The present subject matter relates generally to systems for gardening plants indoors, and more particularly, to a lighting system and method for operating the lighting system for improved plant growth in an indoor gardening appliance.
Conventional indoor garden centers include a cabinet defining a grow chamber having a number of trays or racks positioned therein to support seedlings or plant material, e.g., for growing herbs, vegetables, or other plants in an indoor environment. In addition, such indoor garden centers may include an environmental control system that maintains the growing chamber at a desired temperature or humidity. Certain indoor garden centers may also include hydration systems for watering the plants and/or artificial lighting systems that provide the light necessary for such plants to grow.
However, conventional artificial lighting systems include only a single lighting array that emits constant light at a fixed wavelength and intensity. These lighting systems are rigid in their operation and provided little versatility for adjusting the lighting available in a grow environment. Notably, certain plants may benefit from specific lighting conditions, varying lighting conditions, and light emitted at wavelengths that cannot be generated with conventional lighting systems. For example, certain plants may benefit from being exposed to ultraviolet light (in both the A and B spectrums), which may result in healthier or more robust plants.
Accordingly, an improved indoor garden center would be useful. More particularly, an indoor garden center with a lighting system that is capable of providing versatile lighting conditions would be particularly beneficial.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary embodiment, a gardening appliance is provided including a liner positioned within a cabinet and defining a grow chamber, a grow module rotatably mounted within the liner, the grow module dividing the grow chamber into a plurality of grow chambers, a first lighting assembly positioned within the liner adjacent a first grow chamber of the plurality of grow chambers, a second lighting assembly positioned within the liner adjacent a second grow chamber of the plurality of grow chambers, and a controller operably coupled to the first lighting assembly and the second lighting assembly, the controller being configured to operate each of the first lighting assembly and the second lighting assembly independently based on needs of plants located within the first grow chamber and the second grow chamber.
In another exemplary embodiment, a lighting system for a gardening appliance is provided. The gardening appliance includes a liner positioned defining a grow chamber and a grow module rotatably mounted within the liner and dividing the grow chamber into a first grow chamber and a second grow chamber. The lighting system includes a first lighting assembly positioned within the liner adjacent the first grow chamber, a second lighting assembly positioned within the liner adjacent the second grow chamber, and a controller operably coupled to the first lighting assembly and the second lighting assembly, the controller being configured to operate each of the first lighting assembly and the second lighting assembly independently based on needs of plants located within the first grow chamber and the second grow chamber.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, terms of approximation, such as “approximately,” “substantially,” or “about,” refer to being within a ten percent (10%) margin of error of the stated value. Moreover, as used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
Gardening appliance 100 includes a housing or cabinet 102 that extends between a top 104 and a bottom 106 along a vertical direction V, between a first side 108 and a second side 110 along a lateral direction L, and between a front side 112 and a rear side 114 along a transverse direction T. Each of the vertical direction V, lateral direction L, and transverse direction T are mutually perpendicular to one another and form an orthogonal direction system.
Gardening appliance 100 may include an insulated liner 120 positioned within cabinet 102. Liner 120 may at least partially define a temperature controlled, referred to herein generally as a grow chamber 122, within which plants 124 may be grown. Although gardening appliance 100 is referred to herein as growing plants 124, it should be appreciated that other organisms or living things may be grown or stored in gardening appliance 100. For example, algae, fungi (e.g., including mushrooms), or other living organisms may be grown or stored in gardening appliance 100. The specific application described herein is not intended to limit the scope of the present subject matter.
Cabinet 102, or more specifically, liner 120 may define a substantially enclosed back region or portion 130. In addition, cabinet 102 and liner 120 may define a front opening, referred to herein as front display opening 132, through which a user of gardening appliance 100 may access grow chamber 122, e.g., for harvesting, planting, pruning, or otherwise interacting with plants 124. According to an exemplary embodiment, enclosed back portion 130 may be defined as a portion of liner 120 that defines grow chamber 122 proximate rear side 114 of cabinet 102. In addition, front display opening 132 may generally be positioned proximate or coincide with front side 112 of cabinet 102.
Gardening appliance 100 may further include one or more doors 134 that are rotatably mounted to cabinet 102 for providing selective access to grow chamber 122. For example,
Although doors 134 are illustrated as being rectangular and being mounted on front side 112 of cabinet 102 in
According to the illustrated embodiment, cabinet 102 further defines a drawer 138 positioned proximate bottom 106 of cabinet 102 and being slidably mounted to cabinet for providing convenient storage for plant nutrients, system accessories, water filters, etc. In addition, behind drawer 138 is a mechanical compartment 140 for receipt of an environmental control system including a sealed system for regulating the temperature within grow chamber 122, as described in more detail below.
