This application claims the priority, under 35 U.S.C. ยง119, of German Patent Application DE 10 2008 025 345.6, filed May 27, 2008; the prior application is herewith incorporated by reference in its entirety.
The present invention relates to a method for operating a printing machine in a print operating mode and in another operating mode, in particular a maintenance mode. The invention also relates to a printing machine for carrying out the method.
The maintenance of printing machines, which takes place between print jobs, includes changing printing plates and washing inking units. In order to reduce maintenance time, the aim is to carry out the plate change and the washing of the inking units simultaneously. In order to make it possible to carry out those operations simultaneously, the plate cylinder is driven by a main motor of the printing machine and the inking unit is driven by a separate motor. European Patent EP 1 167 026 B1, corresponding to U.S. Pat. No. 6,634,292, describes a printing machine having motors required for that purpose.
A problem with printing machines which has been known for a long time is that of knocking of a vibrating roller. The knocking of the vibrating roller is caused by a difference which exists between the circumferential speeds of those two rollers, when the vibrating roller is impinging onto a distributor roller. That difference gives rise to torsional oscillations which are transmitted from the distributor roller to following rollers and cylinders and reduce the printing quality. Various measures have already been proposed in order to solve that problem.
One measure is to have a separate motor for the distributor roller, as was proposed, for example, in European Patent Application EP 0 475 120 A1, corresponding to U.S. Pat. No. 5,152,224 and German Published, Non-Prosecuted Patent Application DE 197 15 614 A1, corresponding to U.K. Patent Application 2 324 270 A.
Another measure is to have a shift clutch which is associated with the distributing roller and through which the distributing roller is driven in rotation in the washing mode. In printing operation, the shift clutch is opened, and the distributor roller is driven frictionally by an adjacent roller. That measure is described in German Patent DE 4445964 B4.
It is accordingly an object of the invention to provide an improved method for operating a printing machine and a printing machine for carrying out the method, which overcome the hereinafore-mentioned disadvantages of the heretofore-known methods and devices of this general type and which are improved in terms of shortening of a maintenance time and/or in terms of a reduction in knocking of a vibrating roller.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for operating a printing machine in a print operating mode and in another operating mode. In the print operating mode, a vibrating roller is brought periodically into contact with a first roller of an inking unit of the printing machine. Moreover, in the print operating mode, the first roller is driven in rotation by a first motor and a second roller of the inking unit is driven in rotation by a second motor. In the print operating mode, no torque is transmitted from the first motor to the second roller through a clutch disposed between the first motor and the second roller. In the print operating mode, the first motor is activated by a control device in such a way that the first roller rotates at a rotational speed which is in a constant ratio to a rotational speed of the second roller. In the method according to the invention, in the other operating mode, the first roller and the second roller are driven in rotation by the first motor, and in this case a torque is transmitted from the first motor to the second roller through the clutch.
In accordance with another mode of the invention, the other operating mode is a maintenance mode, for example a cleaning mode. The inking unit can be washed in this cleaning or maintenance mode.
In accordance with a further mode of the invention, in the print operating mode, the motor current of the first motor is increased periodically through the use of the control device. These motor current increases may in each case take place shortly before the impingement of the vibrating roller onto the first roller so that, through the use of the motor current increases, the circumferential speed of the first roller is kept constant in spite of the impingement.
In accordance with an added mode of the invention, in the print operating mode, the clutch is rotated, while at the same time a dead travel of the clutch is preserved. In this case, in the print operating mode, the dead travel may be preserved between a first clutch half and a second clutch half of the clutch in the circumferential direction. For this purpose, in the print operating mode, the first clutch half may be driven in rotation by the first motor and, at the same time, the second clutch half may be driven in rotation by the second motor. The two clutch halves may be driven in coordination with one another in such a way that neither of the two clutch halves drives the other and, as seen in the circumferential direction, there is a dead travel or play between a driving surface of the first clutch half and a driving surface of the second clutch half.
With the objects of the invention in view, there is concomitantly provided a printing machine, which is constructed for carrying out the method according to the invention or the method corresponding to one of the developments thereof. This printing machine is preferably a lithographic offset printing machine for the printing of sheets.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method for operating a printing machine and a printing machine for carrying out the method, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now in detail to the figures of the drawings, with which functionally and structurally advantageous developments of the invention are described in an exemplary embodiment, and first, particularly, to
The first roller 5 is disposed between the first motor 11 and the first clutch 21, so that a torque generated by the first motor 11 can be transmitted to the first clutch 21 through the first roller 5. The first clutch 21 is disposed between the first roller 5 and a gearwheel, coaxial with the first roller 5, of the gear 23 and temporarily connects this gearwheel to the first roller 5 fixedly in terms of rotation when the clutch 21 is in its clutch position provided for this purpose. The first clutch 21 includes a first clutch half 31, which is permanently connected, fixedly in terms of rotation, to the first roller 5 and therefore to the first motor 11. The first clutch 21 also includes a second clutch half 32, which is permanently connected, fixedly in terms of rotation, to the gearwheel coaxial with the first roller 5.
The second clutch 22 is a shift clutch which is assigned a non-illustrated actuating drive which opens the second clutch 22 so that it does not transmit any torque and which closes it so that it transmits torque. The second clutch 22 is disposed between two gearwheels of the gear 23, in order to transmit the torque generated by the second motor 12 from one of the two gearwheels coaxial with the second clutch 22 to the other, in the closed shift position of the second clutch 22.
The Illustrated System Functions as Follows:
During printing operation, the second motor 12 drives the second rollers 6 in rotation through the gear 23. In this case, the second clutch 22 is closed. During this printing operation, the first motor 11 drives the first roller 5 in rotation. In this case, a torque generated by the first motor 11 is transmitted through the first roller 5 to the first clutch half 31 which is connected fixedly in terms of rotation to the first roller 5. In printing operation, the control device 37 activates the first motor 11 as a function of the rotational speed of the second rollers 6 or as a function of the rotational speed of the second motor 12 driving the second rollers 6, in such a way that the driver 33 does not come into contact with the stop surface located at the end of the groove 34. In printing operation, therefore, the first motor 11 rotates the first clutch half 31 in such a way that a dead travel 35 is ensured between the driver 33 of the first clutch half 31 and the stop surface of the second clutch half 32 which is rotated by the second motor 12. During printing operation, there is no rotary drive of the second clutch half 32 by the first clutch half 31. However, the two clutch halves 31, 32 rotate synchronously with one another, with the driver 33 being located approximately in the middle of the groove 34, as is illustrated in
In the mode for cleaning the inking unit, which is a maintenance mode, the washing agent and the rinsing water are introduced successively into the inking unit 3 through the use of the spraying device 8, and the soiled washing agent is removed from the inking unit 3 through the use of the doctor device 9. In this maintenance mode, the second clutch 22 is opened, so that the second rollers 6 are no longer driven in rotation by the second motor 12 in this case. In the maintenance mode, the second rollers 6 are driven, together with the first roller 5, by the first motor 11, with the first clutch 21 being closed. The first clutch 21, which is a so-called self-shifting clutch, is closed in that, as a result of the torque transmitted to the first clutch half 31 by the first motor 11, the driver 33 comes into contact with the stop surface formed at the end of the groove 34 and is held, with the dead travel 35 having the value zero, as is illustrated in
According to a non-illustrated modification, the first clutch 21 is not constructed as a self-shifting clutch, but as a shift clutch which is shiftable, for example, through the use of an actuating drive.
The rollers 5, 6, as well as being driven in the manner described in connection with the maintenance mode, in which these rollers 5, 6 are driven only by the first motor 11, may also be driven in other operating modes different from printing operation, for example during a so-called ink run-in.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 025 345.6 | May 2008 | DE | national |