Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system

Information

  • Patent Grant
  • 11092613
  • Patent Number
    11,092,613
  • Date Filed
    Friday, November 10, 2017
    6 years ago
  • Date Issued
    Tuesday, August 17, 2021
    3 years ago
Abstract
A method of operating a laboratory sample distribution system is presented. The laboratory sample distribution system comprises a number of sample container carriers. The sample container carriers are adapted to carry one or more sample containers. The sample containers comprise samples to be analyzed by a number of laboratory stations. The laboratory sample distribution system also comprises a transport plane. The transport plane is adapted to support the sample container carriers. The method comprises allocating an area of the transport plane as a buffer area. The buffer area is adapted to store a variable number of sample container carriers. The method also comprises controlling the buffer area using a puzzle-based control scheme or using an aisle-based control scheme as a function of a storage density of the buffer area.
Description
BACKGROUND

The present disclosure relates to a method of operating a laboratory sample distribution system, a laboratory sample distribution system and a laboratory automation system.


Laboratory sample distribution systems are used in laboratory automation systems comprising a number of laboratory stations, for example pre-analytical, analytical and/or post-analytical stations. The laboratory sample distribution system can be used in order to distribute sample containers between the laboratory stations and other equipment. The sample containers are typically made of transparent plastic material or glass material and have an opening at an upper side. The sample containers can contain samples such as blood samples or other medical samples.


A typical laboratory sample distribution system can move sample container carriers on a transport plane. A number of electro-magnetic actuators are arranged below the transport plane in order to drive the sample container carriers.


However, there is a need for a method of operating a laboratory sample distribution system, a laboratory sample distribution system and a laboratory automation system having a high distribution performance at reduced transport space required.


SUMMARY

According to the present disclosure, a method of operating a laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples to be analyzed by a number of laboratory stations. The laboratory sample distribution system can also comprise a transport plane. The transport plane can be adapted to support the sample container carriers. The method can comprise allocating an area of the transport plane as a buffer area. The buffer area can be adapted to store a variable number of sample container carriers. The method can also comprise controlling the buffer area using a puzzle-based control scheme or using an aisle-based control scheme as a function of a storage density of the buffer area.


Accordingly, it is a feature of the embodiments of the present disclosure to provide a method of operating a laboratory sample distribution system, a laboratory sample distribution system and a laboratory automation system having a high distribution performance at reduced transport space required. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates schematically a laboratory automation system in a perspective view according to an embodiment of the present disclosure.



FIGS. 2A-B illustrate schematically a buffer area controlled using an aisle-based control scheme according to an embodiment of the present disclosure.



FIGS. 3A-F illustrate schematically a buffer area controlled using a puzzle-based control scheme according to an embodiment of the present disclosure.



FIGS. 4A-C illustrate schematically a buffer area controlled using a transition control scheme according to an embodiment of the present disclosure.



FIGS. 5A-B illustrate schematically a buffer area controlled using an aisle-based control scheme and having one-way aisles according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


The presented method can be configured to operate a laboratory sample distribution system. The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers may comprise samples, e.g. to be analyzed by a number of laboratory stations.


The laboratory sample distribution system further comprises a transport plane, wherein the transport plane is adapted to support or carry the sample container carriers. In other words, the sample container carriers may simply be placed on the transport plane.


According to the operating method, a buffer area can be logically allocated on the transport plane. The allocating may comprise defining a size of the buffer area, and/or defining a location of the buffer area on the transport plane and/or defining a shape or outline of the buffer area. The buffer area can be adapted to store a variable number (e.g., 2 to 500) of sample container carriers. The buffer area can be adapted to buffer sample container carriers, e.g. if the sample container carriers are waiting for further movement over the transport plane and/or if a sample comprised in the sample container carrier can wait for further processing. Further, the buffer area may buffer empty sample container carriers.


According to the operating method, the buffer area can be controlled using a centralized control scheme which can be puzzle-based, or aisle-based, depending on a storage density of the buffer area.


The storage density may be defined as the number of sample container carriers being buffered inside the buffer area related to the maximum number of sample container carriers which can be buffered inside the buffer area. The storage density may be calculated as follows:

d=n/m,

wherein d denotes the storage density, n denotes the number of sample container carriers being buffered inside the buffer area, and m denotes the maximum number of sample container carriers which can be buffered inside the buffer area.