As shown, sealed system 150 includes a compressor 152, a first heat exchanger or evaporator 154 and a second heat exchanger or condenser 156. As is generally understood, compressor 152 is generally operable to circulate or urge a flow of refrigerant through sealed system 150, which may include various conduits which may be utilized to flow refrigerant between the various components of sealed system 150. Thus, evaporator 154 and condenser 156 may be between and in fluid communication with each other and compressor 152.
During operation of sealed system 150, refrigerant flows from evaporator 154 and to compressor 152, and compressor 152 is generally configured to direct compressed refrigerant from compressor 152 to condenser 156. For example, refrigerant may exit evaporator 154 as a fluid in the form of a superheated vapor. Upon exiting evaporator 154, the refrigerant may enter compressor 152, which is operable to compress the refrigerant. Accordingly, the pressure and temperature of the refrigerant may be increased in compressor 152 such that the refrigerant becomes a more superheated vapor.
Condenser 156 is disposed downstream of compressor 152 and is operable to reject heat from the refrigerant. For example, the superheated vapor from compressor 152 may enter condenser 156 and transfer energy to air surrounding condenser 156 (e.g., to create a flow of heated air). In this manner, the refrigerant condenses into a saturated liquid and/or liquid vapor mixture. A condenser fan (not shown) may be positioned adjacent condenser 156 and may facilitate or urge the flow of heated air across the coils of condenser 156 (e.g., from ambient atmosphere) in order to facilitate heat transfer.
According to the illustrated embodiment, an expansion device or a variable electronic expansion valve 158 may be further provided to regulate refrigerant expansion. During use, variable electronic expansion valve 158 may generally expand the refrigerant, lowering the pressure and temperature thereof. In this regard, refrigerant may exit condenser 156 in the form of high liquid quality/saturated liquid vapor mixture and travel through variable electronic expansion valve 158 before flowing through evaporator 154. Variable electronic expansion valve 158 is generally configured to be adjustable, e.g., such that the flow of refrigerant (e.g., volumetric flow rate in milliliters per second) through variable electronic expansion valve 158 may be selectively varied or adjusted.
Evaporator 154 is disposed downstream of variable electronic expansion valve 158 and is operable to heat refrigerant within evaporator 154, e.g., by absorbing thermal energy from air surrounding the evaporator (e.g., to create a flow of cooled air). For example, the liquid or liquid vapor mixture refrigerant from variable electronic expansion valve 158 may enter evaporator 154. Within evaporator 154, the refrigerant from variable electronic expansion valve 158 receives energy from the flow of cooled air and vaporizes into superheated vapor and/or high quality vapor mixture. An air handler or evaporator fan (not shown) is positioned adjacent evaporator 154 and may facilitate or urge the flow of cooled air across evaporator 154 in order to facilitate heat transfer. From evaporator 154, refrigerant may return to compressor 152 and the vapor-compression cycle may continue.
As explained above, environmental control system 148 includes a sealed system 150 for providing a flow of heated air or a flow cooled air throughout grow chamber 122 as needed. To direct this air, environmental control system 148 includes a duct system 160 for directing the flow of temperature regulated air, identified herein simply as flow of air 162 (see, e.g.,
These flows of air 162 are routed through a cooled air supply duct and/or a heated air supply duct (not shown), respectively. In this regard, it should be appreciated that environmental control system 148 may generally include a plurality of ducts, dampers, diverter assemblies, and/or air handlers to facilitate operation in a cooling mode, in a heating mode, in both a heating and cooling mode, or any other mode suitable for regulating the environment within grow chamber 122. It should be appreciated that duct system 160 may vary in complexity and may regulate the flows of air from sealed system 150 in any suitable arrangement through any suitable portion of grow chamber 122.
Gardening appliance 100 may include a control panel 170. Control panel 170 includes one or more input selectors 172, such as e.g., knobs, buttons, push buttons, touchscreen interfaces, etc. In addition, input selectors 172 may be used to specify or set various settings of gardening appliance 100, such as e.g., settings associated with operation of sealed system 150. Input selectors 172 may be in communication with a processing device or controller 174. Control signals generated in or by controller 174 operate gardening appliance 100 in response to input selectors 172. Additionally, control panel 170 may include a display 176, such as an indicator light or a screen. Display 176 is communicatively coupled with controller 174 and may display information in response to signals from controller 174. Further, as will be described herein, controller 174 may be communicatively coupled with other components of gardening appliance 100, such as e.g., one or more sensors, motors, or other components.
