This application claims priority to EP 17181287.8, filed Jul. 13, 2017, which is hereby incorporated by reference.
The present disclosure generally relates to a method of operating a laboratory sample distribution system, to a laboratory sample distribution system and to a laboratory automation system comprising a laboratory sample distribution system.
There is a need for a method of operating a laboratory sample distribution system, a laboratory sample distribution system and a laboratory automation system comprising a laboratory sample distribution system, being highly scalable and modular, and providing an easy addressing scheme
According to the present disclosure, a method of operating a laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a plurality of sample container carriers, a gateway having a network interface, and a plurality of transport modules. Each transport module can comprise a transport surface. The transport modules can be arrangeable adjacent to one another in a row-direction (x) and in a column-direction (y) such that the transport surfaces of the transport modules together form a common transport surface. Each transport module can also comprise a controllable driver arranged below the transport surface and configured to move sample container carriers on the transport surface, a left network interface, a right network interface, an upper network interface, and a lower network interface. The left network interfaces and the right network interfaces can be configured to connect transport modules arranged adjacent to one another in the row-direction (x) and the upper network interfaces and the lower network interfaces can be configured to connect transport modules arranged adjacent to one another in the column-direction (y). The network interface of the gateway can be connected to a network interface of a first transport module. The method can comprise sending an explore command from the gateway to the first transport module, propagating an initialization command from the first transport module to the remaining transport modules, and storing addresses within the transport modules. A stored address of a respective transport module can correspond to a column (C0 to C6) and to a row (R0 to R8) in which the corresponding transport module is positioned. The method can also comprise using the addresses by the gateway to address the transport modules.
Accordingly, it is a feature of the embodiments of the present disclosure to provide for a method of operating a laboratory sample distribution system, a laboratory sample distribution system and a laboratory automation system comprising a laboratory sample distribution system, being highly scalable and modular, in particular providing an easy addressing scheme. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.
A method can be intended to operate a laboratory sample distribution system.
The laboratory sample distribution system can comprise a plurality (e.g., 2 to 2000) of sample container carriers configured to carry a sample container, typically, a sample tube comprising a medical sample.
The laboratory sample distribution system can further comprise a gateway having at least one network interface, e.g., in the form of an Ethernet network interface, a generic field bus interface, a RS 485 network interface, etc. The gateway may e.g., be embodied as a personal computer (PC). The gateway may e.g., implement all necessary higher layer control functions of the laboratory sample distribution system.
The laboratory sample distribution system can further comprise a plurality (e.g., 2 to 1000) of transport modules. Each transport module can comprise a transport surface (also can be denoted as transport plane) configured to carry/support the sample container carriers.
The transport modules can be arrangeable adjacent to one another in a row-direction and in a column-direction such that the transport surfaces of the transport modules together can form a common transport surface having a dimension in row- and/or column-direction.
A respective transport module can comprise a controllable driver, e.g., in the form of electromagnets or solenoids, arranged below the respective transport surface in rows (row-direction) and columns (column-direction) and configured to move sample container carriers on/over the respective transport surface.
A respective transport module can comprise a left network interface, a right network interface, an upper network interface, and a lower network interface. The left network interfaces and the right network interfaces of the respective transport modules can be configured to connect the transport modules arranged adjacent to one another in the row-direction. Accordingly, the upper network interfaces and the lower network interfaces of the respective transport modules can be configured to connect the transport modules arranged adjacent to one another in the column-direction.
A respective transport module may comprise a control device configured to control the movement of the sample container carriers on top of the transport surface by driving the driver such that the sample container carriers can move along corresponding and individual transport paths on the transport surface. The control device may be in signal connection with the left network interface, the right network interface, the upper network interface, and the lower network interface and may store an individual address. The individual address may be used by the gateway to address and communicate with the control device of the corresponding transport module.
The network interface of the gateway can be connected to at least one interface of at least one of the transport modules. This transport module can be denoted as a first transport module.
The gateway and the number of transport modules can be configured to interact such that a method as described below can be carried out.