The function principles of puzzle-based control schemes and aisle-based control schemes are explained in detail in the publication: Gue K R, Kim B S (2007) Puzzle-based storage systems. Naval Res. Logist. 54(5):556-567, the disclosure of which is incorporated by reference regarding the function principles of puzzle-based control schemes and aisle-based control schemes.


The buffer area can be operated in a hybrid mode alternating between the puzzle-based control scheme and the aisle-based control scheme. If the storage density is low, the aisle-based control scheme may be used, thus optimizing a retrieval time of buffered sample container carriers. If the storage density is high, the puzzle-based control scheme may be used, thus optimizing the storage density of the buffered sample container carriers.


The selected control scheme can depend on the present storage density. Self-evidently, the control scheme may be selected as a function of further parameters, e.g., the total capacity of the buffer area, the shape of the buffer area, the time of day, and the like.


The puzzle-based control scheme can typically be used if the storage density is equal to or larger than an upper threshold. The aisle-based control scheme can typically be used if the storage density is equal to or smaller than a lower threshold. The upper threshold and the lower threshold may be different or may be identical. The upper threshold may denote a condition or storage density, when only a single field is free in the buffer area, i.e. the number of buffered sample container carriers is equal to the maximum number of sample container carriers which can be buffered in the buffer area minus 1. The lower threshold may denote a condition or storage density, when each sample container carrier being buffered can exit the buffer area by a corresponding aisle without the need to remove any furthers sample container carriers. For example, the upper threshold may have a value of about 0.9=90 percent (%), and in one embodiment about 0.99=99%. The lower threshold may have a value of about 0.67=67%, and in embodiment about 0.5=50%.


The buffer area may be controlled using a transition control scheme if the control scheme is switched from the aisle-based control scheme to the puzzle-based control scheme and/or switched from the puzzle-based control scheme to the aisle-based control scheme. During the transition control scheme functional principles between puzzle-based and aisle-based may be mixed. The transition control scheme may be used if the storage density lies between the lower threshold and the upper threshold.


If the storage density is equal to or smaller than the lower threshold, the aisle-based control scheme may be used, and in embodiment, operating with static or fixed aisles. If the storage density is above the lower threshold, the transition control scheme may be used, and in embodiment still being aisle-based but using block movement in order to form dynamic aisles on the buffer area. If there are many more sample container carriers to be buffered, exceeding the remaining space for aisles, the control may switch to a high density-algorithm that is puzzle-based. Thus, the density of sample container carriers on the buffer area may lead to three stages, each stage having its own control scheme or routing algorithm, respectively, and storage area design.


The sample container carriers may comprise at least one magnetically active device such as for example, at least one permanent magnet.


The laboratory sample distribution system may comprise a number of electro-magnetic actuators being stationary arranged in rows and columns (forming a grid having fields) below the transport plane. The electro-magnetic actuators may be adapted to apply a magnetic force to the container carriers such that the sample container carriers can move exclusively along the rows or along the columns. The electromagnetic actuators located inside the buffer area may be activated based on the puzzle-based control scheme or the aisle-based control scheme as a function of the storage density of the buffer area.


The buffer area may have a defined number, e.g. 1 to 100, of transfer locations. The sample container carriers can be transferred to/from the buffer area exclusively using/over the transfer locations. In one embodiment, the buffer area may have only one transfer location. The sample container carriers can be transferred to/from the buffer area exclusively using/over the only one transfer location. In one embodiment, the buffer area may have a defined number of transfer locations, which can serve only as an input into the buffer area, and the buffer area may have a defined number of transfer locations, which can serve only as an output out of the buffer area. The number of transfer locations and/or their location or position in the buffer area may be dynamically changed as a function of the number of sample container carriers to be buffered and/or as a function of the storage density.


Formulas for determining the transition point between the aisled-based control scheme and the transition control scheme or the lower threshold, respectively, are presented in the following. Thereby, it can be assumed that the buffer area is of size z times (*) z with z being a natural number equal to or larger than 3, e.g. 3, 4, 5, 6, 7 etc., and the buffer area having exactly one transfer location placed in a corner. If z is divisible by 3, then the point of transition is when the number of sample container carriers is more than (2 (z2−z)/3)+1. If the remainder of z mod 3 is 2 (“modulo operation”), then the point of transition is when the number of sample container carriers is over ((2 z−1)*(z−1)/3)+1. If the remainder of z mod 3 is 1, then the point of transition is when the number of sample container carriers is over (2 (z−1)2/3)+1.