As used herein, “processing device” or “controller” may refer to one or more microprocessors or semiconductor devices and is not restricted necessarily to a single element. The processing device can be programmed to operate gardening appliance 100. The processing device may include, or be associated with, one or more memory elements (e.g., non-transitory storage media). In some such embodiments, the memory elements include electrically erasable, programmable read only memory (EEPROM). Generally, the memory elements can store information accessible processing device, including instructions that can be executed by processing device. Optionally, the instructions can be software or any set of instructions and/or data that when executed by the processing device, cause the processing device to perform operations.
Referring now generally to
Grow module 200 may further include a plurality of partitions 206 that extend from central hub 202 substantially along the radial direction R. In this manner, grow module 200 divides or partitions grow chamber 122 into a plurality of sub-compartments or sub-chambers, referred to herein generally by reference numeral 210, when it is in its zero position as illustrated. Referring specifically to a first embodiment of grow module 200 illustrated in
As shown, grow module 200 defines three different plant support sections, referred to herein as first support section 220, second support section 222, and third support section 224. Notably, as grow module 200 is rotated within liner 120, support sections 220-224 are sequentially positioned or cycled through each respective grow chamber 212-216. In this manner, the environment within each grow chamber 212-216 may be independently regulated in a manner suitable to plants supported within support section 220-224 that is currently positioned therein. More specifically, partitions 206 may extend from central hub 202 to a location immediately adjacent liner 120. Although partitions 206 are described as extending along the radial direction, it should be appreciated that they need not be entirely radially extending. For example, according to the illustrated embodiment, the distal ends of each partition are joined with an adjacent partition using an arcuate wall 218, which is generally used to support plants 124.
Notably, it is desirable according to exemplary embodiments to form a substantial seal between partitions 206 and liner 120. Therefore, according to an exemplary embodiment, grow module 200 may define a grow module diameter 226 (e.g., defined by its substantially circular footprint formed in a horizontal plane). Similarly, enclosed back portion 130 of liner 120 may be substantially cylindrical and may define a liner diameter 228. In order to prevent a significant amount of air from escaping between partitions 206 and liner 120, liner diameter 228 may be substantially equal to or slightly larger than grow module diameter 226. Grow module 200 may further includes one or more resilient sealing elements, such as a wiper seal, to engage liner 120 and form environmental seals for first grow chamber 212 and second grow chamber 214.
Referring now specifically to
As used herein, “motor” may refer to any suitable drive motor and/or transmission assembly for rotating grow module 200. For example, motor 230 may be a brushless DC electric motor, a stepper motor, or any other suitable type or configuration of motor. For example, motor 230 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor. In addition, motor 230 may include any suitable transmission assemblies, clutch mechanisms, or other components.
According to an exemplary embodiment, motor 230 may be operably coupled to controller 174, which is programmed to rotate grow module 200 according to predetermined operating cycles, based on user inputs (e.g. via touch buttons 172), etc. In addition, controller 174 may be communicatively coupled to one or more sensors, such as temperature or humidity sensors, positioned within the various sub-chambers 210 for measuring temperatures and/or humidity, respectively. Controller 174 may then operate environmental control system 148 to maintain desired environmental conditions for each of the respective sub-chambers 210 and may selectively position support sections 220-224 in the desired sub-chambers 210 to facilitate optimal plant growth. For example, as will be described in more detail below, gardening appliance 100 includes features for providing certain locations of gardening appliance 100 with light, temperature control, proper moisture, nutrients, and other requirements for suitable plant growth. Motor 230 may be used to position specific support sections 220-224 where needed to receive such growth requirements.
According to an exemplary embodiment, such as where three partitions 206 form three grow chambers 212-216, controller 174 may operate motor 230 to index grow module 200 sequentially through a number of preselected positions. More specifically, motor 230 may rotate grow module 200 in a counterclockwise direction (e.g. when viewed from a top of grow module 200) in 120° increments to move support sections 220-224 between sealed positions and display positions. As used herein, a support section 220-224 is considered to be in a “sealed position” when that support section 220-224 is substantially sealed between grow module 200 (i.e., central hub 202 and adjacent partitions 206) and liner 120. In other words, support sections 220-224 are in a sealed position when positioned in the first grow chamber 212 or second grow chamber 214. By contrast, a support section 220-224 is considered to be in a “display position” when that support section 220-224 is at least partially exposed to front display opening 132, such that a user may access plants 124 positioned within that support section 220-224. In other words, support sections 220-224 are in a display position when positioned in the third grow chamber 216.