A laboratory automation system comprising a number of pre-analytical, analytical and/or post-analytical stations and a laboratory sample distribution system as described above being configured to transport the sample container carriers and/or sample containers between the stations is also presented. The stations may be arranged adjacent to the laboratory sample distribution system.
Pre-analytical stations may be configured to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.
Analytical stations may be configured to use a sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exists.
Post-analytical stations may be configured to perform any kind of post-processing of samples, sample containers and/or sample container carriers.
The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.
The method can comprise the following steps used to assign individual addresses to each of the transport modules.
Initially, the gateway can transmit an explore command to the first transport module, i.e., to the transport module having one of its network interfaces (left, right, upper or lower) connected to the network interface of the gateway. The explore command may be a command having a specific identifier characterizing this type of command.
The first transport module can receive the explore command and, in response to receiving the explore command, can transmit an initialization command to all transport modules directly connected to the first transport module. The initialization command may be a command having a specific identifier characterizing this type of command. The explore command and the initialization command may differ from one another or may be identical. The initialization command can then be propagated to the remaining transport modules successively from transport module to transport module.
In response to receiving the initialization command, addresses can be stored within the respective transport modules. A stored address of a respective transport module can correspond to a row and to a column in which the corresponding transport module is positioned.
The gateway can use the stored addresses to individually address the transport modules.
In one embodiment, the method can comprise the further steps: upon receiving the explore command by the first transport module, setting a value of a column counter and value of a row counter to a respective initial value, e.g., zero, within the first transport module and storing the column counter and the row counter within the first transport module, sending the initialization command together with or comprising the respective values of the column counter and of the row counter from first transport module to all further transport modules being directly connected to the first transport module, upon receiving the initialization command and the respective values of the column counter and of the row counter by the further transport modules, a) incrementing or decrementing the value of the received column counter and storing the incremented or decremented value of the column counter and storing the received value of the row counter within the further transport modules, if the initialization command and the values of the column counter and of the row counter are received by the left or the right network interfaces of the further transport modules, and b) incrementing or decrementing the value of the received row counter and storing the incremented or decremented value of the row counter and storing the received value of the column counter within the further transport modules, if the initialization command and the values of the column counter and of the row counter are received by the upper or the lower network interface of the further transport modules, repeating steps a) and b) for all further transport modules, until all transport modules have stored the values of their corresponding column counters and row counters, and using the values of the respective column counters and row counters as the addresses.
A value of a column counter may e.g., be incremented by 1, if the respective values are received by the left network interface of a further transport module, and a value of a column counter may e.g., be decremented by 1, if the respective values are received by the right network interface of a further transport module. Accordingly, a value of a row counter may e.g., be incremented by 1, if the respective values are received by the upper network interface of a further transport module, and a value of a row counter may e.g., be decremented by 1, if the respective values are received by the lower network interface of a further transport module
In one embodiment, during transmission of messages, a respective transport module can forward a received message to an adjacent transport module arranged in the same row and/or the same column, self-evidently only if the respective transport module is not the receiver or destination of the message. A message may e.g., be a command transmitted by the gateway or a response to a command transmitted by a transport module. A message may be transmitted depending on a target address until the message is received by the receiver having the target address.
In one embodiment, the network interface of the gateway or a further network interface of the gateway can additionally be connected to an interface of a further transport module. The explore command can additionally be sent from the gateway to the further transport module.
Referring initially to
The laboratory sample distribution system 100 can comprise six transport modules 120 positioned adjacent to each other in a row-direction x and in a column-direction y. The transport modules 120 can respectively comprise transport surfaces 121 forming a common transport surface 110.
Under a respective transport surface 121 a plurality of electrically controllable drivers or electro-magnetic actuators in the form of electromagnets 122 can be positioned in rows and columns. The drivers 122 can be implemented as solenoids having a solid ferromagnetic core and a coil surrounding the ferromagnetic core.
Sample container carriers 140 can be positioned on the common transport surface 110 and can be moved by the drivers 122. While it can be understood that a plurality of sample container carriers 140 can be positioned on the common transport surface 110, due to simplicity only three sample container carriers 140 are depicted in
Each sample container carrier 140 can comprise a magnetically active device 141 in the form of a permanent magnet positioned inside the respective sample container carrier 140. The magnetically active device 141 or permanent magnet can be configured to interact with electro-magnetic fields generated by the drivers 122 for moving the sample container carrier 140 over the common transport surface 110.