During the transition control scheme, the buffer area may be logically segmented into sub buffer areas. Each sub buffer area can have a respective sub transfer location. The sub buffer areas can be controlled individually and independent from one another using a puzzle-based control scheme. The respective sub transfer locations may each have a free connection or path to the transfer location.


During the aisle-based control scheme, the buffer area may have at least one one-way aisle. The sample container carriers can move or can be moved in a single direction or in only one direction in the one-way aisle. The one-way aisle may also be denoted as one-way passage way. In one embodiment, all aisles may be one-way aisles. Hence, when a first sample container carrier exits the buffer area and is retrieved from it and a second sample container carrier, which is different from the first sample container carrier, enters the buffer area and is stored within or inside it at the same time or simultaneously, the first and the second sample container carriers may not block each other. In other words, a deadlock in the buffer area, in particular at a transfer location if present, may be avoided.


The method comprising controlling the buffer area using the aisle-based control scheme may be independent of controlling the buffer area using the puzzle-based control scheme and/or the transition control scheme as a function of the storage density of the buffer area. The buffer area can have at least one one-way aisle. The sample container carriers can move in a single direction in the one-way aisle. In particular this may mean that the buffer area may be controlled using only the aisle-based control scheme and/or that the buffer area may not be operated in a hybrid mode.


The buffer area may have a rectangular shape. If the buffer has one or more transfer locations, the transfer location may be located, in particular statically, in a corner or in the middle of a long side of the rectangle.


A size of the buffer area, and/or a shape of the buffer area, and/or a structure of the buffer area may be dynamically changed as a function of the number of sample container carriers to be buffered and/or as a function of the storage density.


The laboratory sample distribution system can comprise a number (e.g. 2 to 2000) of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples to be analyzed by a number of laboratory stations.


The laboratory sample distribution system can further comprise a transport plane. The transport plane can be adapted to support the sample container carriers such that the sample container carriers may propagate over the transport plane.


The laboratory sample distribution system can further comprise a control device, e.g. a Personal Computer (PC) controlling the remaining components, adapted to perform the above method.


The sample container carriers may respectively comprise at least one magnetically active device such as, for example at least one permanent magnet. The laboratory sample distribution system may comprise a number (e.g. 2 to 2000) of electro-magnetic actuators being stationary arranged in rows and columns below the transport plane. The electro-magnetic actuators can be adapted to apply a magnetic force to the container carriers such that the sample container carriers can move exclusively along the rows or along the columns. The control device may be adapted to control the electromagnetic actuators located inside the buffer area based on the puzzle-based control scheme, or the aisle-based control scheme, as a function of the storage density of the buffer area.


The laboratory automation system can comprise a number of laboratory stations and a laboratory sample distribution system as described above. The laboratory sample distribution system can be adapted to distribute the sample container carriers between the laboratory stations. The stations may be pre-analytical and/or analytical and/or post-analytical stations of a laboratory automation system.


A pre-analytical station can usually serve for the pre-processing of samples or sample containers.


An analytical station may be designed for example for using a sample or part of the sample and a reagent to generate a measurable signal, on the basis of which it can be determined whether the analyte is present, and if so in what concentration.


A post-analytical station can usually serve for the post-processing of samples or sample containers.


The pre-analytical, analytical and post-analytical stations may, for example, have at least one station from the group of following stations: a cap-removing station for removing caps or closures on sample tubes, a cap-applying station for applying caps or closures to sample tubes, an aliquoting station for aliquoting samples, a centrifuging station for centrifuging samples, an archiving station for archiving samples, a pipetting station for pipetting, a sorting station for sorting samples or sample tubes, a sample-tube-type determining station for determining a type of sample tube and a sample-quality determining station for determining the quality of a sample.


Referring initially to FIG. 1, FIG. 1 schematically illustrates a laboratory automation system 10. The laboratory automation system 10 can comprise a number of laboratory stations 20 such as, for example, pre-analytical, analytical and/or post-analytical stations. FIG. 1 depicts only two stations 20. Self-evidently, the laboratory automation system 10 may comprise more than two laboratory stations 20.


The laboratory automation system 10 can further comprise a laboratory sample distribution system 100 adapted to distribute sample container carriers 140 between the laboratory stations 20. As an example, only a single sample container carrier 140 is depicted. Self-evidently, the laboratory automation system 10 can typically comprise a large number of sample container carriers 140, e.g. 100 to several thousand of sample container carriers 140.


The sample container carriers 140 can be adapted to carry one or more sample containers 145. The sample containers 145 can comprise samples to be analyzed by the laboratory stations 20. The sample container carriers 140 can comprise a magnetically active device 147 in form of a single permanent magnet.


The laboratory sample distribution system 100 can comprise a transport plane 110. The transport plane 110 can be adapted to support the sample container carriers 140, such that the sample container carriers 140 can move over the transport plane 110.


The laboratory sample distribution system 100 can comprise a number of electro-magnetic actuators 120, each having a ferromagnetic core 125 being stationary arranged in rows and columns below the transport plane 110. The electro-magnetic actuators 120 can be adapted to apply a magnetic force to the sample container carriers 140, such that the sample container carriers can move along the rows or along the columns. The rows and columns can form logical fields, as depicted in FIGS. 2 to 5.


The laboratory sample distribution system 100 can further comprise a control device 150 adapted to centrally control the operation of the sample distribution system 100. For example, the control device 150 can control the complete set of electro-magnetic actuators 120, such that desired magnetic drive forces can be applied to the sample container carriers 140, such that the sample container carriers 140 can move simultaneously and independent from one another along desired transport paths.


The laboratory sample distribution system 100 can be operated by the control device 150 as follows.


An area of the transport plane 110 can be logically allocated as a buffer area 160. The buffer area 160 can be adapted to store a variable number of sample container carriers 140. The control device 150 can control the buffer area 160 using a puzzle-based control scheme or using an aisle-based control scheme as a function of a storage density of the buffer area 160.


The control device 150 can control sample container carriers 140 not being buffered in the buffer area 160 independent from the sample container carriers 140 being buffered in the buffer area 160. A control algorithm used for sample container carriers 140 not being buffered in the buffer area 160 can differ from a control algorithm used inside the buffer area 160. The controlling of/in the buffer area 160 can now be described in detail with reference to FIGS. 2 to 5.



FIG. 2 schematically shows a buffer area controlled using an aisle-based control scheme. In FIGS. 2 to 5, a double-hatched field denotes a sample container carrier exiting or entering the buffer area 160, single-hatched fields denote sample container carriers being buffered in the buffer area 160, un-hatched fields denote free fields not being occupied by sample container carriers and 165 denotes a transfer location, i.e. an I/O port, of the buffer area 160. Sample container carriers can exclusively enter and leave the buffer area 160 by the transfer location 165, and in embodiment, the only one transfer location of the buffer area.


Now referring to FIG. 2A, a number of four aisles can be formed in the buffer area 160. Each sample container carrier being buffered can exit the buffer area 160 by a corresponding aisle, as depicted in FIG. 2B for an arbitrarily selected sample container carrier.


The storage density in FIG. 2, e.g. expressed as the number of occupied fields in the buffer area 160 dived through the total number of fields in the buffer area 160, can be exactly one value below a lower threshold. If more sample container carriers would have to be buffered in the buffer area 160, i.e. the storage density becomes larger than the lower threshold, the pure aisle-based control scheme can no longer be applicable. Self-evidently, if less sample container carriers than depicted in FIG. 2 are buffered, i.e. the storage density is lower than the lower threshold, the aisle-based control scheme can be applicable. Here, n is 49 and m is 81, making d=60%. If n were 50, d would be 62%. Hence, in this case, the lower threshold can be approximately 61%.



FIG. 3A depicts a situation having the highest possible storage density, i.e. the storage density is higher than an upper threshold (and self-evidently higher than the lower threshold). Thus, the aisle-based control scheme may not be applicable. Instead, a puzzle-based control scheme can be used. Here, n is 35 and m is 36, making d=97%. If n were 34, d would be 94%. Hence, in this case, the upper threshold can be approximately 95%.



FIG. 3 depicts an exemplary puzzle-based sequence A to F selected from in total 13 necessary steps/sequences to move the sample container carrier to the transfer location 165.



FIG. 4 shows a situation when the buffer area 160 is controlled using a transition control scheme. The transition control scheme may be applied if the control scheme is switched between the aisle-based control scheme and the puzzle-based control scheme. The transition control scheme may be used if the storage density is larger than the lower threshold but smaller than the upper threshold.


In FIGS. 4A and B at least one vertical aisle can be available and one horizontal aisle leading to the transfer location 165 can be free of sample container carriers. As depicted in FIGS. 4A and B, a column of sample container carriers can be moved simultaneously or sequentially to the right. As depicted in FIG. 4B, a vertical aisle can be formed, such that the sample container carrier can move one field to the right, move 4 fields down and move 3 fields to the left to reach the transfer location 165.


Here, n is 26 and m is 36, making d=72%. If the second column from the left were not filled in FIG. 4A, n would be 21 and d=62%, giving an estimation for the lower threshold. In this case, no column needs to be moved, such that a sample container carrier can reach the transfer location 165.



FIG. 4C depicts the buffer area 160 having an increased number of available buffer fields for the sake of explanation. As depicted, the storage density is such that no completely free aisle is available, as this is the case in FIGS. 4A and B. To deal with this situation, the buffer area 160 can be logically segmented in four equally sized sub buffer areas 160′, each sub buffer area 160′ having a respective sub transfer location 165′, the respective sub transfer locations 165′ each having a free connection to the transfer location 165. The sub buffer areas 160′ can each operate according to the puzzle-based control scheme.



FIG. 5 shows a situation when the buffer area 160 is controlled using an aisle-based control scheme. Additionally, the buffer area 160 can have at least one one-way aisle 170. In the shown example, all aisles can be one-way aisles 170. The sample container carriers can move in a single direction in the at least one one-way aisle. In FIG. 5, the corresponding direction of movement or traffic for each one-way aisle is indicated by an arrow.


Now referring to FIG. 5A, no dead ends, or blind alleys, are present in the buffer area 160 in contrast to the buffer area 160 shown in FIG. 2A. The buffer area and its aisles, respectively, can be configured or arranged such that at least one, in particular each, “buffer” or “storage” field or position can be reachable from the transfer location 165 via a first route or path within or inside the buffer area 160. The first route can be different from a second route back to the transfer location. In the shown example, this can be enabled or facilitated by adding a fifth aisle formed at the top extending from left to right.


When the first sample container carrier at the top right in FIG. 5A (double-hatched field) leaves its buffer field in order to exit the buffer area 160, the second sample container carrier at the bottom left may already move towards the former buffer field of the first sample container carrier in order to be buffered or stored there. Due to the one-way aisles and the one-way traffic, respectively, the first and the second sample container carriers do not block each other.



FIG. 5B depicts the buffer area 160 having an increased number of available buffer fields. In addition to the aisle, in FIG. 5B, horizontally from left to right extending aisles at the top and at the bottom, there can be a horizontal aisle in the middle or center. Additionally, the buffer area can have two transfer locations 165. In other embodiments, the buffer area may have more than two transfer locations, for example 3, 4, 5, 6, 7, 8 or even more.


The embodiment of the method shown in FIG. 5 comprising controlling the buffer area using the aisle-based control scheme, wherein the buffer area has at least one one-way aisle, wherein the sample container carriers move in a single direction in the one-way aisle, may be independent of controlling the buffer area using the puzzle-based control scheme and/or the transition control scheme as a function of the storage density of the buffer area a protectable invention.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A method of operating a laboratory sample distribution system, wherein the laboratory sample distribution system comprises a number of sample container carriers, wherein the sample container carriers are adapted to carry one or more sample containers, wherein the sample containers comprise samples to be analyzed by a number of laboratory stations, and a transport plane, wherein the transport plane is adapted to support the sample container carriers, the method comprises: allocating an area of the transport plane as a buffer area, wherein the buffer area is adapted to store a variable number of sample container carriers; anddynamically controlling the buffer area using a puzzle-based control scheme or using an aisle-based control scheme as a function of a storage density of the buffer area, wherein the buffer area is controlled using a transition control scheme, when the control scheme is switched between the aisle-based control scheme and the puzzle-based control scheme, wherein the transition control scheme is used when the storage density is larger than a lower threshold but smaller than an upper threshold.
  • 2. The method according to claim 1, wherein the puzzle-based control scheme is used, if the storage density is equal to or larger than the upper threshold, and wherein the aisle-based control scheme is used, if the storage density is equal to or smaller than the lower threshold.
  • 3. The method according to claim 1, wherein during the transition control scheme the buffer area is logically segmented into sub buffer areas, wherein each sub buffer area has a respective sub transfer location, wherein the sub buffer areas are controlled using a puzzle-based control scheme.
  • 4. The method according to claim 1, wherein the sample container carriers comprise at least one magnetically active device.
  • 5. The method according to claim 4, wherein the at least one magnetically active device is a permanent magnet.
  • 6. The method according to claim 1, wherein the laboratory sample distribution system comprises a number of electro-magnetic actuators stationary arranged in rows and columns below the transport plane, wherein the electro-magnetic actuators are adapted to apply a magnetic force to the container carriers such that the sample container carriers move along the rows or along the columns.
  • 7. The method according to claim 6, wherein the electromagnetic actuators located inside the buffer area are activated based on the puzzle-based control scheme or based on the aisle-based control scheme as a function of the storage density of the buffer area.
  • 8. The method according to claim 1, wherein the buffer area has a transfer locations, wherein the sample container carriers are transferred to/from the buffer area using the transfer locations.
  • 9. The method according to claim 1, wherein during the aisle-based control scheme the buffer area has at least one one-way aisle, wherein the sample container carriers move in a single direction in the one-way aisle.
  • 10. The method according to claim 1, wherein the buffer area has a rectangular shape.
  • 11. The laboratory sample distribution system according to claim 1, wherein the laboratory sample distribution system further comprises, a control device adapted to perform the method of claim 1.
  • 12. The laboratory sample distribution system according to claim 11, wherein the sample container carriers comprise at least one magnetically active device.
  • 13. The laboratory sample distribution system according to claim 12, wherein the at least one magnetically active device is a permanent magnet.
  • 14. The laboratory sample distribution system according to claim 11, further comprises, a number of electro-magnetic actuators stationary arranged in rows and columns below the transport plane, wherein the electro-magnetic actuators are adapted to apply a magnetic force to the container carriers such that the sample container carriers move along the rows or along the columns, and wherein the control device is adapted to control the electromagnetic actuators located inside the buffer area based on the puzzle-based control scheme or the aisle-based control scheme as a function of the storage density of the buffer area.
  • 15. A laboratory automation system, the laboratory automation system comprising: the number of laboratory stations; andthe laboratory sample distribution system according to claim 11, wherein the laboratory sample distribution system is adapted to distribute the sample container carriers between the laboratory stations.
Priority Claims (1)
Number Date Country Kind
15168783 May 2015 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2016/061310, filed May 19, 2016, which is based on and claims priority to EP 15168783.7, filed May 22, 2015, which is hereby incorporated by reference.

US Referenced Citations (185)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9056720 Van De Loecht et al. Jun 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
10126317 Heise et al. Nov 2018 B2
10197586 Sinz et al. Feb 2019 B2
10288634 Kaeppeli May 2019 B2
10352953 Huber et al. Jul 2019 B2
10416183 Hassan Sep 2019 B2
10495657 Malinowski Dec 2019 B2
20020009391 Marquiss et al. Jan 2002 A1
20020028158 Wardlaw Mar 2002 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130034410 Heise et al. Feb 2013 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140231217 Denninger Aug 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150140668 Mellars et al. May 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160077120 Riether Mar 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170096307 Mahmudimanesh et al. Apr 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131309 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170160299 Schneider et al. Jun 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180128848 Schneider et al. May 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180340951 Kaeppell Nov 2018 A1
20180340952 Kaeppeli et al. Nov 2018 A1
20180348244 Ren Dec 2018 A1
20180348245 Schneider et al. Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190076845 Huber et al. Mar 2019 A1
20190076846 Durco et al. Mar 2019 A1
20190086433 Hermann et al. Mar 2019 A1
20190094251 Malinowski Mar 2019 A1
20190094252 Waser et al. Mar 2019 A1
20190101468 Haldar Apr 2019 A1
20190285660 Kopp et al. Sep 2019 A1
Foreign Referenced Citations (91)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2589966 May 2013 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2002-250147 Sep 2002 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2010-271204 Dec 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177087 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
2015104263 Jul 2015 WO
Non-Patent Literature Citations (2)
Entry
Gue, Kevin R. and Kim, Byung Soo, Puzzle-Based Storage Systems, Naval Research Logistics, 2007, pp. 556-567, vol. 54.
International Search Report dated Nov. 7, 2016, in Application No. PCT/EP2016/061310, 3 pages.
Related Publications (1)
Number Date Country
20180067141 A1 Mar 2018 US
Continuations (1)
Number Date Country
Parent PCT/EP2016/061310 May 2016 US
Child 15809032 US