For example, as illustrated in
Referring now generally to
As best shown in
Environmental control system 148 may further include a hydration system 270 which is generally configured for providing water to plants 124 to support their growth. Specifically, according to the illustrated embodiment, hydration system 270 generally includes a water supply 272 and misting device 274 (e.g., such as a fine mist spray nozzle or nozzles). For example, water supply 272 may be a reservoir containing water (e.g., distilled water) or may be a direct connection municipal water supply. According to exemplary embodiments, hydration system 270 may include one or more pumps 276 (see
Misting device 274 may be positioned at a bottom of root chamber 244 and may be configured for charging root chamber 244 with mist for hydrating the roots of plants 124. Alternatively, misting devices 274 may pass through central hub 204 along the vertical direction V and periodically include a nozzle for spraying a mist or water into root chamber 244. Because various plants 124 may require different amounts of water for desired growth, hydration system 270 may alternatively include a plurality of misting devices 274, e.g., all coupled to water supply 272, but being selectively operated to charge each of first root chamber 252, second root chamber 254, and third root chamber 256 independently of each other.
Notably, environmental control system 148 described above is generally configured for regulating the temperature, humidity (e.g., or some other suitable water level quantity or measurement), and other grow parameters within one or all of the plurality of chambers 210 and/or root chambers 252-256 independently of each other. In this manner, a versatile and desirable growing environment may be obtained for each and every chamber 210.
Referring now specifically to
Notably, the lighting assemblies 302 positioned within each grow chamber 212-216 may be different and independently operated for more versatility in the grow lighting or other lighting directed toward plants 124. In this regard, the lighting assembly 302 in first grow chamber 212 may be referred to herein as first lighting assembly 304, while the lighting assembly 302 in second grow chamber 214 may be referred to herein as the second lighting assembly 306. Exemplary configurations of lighting assemblies 304 and 306 will be described below according to exemplary embodiments of the present subject matter. However, it should be appreciated that the specific lighting configurations shown are only intended to explain aspects of the present subject matter. Thus, variations and modifications may be made to lighting assemblies 304, 306 while remaining within the scope of the present subject matter.
According to the illustrated embodiment, the third grow chamber 216 is a and “resting chamber.” In this regard, third grow chamber 216 may not include any grow lighting other than natural lighting that enters through doors 134. Notably, by maintaining all lighting assemblies 302 within first grow chamber 212 and second grow chamber 214, light emitted from lighting assemblies 302 may not escape cabinet through front display opening 132. Specifically, as described below, grow module 200 may substantially block the view of first grow chamber 212 and second grow chamber 214. Notably, as explained herein, this configuration may provide for optimal lighting requirements while minimizing light bleed, light pollution, and other harmful effects of light generated by lighting assemblies 302. Although third grow chamber 216 is illustrated herein is not containing any lighting assembly 302, it should be appreciated that exemplary embodiments of the present subject matter may include certain types of grow lighting within third grow chamber 216.
As explained above, light generated from lighting system 300 may result in light pollution within a room where gardening appliance 100 is located. Therefore, aspects of the present subject matter are directed to features for reducing light pollution, or to the blocking of light from light sources 324 through front display opening 132. Specifically, as illustrated, lighting system 300 may be positioned only within the enclosed back portion 130 of liner 120 such that only the first grow chamber 210 and second grow chamber 212 are exposed to light from light sources 324. Specifically, grow module 200 acts as a physical partition between light assemblies 300 and front display opening 132. In this manner, as illustrated in
As illustrated, each lighting assembly includes a plurality of elongated lighting boards, identified generally by reference numeral 310. As shown, the lighting boards are stacked adjacent each other and extend substantially along the axial direction A or the vertical direction V. Specifically, each lighting board 310 may be mounted directly to liner 120 that defines each respective grow chamber 212, 214. The elongated lighting boards 210 may extend parallel to each other and may be spaced apart from each other along the circumferential direction C. Notably, according to the illustrated embodiment, the spacing between elongated boards 210 may be selected such that lighting boards 310 are evenly spaced and cover an entire semicircular arc length of first grow chamber 212 and second grow chamber 214.
