, specific objects attained by its use, reference should be had to the drawing and descriptive matter in which there are illustrated and described preferred embodiments of the invention.
In the drawing:
a is a schematic side view of the shear according to the present invention with a raised shear cassette as the beginning of a rolled strip enters or travels through, with both knife carriers being in the horizontal position;
a′ is an enlarged view of a portion of
b through 1d show individual phases of adjustment of the knife carriers as their rotation is accelerated from zero to the rate of rotation for cutting the strip;
a through 3c are schematic illustrations of the sequences of movement of the knife carriers and eccentric bushings, starting from the transfer position according to
a is a side view of the shear shown in the transfer position; and
b is a side view of the shear in a cutting position.
The knife carriers 1, 1′ are mounted on both sides in a shear cassette 2 on shafts 12,12′ of gear wheels 11,11′ arranged in pairs opposite each other, driven in synchronous opposite rotation and in permanent engagement with each other. The knife carriers are mounted in eccentric bushings 13,13′ in the shear cassette within an outer frame 3. The cassette 2 has lifting means 4 for raising and lowering the shear cassette 2 within the outer frame 3.
The lifting means 4 can be arranged either below the shear cassette 2, as illustrated in
In accordance with an embodiment of the invention, the shear can be provided with means 5, 5′ for guiding the strip 6 relative to the cutting position 7, as illustrated in
As can be clearly seen, for example, in
As can be seen in
An important embodiment of the invention results from the fact that the shafts 12, 12′ are mounted in the eccentric bushings 13, 13′, as particularly illustrated in
Consequently, in accordance with the fixed transmission ratio, a cutting position 7 is always reached after a number of rotations of the knife carriers 1, 1′. As shown in
As seen in
a is a side view of the shear in the position in which the strip 6 travels through, and
As can be seen in
Subsequently, for starting up the shear, the rate of rotation of the shear is accelerated with the knife carriers 1, 1′ being spaced apart from each other, and the shear cassette 2 with its bearing chocks is lowered. The time required for accelerating the start-up of the shear is determined by the transmission ratio between the eccentric bushings 13, 13′ and the knife carriers 1, 1′.
It is essential that the gear tooth 21 geometry of the synchronization gear wheels of the knife carriers 1, 1′ is selected so that a displacement in a direction parallel to the axis of the knife carriers 1, 1′ of, for example, plus/minus 15 mm is possible. It is important for a problem-free operation of the shear that, for an exact arch-shaped cut with a small strip thickness of, for example, 0.8 mm, a synchronous rotation of both knife carriers 1, 1′ of less than 0.5 mm is maintained. This prevents damage to the knife arrangement 10, 10′.
In a flying shear for a strip travel speed of up to 20 m/sec it is of essential importance for carrying out a clean arch-shaped cut with two knives that precisely mounted arch-shaped knives 20 are used, as shown, for example, in
In addition, it is also required for a correct cut that the strip 6 is tensioned between two pairs of drivers 5, 5′, as shown in
The gear wheels 11, 11′ rotate the knife carriers 1, 1′ and the eccentric bushings 13, 13′ axially displace the knife carriers via the shafts 12, 12′ as driven by the gear unit 14 via the gears 30, 30′ and the shafts 31, 31′.
The invention is not limited by the embodiments described above which are presented as examples only but can be modified in various ways within the scope of protection defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
100 01 928 | Jan 2000 | DE | national |
This application is a continuation-in-part of U.S. application Ser. No. 09/755,869, filed Jan. 5, 2001 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
1802554 | Hahn | Apr 1931 | A |
3570348 | Hallden | Mar 1971 | A |
4058041 | Ito | Nov 1977 | A |
4162642 | Greven | Jul 1979 | A |
4179958 | Nomura et al. | Dec 1979 | A |
4202229 | Feldkamper | May 1980 | A |
4470331 | Eiting et al. | Sep 1984 | A |
4656905 | Ginzburg et al. | Apr 1987 | A |
4732028 | Bodnar | Mar 1988 | A |
4911047 | Hornung et al. | Mar 1990 | A |
5088367 | Cracchiolo et al. | Feb 1992 | A |
5207138 | Sato et al. | May 1993 | A |
6032560 | Puchovsky | Mar 2000 | A |
6776075 | Grafe et al. | Aug 2004 | B1 |
7107891 | Kneppe et al. | Sep 2006 | B2 |
7117776 | Grafe et al. | Oct 2006 | B1 |
7258049 | Grafe et al. | Aug 2007 | B2 |
7827891 | Grafe et al. | Nov 2010 | B1 |
20010001376 | Kneppe et al. | May 2001 | A1 |
20010020407 | Grafe et al. | Sep 2001 | A1 |
Number | Date | Country |
---|---|---|
2330986 | Jul 2008 | CA |
26 54 866 | Jun 1977 | DE |
19637862 | Mar 1998 | DE |
197 46 528 AL | Apr 1999 | DE |
10001928 | Jul 2001 | DE |
0162020 | Nov 1985 | EP |
0 904 877 | Mar 1999 | EP |
911125 | Apr 1999 | EP |
1099501 | May 2001 | EP |
1099502 | May 2001 | EP |
1118409 | Jul 2001 | EP |
2249330 | Apr 2006 | ES |
3049819 | Mar 1991 | JP |
7051924 | Feb 1995 | JP |
11221714 | Aug 1999 | JP |
2001179529 | Jul 2001 | JP |
2001191216 | Jul 2001 | JP |
2001239423 | Sep 2001 | JP |
5232344 | Jul 2013 | JP |
PA01000668A | Jun 2002 | MX |
WO 9946076 | Sep 1999 | WO |
WO 0005019 | Feb 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040177734 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09755869 | Jan 2001 | US |
Child | 10749188 | US |