The laboratory sample distribution system 100 can be adapted to transport the sample container carriers 140 and/or the sample containers 145 between the laboratory stations 20. The laboratory stations 20 can be positioned adjacent to the transport surface 110 such that a sample container carrier 140 can be used to transport a sample contained in the sample container 145 to a respective laboratory station 20.
The transport modules 120 typically can have the same size and may e.g., comprise a matrix of 6×6 drivers 122.
The laboratory sample distribution system 100 can further comprise a gateway 150 in signal communication with the transport modules 120, as will be explained in more detail below.
The gateway 150 can comprise a network interface 151. The network interface 151 of the gateway 150 can be connected to a left interface 126 of a first transport module 120_1 and can optionally be connected to a right network interface 127 of a last transport module 120_n.
The network interfaces may e.g., be Ethernet interfaces, RS 485 interfaces, or wireless interfaces.
The transport modules 120 can virtually be arranged inside a matrix having columns C0 to C6 and rows R0 to R8. A column Ci (i=0, 1, 2, . . . ) and a row Rj (j=0, 1, 2, . . . ) of a respective transport module 120_1 to 120_n in this matrix can be used as an individual address Ci/Rj of a respective transport module 120_1 to 120_n.
The method of assigning the addresses Ci/Rj comprises the following steps.
First, the gateway 150 can explore the unknown system configuration. To this purpose, the gateway 150 can send an explore command to the first transport module 120_1, thereby initiating the assignment of the addresses Ci/Rj.
When the first transport module 120_1 receives the explore command, the first transport module 120_1 can set a value of a column counter CC and a value of a row counter RC to a respective initial value of Zero (0) and store the column counter CC=0 and the row counter RC=0. Consequently, the first transport module 120_1 can now have the address CC/RC=0/0.
In a next step, the first transport module 120_1 can send a broadcast in form of an initialization command comprising the respective values of the column counter CC=0 and of the row counter RC=0 to the transport module 120_2 directly connected to the first transport module 120_1.
When the transport module 120_2 receives the initialization command, the transport module 120_2 can increment the value of the received column counter CC to the value 1, store the incremented value 1 of the column counter CC and store the received value 0 of the row counter RC, since the respective values can be received by the left network interface 126 of the further transport module 120_2. Thus, the transport module 120_2 can now have the address CC/RC=1/0.
In a next step, the transport module 120_2 can send the initialization command comprising the respective values of the columns counter CC=1 and of the row counter RC=0 to the transport module 120_3 directly connected to the further transport module 120_2. Consequently, the transport module 120_3 can now evaluate the address to CC/RC=2/0, and, after a further repetition, the transport module 120_4 can evaluate its address to CC/RC=3/0.
Since two transport modules 120_5 and 120_6 are directly connected to the transport module 120_4, two addresses may be assigned simultaneously to the transport modules 120_5 and 120_6.
Since the transport module 120_5 receives the initialization command on its left interface 126, the transport module 120_5 can increment the value of the received column counter CC to the value 4 and leave the received value of the row counter RC unchanged. Thus, the transport module 120_5 can evaluate its address to CC/RC=4/0.
Since the transport module 120_6 receives the initialization command on the upper interface 128, the transport module 120_6 can increment the received value of the row counter RC to the value 1 and leave the received value of the column counter CC unchanged. Thus, the transport module 120_6 can evaluate its address to CC/RC=3/1.
The described steps can be repeated until all transport modules 120_1 to 120_n have stored the values of their corresponding column counters CC and row counters RC.
The values of the respective column counters CC and row counters RC can be used as the individual addresses to communicate with the respective transport modules 120_1 to 120_n.
The addressing process may alternatively or additionally be initiated using the transport module 120_n.
By this method, a self-organizing network can be realized. Typically, only node-to-node connections can be used. Each node or transport module can communicate to its direct neighbors. Each transport module can forward messages towards all or to the addressed transport module. Broadcasts can run into different directions. No central bus may be necessary.
Several access points to the network can be possible. In that case, the transport module can ignore commands or messages which have already been received. For that purpose, messages may have unique IDs.
After the address assignment, every transport module knows its coordinates, the quickest uplink way to the gateway and its neighbors.
When a transport module gets a command from the gateway, it can respond to the gateway. The uplink neighbor can forward the response until the gateway receives the response.
Each transport module may comprise a Field Programmable Gate Array (FPGA) implementing the interfaces 126 to 129 and the logic of address assigning and message propagation.
It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.
Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
17181287 | Jul 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3273727 | Rogers et al. | Sep 1966 | A |
3653485 | Donlon | Apr 1972 | A |
3901656 | Durkos et al. | Aug 1975 | A |
4150666 | Brush | Apr 1979 | A |
4395164 | Beltrop et al. | Jul 1983 | A |
4544068 | Cohen | Oct 1985 | A |
4771237 | Daley | Sep 1988 | A |
5120506 | Saito et al. | Jun 1992 | A |
5295570 | Grecksch et al. | Mar 1994 | A |
5309049 | Kawada et al. | May 1994 | A |
5457368 | Jacobsen et al. | Oct 1995 | A |
5523131 | Isaacs et al. | Jun 1996 | A |
5530345 | Murari et al. | Jun 1996 | A |
5636548 | Dunn et al. | Jun 1997 | A |
5641054 | Mod et al. | Jun 1997 | A |
5651941 | Stark et al. | Jul 1997 | A |
5720377 | Lapeus et al. | Feb 1998 | A |
5735387 | Polaniec et al. | Apr 1998 | A |
5788929 | Nesti | Aug 1998 | A |
6045319 | Uchida et al. | Apr 2000 | A |
6062398 | Thalmayr | May 2000 | A |
6141602 | Igarashi et al. | Oct 2000 | A |
6151535 | Ehlers | Nov 2000 | A |
6184596 | Ohzeki | Feb 2001 | B1 |
6191507 | Peltier et al. | Feb 2001 | B1 |
6206176 | Blonigan et al. | Mar 2001 | B1 |
6255614 | Yamakawa et al. | Jul 2001 | B1 |
6260360 | Wheeler | Jul 2001 | B1 |
6279728 | Jung et al. | Aug 2001 | B1 |
6293750 | Cohen et al. | Sep 2001 | B1 |
6429016 | McNeil | Aug 2002 | B1 |
6444171 | Sakazume et al. | Sep 2002 | B1 |
6571934 | Thompson et al. | Jun 2003 | B1 |
7028831 | Veiner | Apr 2006 | B2 |
7078082 | Adams | Jul 2006 | B2 |
7122158 | Itoh | Oct 2006 | B2 |
7278532 | Martin | Oct 2007 | B2 |
7326565 | Yokoi et al. | Feb 2008 | B2 |
7425305 | Itoh | Sep 2008 | B2 |
7428957 | Schaefer | Sep 2008 | B2 |
7578383 | Itoh | Aug 2009 | B2 |
7597187 | Bausenwein et al. | Oct 2009 | B2 |
7850914 | Veiner et al. | Dec 2010 | B2 |
7858033 | Itoh | Dec 2010 | B2 |
7875254 | Garton et al. | Jan 2011 | B2 |
7939484 | Loeffler et al. | May 2011 | B1 |
8240460 | Bleau et al. | Aug 2012 | B1 |
8281888 | Bergmann | Oct 2012 | B2 |
8502422 | Lykkegaard | Aug 2013 | B2 |
8796186 | Shirazi | Aug 2014 | B2 |
8833544 | Stoeckle et al. | Sep 2014 | B2 |
8973736 | Johns et al. | Mar 2015 | B2 |
9056720 | Van De Loecht et al. | Jun 2015 | B2 |
9097691 | Onizawa et al. | Aug 2015 | B2 |
9187268 | Denninger et al. | Nov 2015 | B2 |
9211543 | Ohga et al. | Dec 2015 | B2 |
9239335 | Heise et al. | Jan 2016 | B2 |
9423410 | Buehr | Aug 2016 | B2 |
9423411 | Riether | Aug 2016 | B2 |
9567167 | Sinz | Feb 2017 | B2 |
9575086 | Heise et al. | Feb 2017 | B2 |
9593970 | Sinz | Mar 2017 | B2 |
9598243 | Denninger et al. | Mar 2017 | B2 |
9618525 | Malinowski et al. | Apr 2017 | B2 |
9658241 | Riether et al. | May 2017 | B2 |
9664703 | Heise et al. | May 2017 | B2 |
9772342 | Riether | Sep 2017 | B2 |
9791468 | Riether et al. | Oct 2017 | B2 |
9810706 | Riether et al. | Nov 2017 | B2 |
9902572 | Mahmudimanesh et al. | Feb 2018 | B2 |
9939455 | Schneider et al. | Apr 2018 | B2 |
9952242 | Riether | Apr 2018 | B2 |
9969570 | Heise et al. | May 2018 | B2 |
9989547 | Pedain | Jun 2018 | B2 |
10197586 | Sinz et al. | Feb 2019 | B2 |
10288634 | Kaeppeli | May 2019 | B2 |
20020009391 | Marquiss et al. | Jan 2002 | A1 |
20030092185 | Qureshi et al. | May 2003 | A1 |
20040050836 | Nesbitt et al. | Mar 2004 | A1 |
20040084531 | Itoh | May 2004 | A1 |
20050061622 | Martin | Mar 2005 | A1 |
20050109580 | Thompson | May 2005 | A1 |
20050194333 | Veiner et al. | Sep 2005 | A1 |
20050196320 | Veiner et al. | Sep 2005 | A1 |
20050226770 | Allen et al. | Oct 2005 | A1 |
20050242963 | Oldham et al. | Nov 2005 | A1 |
20050247790 | Itoh | Nov 2005 | A1 |
20050260101 | Nauck et al. | Nov 2005 | A1 |
20050271555 | Itoh | Dec 2005 | A1 |
20060000296 | Salter | Jan 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060219524 | Kelly et al. | Oct 2006 | A1 |
20070116611 | DeMarco | May 2007 | A1 |
20070210090 | Sixt et al. | Sep 2007 | A1 |
20070248496 | Bondioli et al. | Oct 2007 | A1 |
20070276558 | Kim | Nov 2007 | A1 |
20080012511 | Ono | Jan 2008 | A1 |
20080029368 | Komori | Feb 2008 | A1 |
20080056328 | Rund et al. | Mar 2008 | A1 |
20080131961 | Crees et al. | Jun 2008 | A1 |
20090004732 | LaBarre et al. | Jan 2009 | A1 |
20090022625 | Lee et al. | Jan 2009 | A1 |
20090081771 | Breidford et al. | Mar 2009 | A1 |
20090128139 | Drenth et al. | May 2009 | A1 |
20090142844 | Le Comte | Jun 2009 | A1 |
20090180931 | Silbert et al. | Jul 2009 | A1 |
20090322486 | Gerstel | Dec 2009 | A1 |
20100000250 | Sixt | Jan 2010 | A1 |
20100152895 | Dai | Jun 2010 | A1 |
20100175943 | Bergmann | Jul 2010 | A1 |
20100186618 | King et al. | Jul 2010 | A1 |
20100255529 | Cocola et al. | Oct 2010 | A1 |
20100300831 | Pedrazzini | Dec 2010 | A1 |
20100312379 | Pedrazzini | Dec 2010 | A1 |
20110050213 | Furukawa | Mar 2011 | A1 |
20110124038 | Bishop et al. | May 2011 | A1 |
20110172128 | Davies et al. | Jul 2011 | A1 |
20110186406 | Kraus et al. | Aug 2011 | A1 |
20110287447 | Norderhaug et al. | Nov 2011 | A1 |
20120009087 | Okubo | Jan 2012 | A1 |
20120037696 | Lavi | Feb 2012 | A1 |
20120129673 | Fukugaki et al. | May 2012 | A1 |
20120178170 | Van Praet | Jul 2012 | A1 |
20120211645 | Tullo et al. | Aug 2012 | A1 |
20120275885 | Furrer et al. | Nov 2012 | A1 |
20120282683 | Mototsu | Nov 2012 | A1 |
20120295358 | Ariff et al. | Nov 2012 | A1 |
20120310401 | Shah | Dec 2012 | A1 |
20130034410 | Heise | Feb 2013 | A1 |
20130153677 | Leen et al. | Jun 2013 | A1 |
20130180824 | Kleinikkink et al. | Jul 2013 | A1 |
20130263622 | Mullen et al. | Oct 2013 | A1 |
20130322992 | Pedrazzini | Dec 2013 | A1 |
20140170023 | Saito et al. | Jun 2014 | A1 |
20140234949 | Wasson et al. | Aug 2014 | A1 |
20150014125 | Hecht | Jan 2015 | A1 |
20150140668 | Mellars et al. | May 2015 | A1 |
20150166265 | Pollack et al. | Jun 2015 | A1 |
20150241457 | Miller | Aug 2015 | A1 |
20150273468 | Croquette et al. | Oct 2015 | A1 |
20150273691 | Pollack | Oct 2015 | A1 |
20150276775 | Mellars et al. | Oct 2015 | A1 |
20150276782 | Riether | Oct 2015 | A1 |
20150316974 | Jeon | Nov 2015 | A1 |
20160003859 | Wenczel et al. | Jan 2016 | A1 |
20160025756 | Pollack et al. | Jan 2016 | A1 |
20160054341 | Edelmann | Feb 2016 | A1 |
20160229565 | Margner | Aug 2016 | A1 |
20160274137 | Baer | Sep 2016 | A1 |
20160282378 | Malinowski et al. | Sep 2016 | A1 |
20160341750 | Sinz et al. | Nov 2016 | A1 |
20160341751 | Huber et al. | Nov 2016 | A1 |
20170059599 | Riether | Mar 2017 | A1 |
20170097372 | Heise et al. | Apr 2017 | A1 |
20170101277 | Malinowski | Apr 2017 | A1 |
20170108522 | Baer | Apr 2017 | A1 |
20170131307 | Pedain | May 2017 | A1 |
20170131310 | Volz et al. | May 2017 | A1 |
20170138971 | Heise et al. | May 2017 | A1 |
20170168079 | Sinz | Jun 2017 | A1 |
20170174448 | Sinz | Jun 2017 | A1 |
20170184622 | Sinz et al. | Jun 2017 | A1 |
20170248623 | Kaeppeli et al. | Aug 2017 | A1 |
20170248624 | Kaeppeli et al. | Aug 2017 | A1 |
20170363608 | Sinz | Dec 2017 | A1 |
20180067141 | Mahmudimanesh et al. | Mar 2018 | A1 |
20180074087 | Heise et al. | Mar 2018 | A1 |
20180106821 | Vollenweider et al. | Apr 2018 | A1 |
20180128848 | Schneider et al. | May 2018 | A1 |
20180156835 | Hassan | Jun 2018 | A1 |
20180188280 | Malinowski | Jul 2018 | A1 |
20180210000 | van Mierlo | Jul 2018 | A1 |
20180210001 | Reza | Jul 2018 | A1 |
20180217174 | Malinowski | Aug 2018 | A1 |
20180224476 | Birrer et al. | Aug 2018 | A1 |
20180340951 | Kaeppell | Nov 2018 | A1 |
20180340952 | Kaeppeli et al. | Nov 2018 | A1 |
20180348244 | Ren | Dec 2018 | A1 |
20180348245 | Schneider et al. | Dec 2018 | A1 |
20190018027 | Hoehnel | Jan 2019 | A1 |
20190076845 | Huber et al. | Mar 2019 | A1 |
20190076846 | Durco et al. | Mar 2019 | A1 |
20190086433 | Hermann et al. | Mar 2019 | A1 |
20190094251 | Malinowski | Mar 2019 | A1 |
20190094252 | Waser et al. | Mar 2019 | A1 |
20190101468 | Haldar | Apr 2019 | A1 |
20190285660 | Kopp et al. | Sep 2019 | A1 |
20200200783 | Durco | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
201045617 | Apr 2008 | CN |
102109530 | Jun 2011 | CN |
3909786 | Sep 1990 | DE |
102012000665 | Aug 2012 | DE |
102011090044 | Jul 2013 | DE |
0601213 | Oct 1992 | EP |
0775650 | May 1997 | EP |
0916406 | May 1999 | EP |
1122194 | Aug 2001 | EP |
1524525 | Apr 2005 | EP |
2119643 | Nov 2009 | EP |
2148117 | Jan 2010 | EP |
2327646 | Jun 2011 | EP |
2447701 | May 2012 | EP |
2500871 | Sep 2012 | EP |
2502675 | Feb 2014 | EP |
2887071 | Jun 2015 | EP |
2165515 | Apr 1986 | GB |
S56-147209 | Nov 1981 | JP |
60-223481 | Nov 1985 | JP |
61-081323 | Apr 1986 | JP |
S61-069604 | Apr 1986 | JP |
S61-094925 | May 1986 | JP |
S61-174031 | Aug 1986 | JP |
S61-217434 | Sep 1986 | JP |
S62-100161 | May 1987 | JP |
S63-31918 | Feb 1988 | JP |
S63-48169 | Feb 1988 | JP |
S63-82433 | May 1988 | JP |
S63-290101 | Nov 1988 | JP |
1148966 | Jun 1989 | JP |
H01-266860 | Oct 1989 | JP |
H02-87903 | Mar 1990 | JP |
03-112393 | May 1991 | JP |
03-192013 | Aug 1991 | JP |
H03-38704 | Aug 1991 | JP |
H04-127063 | Apr 1992 | JP |
H05-69350 | Mar 1993 | JP |
H05-142232 | Jun 1993 | JP |
H05-180847 | Jul 1993 | JP |
06-26808 | Feb 1994 | JP |
H06-148198 | May 1994 | JP |
06-156730 | Jun 1994 | JP |
06-211306 | Aug 1994 | JP |
07-228345 | Aug 1995 | JP |
07-236838 | Sep 1995 | JP |
H07-301637 | Nov 1995 | JP |
H09-17848 | Jan 1997 | JP |
H11-083865 | Mar 1999 | JP |
H11-264828 | Sep 1999 | JP |
H11-304812 | Nov 1999 | JP |
H11-326336 | Nov 1999 | JP |
2000-105243 | Apr 2000 | JP |
2000-105246 | Apr 2000 | JP |
2001-124786 | May 2001 | JP |
2001-240245 | Sep 2001 | JP |
2005-001055 | Jan 2005 | JP |
2005-249740 | Sep 2005 | JP |
2006-106008 | Apr 2006 | JP |
2007-309675 | Nov 2007 | JP |
2007-314262 | Dec 2007 | JP |
2007-322289 | Dec 2007 | JP |
2009-036643 | Feb 2009 | JP |
2009-062188 | Mar 2009 | JP |
2009-145188 | Jul 2009 | JP |
2009-300402 | Dec 2009 | JP |
2010-243310 | Oct 2010 | JP |
2010-271204 | Dec 2010 | JP |
2013-172009 | Feb 2013 | JP |
2013-190400 | Sep 2013 | JP |
685591 | Sep 1979 | SU |
1996036437 | Nov 1996 | WO |
2003042048 | May 2003 | WO |
2007024540 | Mar 2007 | WO |
2008133708 | Nov 2008 | WO |
2009002358 | Dec 2008 | WO |
2010042722 | Apr 2010 | WO |
2012170636 | Jul 2010 | WO |
2010087303 | Aug 2010 | WO |
2010129715 | Nov 2010 | WO |
2012158520 | Nov 2012 | WO |
2012158541 | Nov 2012 | WO |
2013152089 | Oct 2013 | WO |
2013169778 | Nov 2013 | WO |
2013177087 | Nov 2013 | WO |
2013177163 | Nov 2013 | WO |
2014059134 | Apr 2014 | WO |
2014071214 | May 2014 | WO |
2015104263 | Jul 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20190018027 A1 | Jan 2019 | US |