Moreover, as best illustrated in
Notably, lighting assemblies 302 may generate a considerable amount of heat during operation. As a result, it may be desirable that gardening appliance 100 include systems for cooling lighting system 300. Thus, referring still to
Referring now to
Notably, elongated lighting board 310 may further include features for facilitating cooling, e.g., such as by being fluidly coupled to a fan assembly 312 described above. In this regard, plenum 330 may be fluidly coupled to a fan assembly 312 for receiving a flow of cooling air 314 which may pass over printed circuit board 322 and/or light sources 324 in order to cool light sources 324. It should be appreciated that support housing 320 and/or printed circuit board 322 may further include additional heat sinks or heat dissipating fins for facilitating improved heat transfer.
According to the illustrated embodiment, each printed circuit board 322 may include a dedicated power supply 332 and/or control electronics (e.g., identified generally by reference numeral 334) for independently regulating the operation of each light source 324. In addition, controller 174 may be operatively coupled to each elongated lighting board 310 and lighting assembly 302 for independently regulating operation, e.g., depending on any suitable factors such as plant needs, user commands, etc. In addition, controller 174 may be configured for syncing or coordinating the rotation of grow module 200 into the various grow chambers 212-216 such that each plant 124 receive the optimal amount and time of lighting and environmental requirements that can be provided in each grow chamber 212-216. For example, grow module 200 may be rotated between about every 2 hours and 24 hours, between about every 4 hours and 12 hours, or about every 8 hours. Thus, according to an exemplary embodiment, each support section 220-224 may circulate through all three sub chambers 210 in a single 24-hour period. It should be appreciated that the lighting, temperature, hydration, and other environmental factors within the chambers may be independently regulated in each grow chamber 212-216 in any suitable manner while remaining within the scope the present subject matter.
As best shown in
Light sources 324 may be provided as any suitable number, type, position, and configuration of electrical light source(s), using any suitable light technology and illuminating in any suitable color. For example, according to the illustrated embodiment, light source 324 includes one or more light emitting diodes (LEDs), which may each illuminate in a single color (e.g., white LEDs), or which may each illuminate in multiple colors (e.g., multi-color or RGB LEDs) depending on the control signal from controller 174. For example, according to an exemplary embodiment, first lighting assembly 304 and second lighting assembly 306 may include at least one of a white light emitting diode or a red light emitting diode. However, it should be appreciated that according to alternative embodiments, light sources 324 may include any other suitable traditional light bulbs or sources, such as halogen bulbs, fluorescent bulbs, incandescent bulbs, glow bars, a fiber light source, etc.
According to exemplary embodiments of the present subject matter, lighting system may use ultraviolet lights to improve the health, robustness, or overall quality of plants 124 in gardening appliance 100. Specifically, according to the illustrated embodiment, second lighting assembly 306 may include ultraviolet (UV) lighting boards 340 that include ultraviolet lights. Notably, these UV lighting boards 340 may be the same or similar to elongated lighting boards 310, except that at least one of the light sources 324 mounted thereon is an ultraviolet light. According still other embodiments, UV lighting boards 340 may generate ultraviolet light in the A- or B-spectrum. In this regard, controller 174 may be configured for selectively generating UVA light, UVB light, or some combination there between. In general, UVA and UVB light may be used to supplement standard grow lighting and improve the robustness of plants 124 upon harvesting.
It should be appreciated that controller 174 may adjust any suitable operating parameters of lighting system 300 as needed to facilitate improved plant growth, photosynthesis, robustness, etc. In this regard, for example, controller 174 may independently regulate each lighting board 310, 340, and may even independently regulate each light source 324 on those respective lighting boards 310, 340, to generate any suitable light having any suitable wavelength, intensity, color, or other lighting profile variations. In this manner, lighting system 300 provides a versatile system for generating the desired types and quantities of light for optimal plant growth.
Gardening appliance 100 and grow module 200 have been described above to explain an exemplary embodiment of the present subject matter. However, it should be appreciated that variations and modifications may be made while remaining within the scope of the present subject matter. For example, according to alternative embodiments, gardening appliance 100 may be a simplified to a two-chamber embodiment with a square liner 120 and a grow module 200 having two partitions 206 extending from opposite sides of central hub 202 to define a first support section and a second support section. According to such an embodiment, by rotating grow module 200 by 180 degrees about central axis 206, the first support section may alternate between the sealed position (e.g., facing rear side 114 of cabinet 102) and the display position (e.g., facing front side 112 of cabinet 102). By contrast, the same rotation will move the second support section from the display position to the sealed position. According to still other embodiments, gardening appliance 100 may include a three chamber grow module 200 but may have a modified cabinet 102 such that front display opening 132 is wider and two of the three grow chambers 210 are displayed at a single time. Thus, first chamber 212 may be in the sealed position, while second chamber 214 and third chamber 216 may be in the display positions.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims. cm What is claimed is: