Method of operating a safety vacuum release system

Information

  • Patent Grant
  • 8602743
  • Patent Number
    8,602,743
  • Date Filed
    Friday, January 13, 2012
    13 years ago
  • Date Issued
    Tuesday, December 10, 2013
    11 years ago
Abstract
Embodiments of the invention provide a method of operating a safety vacuum release system (SVRS) with a controller for a pump including a motor. The method can include measuring an actual power consumption of the motor necessary to pump water and overcome losses. The method can include triggering the SVRS when a dynamic suction blockage is identified in order to shut down the pump substantially immediately. The SVRS can also be triggered when a dead head condition is identified based on the actual power consumption.
Description
BACKGROUND

Pool pumps are used to move water in one or more aquatic applications, such as pools, spas, and water features. The aquatic applications include one or more water inlets and one or more water outlets. The water outlets are connected to an inlet of the pool pump. The pool pump generally propels the water though a filter and back into the aquatic applications though the water inlets. For large pools, the pool pump must provide high flow rates in order to effectively filter the entire volume of pool water. These high flow rates can result in high velocities in the piping system connecting the water outlets and the pool pump. If a portion of the piping system is obstructed or blocked, this can result in a high suction force near the water outlets of the aquatic applications. As a result, foreign objects can be trapped against the water outlets, which are often covered by grates in the bottom or sides of the pool. Systems have been developed to try to quickly shut down the pool pump when a foreign object is obstructing the water outlets of the aquatic applications. However, these systems often result in nuisance tripping (i.e., the pool pump is shut down too often when there are no actual obstructions).


SUMMARY

Some embodiments of the invention provide a method of operating a safety vacuum release system (SVRS) with a controller for a pump including a motor. The method can include measuring an actual power consumption of the motor necessary to pump water and overcome losses, calculating an absolute power variation based on the actual power consumption, and incrementing a dynamic counter value if the absolute power variation is negative. The method can also include calculating a relative power variation based on the actual power consumption and identifying a dynamic suction blockage if the dynamic counter exceeds a dynamic counter threshold value and/or the relative power variation is below a negative threshold. The method can further include triggering the SVRS when the dynamic suction blockage is identified in order to shut down the pump substantially immediately.


Some embodiments of the invention provide a method including filtering the actual power consumption with a fast low-pass filter to obtain a current power consumption and incrementing an absolute counter value if the actual power consumption and/or the current power consumption are greater than a threshold power curve. The method can also include identifying a dead head condition if the absolute counter value exceeds an absolute counter threshold value and triggering the suction vacuum release system when the dead head condition is identified in order to shut down the pump substantially immediately.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a pool pump according to one embodiment of the invention.



FIG. 2 is an exploded perspective view of the pool pump of FIG. 1.



FIG. 3A is a front view of an on-board controller according to one embodiment of the invention.



FIG. 3B is a perspective view of an external controller according to one embodiment, of the invention.



FIG. 4 is a flow chart of settings of the on-board controller of FIG. 3A and/or the external controller of FIG. 3B according to one embodiment of the invention.



FIG. 5A is a graph of an absolute power variation of the pool pump when a clogged suction pipe occurs at a certain time.



FIG. 5B is a graph of a relative power variation of the pool pump when a clogged suction pipe or water outlet occurs at a certain time.



FIG. 5C is a graph of a relative counter for the relative power variation of FIG. 5B.



FIG. 6 is a graph of a power consumption versus the speed of the pool pump according to one embodiment of the invention.



FIG. 7 is a schematic illustration of a pool system with a person blocking a water outlet of the pool.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.



FIG. 1 illustrates a pool pump 10 according to one embodiment of the invention. The pool pump 10 can be used for any suitable aquatic application, such as pools, spas, and water features. The pool pump 10 can include a housing 12, a motor 14, and an on-board controller 16. In some embodiments, the motor 14 can be a variable speed motor. In one embodiment, the motor 14 can be driven at four or more different speeds. The housing 12 can include an inlet 18, an outlet 20, a basket 22, a lid 24, and a stand 26. The stand 26 can support the motor 14 and can be used to mount the pool pump 10 on a suitable surface (not shown).


In some embodiments, the on-board controller 16 can be enclosed in a case 28. The case 28 can include a field wiring compartment 30 and a cover 32. The cover 32 can be opened and closed to allow access to the on-board controller 16 and protect it from moisture, dust, and other environmental influences. The case 28 can be mounted on the motor 14. In some embodiments, the field wiring compartment 30 can include a power supply to provide power to the motor 14 and the on-board controller 16.



FIG. 2 illustrates the internal components of the pool pump 10 according to one embodiment of the invention. The pool pump 10 can include seal plate 34, an impeller 36, a gasket 38, a diffuser 40, and a strainer 42. The strainer 42 can be inserted into the basket 22 and can be secured by the lid 24. In some embodiments, the lid 24 can include a cap 44, an O-ring 46, and a nut 48. The cap 44 and the O-ring 46 can be coupled to the basket 22 by screwing the nut 48 onto the basket 22. The O-ring 46 can seal the connection between the basket 22 and the lid 24. An inlet 52 of the diffuser 40 can be fluidly sealed to the basket 22 with a seal 50. In some embodiments, the diffuser 40 can enclose the impeller 36. An outlet 54 of the diffuser 40 can be fluidly sealed to the seal plate 34. The seal plate 34 can be sealed to the housing 12 with the gasket 38. The motor 14 can include a shaft 56, which can be coupled to the impeller 36. The motor 14 can rotate the impeller 36, drawing fluid from the inlet 18 through the strainer 42 and the diffuser 40 to the outlet 20.


In some embodiments, the motor 14 can include a coupling 58 to connect to the on-board controller 16. In some embodiments, the on-board controller 16 can automatically operate the pool pump 10 according to at least one schedule. If two or more schedules are programmed into the on-board controller 16, the schedule running the pool pump 10 at the highest speed can have priority over the remaining schedules. In some embodiments, the on-board controller 16 can allow a manual operation of the pool pump 10. If the pool pump 10 is manually operated and is overlapping a scheduled run, the scheduled run can have priority over the manual operation independent of the speed of the pool pump 10. In some embodiments, the on-board controller 16 can include a manual override. The manual override can interrupt the scheduled and/or manual operation of the pool pump 10 to allow for, e.g., cleaning and maintenance procedures. In some embodiments, the on-board controller 16 can monitor the operation of the pool pump 10 and can indicate abnormal conditions of the pool pump 10.



FIG. 3A illustrates a user interface 60 for the on-board controller 16 according to one embodiment of the invention. The user interface 60 can include a display 62, at least one speed button 64, navigation buttons 66, a start-stop button 68, a reset button 70, a manual override button 72, and a “quick clean” button 74. The manual override button 72 can also be called “time out” button. In some embodiments, the navigation buttons 66 can include a menu button 76, a select button 78, an escape button 80, an up-arrow button 82, a down-arrow button 84, a left-arrow button 86, a right-arrow button 88, and an enter button 90. The navigation buttons 66 and the speed buttons 64 can be used to program a schedule into the on-board controller 16. In some embodiments, the display 62 can include a lower section 92 to display information about a parameter and an upper section 94 to display a value associated with that parameter. In some embodiments, the user interface 60 can include light emitting diodes (LEDs) 96 to indicate normal operation and/or a detected error of the pool pump 10.


The on-board controller 16 operates the motor 14 to provide a safety vacuum release system (SVRS) for the aquatic applications. If the on-board controller 16 detects an obstructed inlet 18, the on-board controller 16 can quickly shutdown the pool pump 10. In some embodiments, the on-board controller 16 can detect the obstructed inlet 18 based only on measurements and calculations related to the power consumption of the motor 14 (e.g., the power needed to rotate the motor shaft 56). In some embodiments, the on-board controller 16 can detect the obstructed inlet 18 without any additional inputs (e.g., without pressure, flow rate of the pumped fluid, speed or torque of the motor 14).



FIG. 3B illustrates an external controller 98 for the pool pump 10 according to one embodiment of the invention. The external controller 98 can communicate with the on-board controller 16. The external controller 98 can control the pool pump 10 in substantially the same way as the on-board controller 16. The external controller 98 can be used to operate the pool pump 10 and/or program the on-board controller 16, if the pool pump 10 is installed in a location where the user interface 60 is not conveniently accessible.



FIG. 4 illustrates a menu 100 for the on-board controller 16 according to one embodiment of the invention. In some embodiments, the menu 100 can be used to program various features of the on-board controller 16. In some embodiments, the menu 100 can include a hierarchy of categories 102, parameters 104, and values 106. From a main screen 108, an operator can, in some embodiments, enter the menu 100 by pressing the menu button 76. The operator can scroll through the categories 102 using the up-arrow button 82 and the down-arrow button 84. In some embodiments, the categories 102 can include settings 110, speed 112, external control 114, features 116, priming 118, and anti freeze 120. In some embodiments, the operator can enter a category 102 by pressing the select button 78. The operator can scroll through the parameters 104 within a specific category 102 using the up-arrow button 82 and the down-arrow button 84. The operator can select a parameter 104 by pressing the select button 78 and can adjust the value 106 of the parameter 104 with the up-arrow button 82 and the down-arrow button 84. In some embodiments, the value 106 can be adjusted by a specific increment or the user can select from a list of options. The user can save the value 106 by pressing the enter button 90. By pressing the escape button 80, the user can exit the menu 100 without saving any changes.


In some embodiments, the settings category 110 can include a time setting 122, a minimum speed setting 124, a maximum speed setting 126, and a SVRS automatic restart setting 128. The time setting 122 can be used to run the pool pump 10 on a particular schedule. The minimum speed setting 124 and the maximum speed setting 126 can be adjusted according to the volume of the aquatic applications. An installer of the pool pump 10 can provide the minimum speed setting 124 and the maximum speed setting 126. The on-board controller 16 can automatically prevent the minimum speed setting 124 from being higher than the maximum speed setting 126. The pool pump 10 will not operate outside of these speeds in order to protect flow-dependent devices with minimum speeds and pressure-sensitive devices (e.g., filters) with maximum speeds. The SVRS automatic restart setting 128 can provide a time period before the on-board controller 16 will resume normal operation of the pool pump 10 after an obstructed inlet 18 has been detected and the pool pump 10 has been stopped. In some embodiments, there can be two minimum speed settings—one for dead head detection (higher speed) and one for dynamic detection (lower speed).


In some embodiments, the speed category 112 can be used to input data for running the pool pump 10 manually and/or automatically. In some embodiments, the on-board controller 16 can store a number of manual speeds 130 and a number of scheduled runs 132. In some embodiments, the manual speeds 130 can be programmed into the on-board controller 16 using the up-arrow button 82, the down-arrow button 84 and the enter button 90. Once programmed, the manual speeds 130 can be accessed by pressing one of the speed buttons 64 on the user interface 60. The scheduled runs 132 can be programmed into the on-board controller 16 using the up-arrow button 82, the down-arrow button 84, and the enter button 90. For the scheduled runs 132, a speed, a start time, and a stop time can be programmed. In some embodiments, the scheduled runs 132 can be programmed using a speed, a start time, and a duration. In some embodiments, the pool pump 10 can be programmed to run continuously.


The external control category 114 can include various programs 134. The programs 134 can be accessed by the external controller 98. The quantity of programs 134 can be equal to the number of scheduled runs 132.


The features category 116 can be used to program a manual override. In some embodiments, the parameters can include a “quick clean” program 136 and a “time out” program 138. The “quick clean” program 136 can include a speed setting 140 and a duration setting 142. The “quick clean” program 136 can be selected by pressing the “quick clean” button 74 located on the user interface 60. When pressed, the “quick clean” program 136 can have priority over the scheduled and/or manual operation of the pool pump 10. After the pool pump 10 has been operated for the time period of the duration setting 142, the pool pump 10 can resume to the scheduled and/or manual operation. If the SVRS has been previously triggered and the time period for the SVRS automatic restart 128 has not yet elapsed, the “quick clean” program 136 may not be initiated by the on-board controller 16. The “time out” program 138 can interrupt the operation of the pool pump 10 for a certain amount of time, which can be programmed into the on-board controller 16. The “time out” program 138 can be selected by pressing the “time out” button 72 on the user interface 60. The “time out” program 138 can be used to clean the aquatic application and/or to perform maintenance procedures.


In the priming category 118, the priming of the pool pump 10 can be enabled or disabled. If the priming is enabled, a duration for the priming sequence can be programmed into the on-board controller 16. In some embodiments, the priming sequence can be run at the maximum speed 126. The priming sequence can remove substantially all air in order to allow water to flow through the pool pump 10 and/or connected piping systems.


In some embodiments, a temperature sensor (not shown) can be connected to the on-board controller 16 in order to provide an anti-freeze operation for the pumping system and the pool pump 10. In the anti-freeze category 120, a speed setting 144 and a temperature setting 146 at which the pool pump 10 can be activated to prevent water from freezing in the pumping system can be programmed into the on-board controller 16. If the temperature sensor detects a temperature lower than the temperature setting 146, the pool pump 10 can be operated according to the speed setting 144. However, the anti-freeze operation can also be disabled.



FIG. 5A-5C illustrate power consumption curves associated with the motor shaft 56 of the pool pump 10. The power consumption of the motor that is necessary to pump water and overcome losses will be referred to herein and in the appended claims as any one of “power consumption curves,” “power consumption values,” or simply “power consumption.” FIG. 5A illustrates power consumption curves for the motor shaft 56 when the inlet 18 is obstructed at a particular time 200. FIG. 5A illustrates an actual power consumption curve 202, a current power consumption curve 204, and a lagged power consumption curve 206. The actual power consumption 202 can be evaluated by the on-board controller 16 during a certain time interval (e.g., about 20 milliseconds).


In some embodiments, the on-board controller 16 can filter the actual power consumption 202 using a fast low-pass filter to obtain the current power consumption 204. The current power consumption 204 can represent the actual power consumption 202; however, the current power consumption 204 can be substantially smoother than the actual power consumption 202. This type of signal filtering can result in “fast detection” (also referred to as “dynamic detection”) of any obstructions in the pumping system (e.g., based on dynamic behavior of the shaft power when the inlet 18 is blocked suddenly). In some embodiments, the fast low-pass filter can have a time constant of about 200 milliseconds.


In some embodiments, the on-board controller 16 can filter the signal for the actual power consumption 202 using a slow low-pass filter to obtain the lagged power consumption 206. The lagged power consumption 206 can represent the actual power consumption from an earlier time period. If the inlet 18 is obstructed at the time instance 200, the actual power consumption 202 will rapidly drop. The current power consumption 204 can substantially follow the drop of the actual power consumption 202. However, the lagged power consumption 206 will drop substantially slower than the actual power consumption 202. As a result, the lagged power consumption 206 will generally be higher than the actual power consumption 202. This type of signal filtering can result in “slow detection” (also referred to as “dead head detection” or “static detection”) of any obstructions in the pumping system (e.g., when there is an obstruction in the pumping system and the pool pump 10 runs dry for a few seconds). In some embodiments, the slow low-pass filter can have a time constant of about 1400 milliseconds.


The signal filtering of the actual power consumption 202 can be performed over a time interval of about 2.5 seconds, resulting in a reaction time between about 2.5 seconds and about 5 seconds, depending on when the dead head condition occurs during the signal filtering cycle. In some embodiments, the static detection can have a 50% sensitivity which can be defined as the power consumption curve calculated from a minimum measured power plus a 5% power offset at all speeds from about 1500 RPM to about 3450 RPM. When the sensitivity is set to 0%, the static detection can be disabled.



FIG. 5B illustrates a relative power consumption curve 208 of the pool pump 10 for the same scenario of FIG. 5A. In some embodiments, the relative power consumption 208 can be computed by calculating the difference between the current power consumption 204 and the lagged power consumption 206 (i.e., the “absolute power variation”) divided by the current power consumption 204. The greater the difference between the time constants of the fast and slow filters, the higher the time frame for which absolute power variation can be calculated. In some embodiments, the absolute power variation can be updated about every 20 milliseconds for dynamic detection of obstructions in the pumping system. Due to the lagged power consumption 206 being higher than the current power consumption 204, a negative relative power consumption 208 can be used by the SVRS of the on-board controller 16 to identify an obstructed inlet 18.


The relative power consumption 208 can also be used to determine a “relative power variation” (also referred to as a “power variation percentage”). The relative power variation can be calculated by subtracting the lagged power consumption 206 from the current power consumption 204 and dividing by the lagged power consumption 206. When the inlet 18 is blocked, the relative power variation will be negative as shaft power decreases rapidly in time. A negative threshold can be set for the relative power variation. If the relative power variation exceeds the negative threshold, the SVRS can identify an obstructed inlet 18 and shut down the pool pump 10 substantially immediately. In one embodiment, the negative threshold for the relative power variation can be provided for a speed of about 2200 RPM and can be provided as a percentage multiplied by ten for increased resolution. The negative threshold for other speeds can be calculated by assuming a second order curve variation and by multiplying the percentage at 800 RPM by six and by multiplying the percentage at 3450 RPM by two. In some embodiments, the sensitivity of the SVRS can be altered by changing the percentages or the multiplication factors.


In some embodiments, the on-board controller 16 can include a dynamic counter. In one embodiment, a dynamic counter value 210 can be increased by one value if the absolute power variation is negative. The dynamic counter value 210 can be decreased by one value if the absolute power variation is positive. In some embodiments, if the dynamic counter value 210 is higher than a threshold (e.g., a value of about 15 so that the counter needs to exceed 15 to trigger an obstructed inlet alarm), a dynamic suction blockage is detected and the pool pump 10 is shut down substantially immediately. The dynamic counter value 210 can be any number equal to or greater than zero. For example, the dynamic counter value 210 may remain at zero indefinitely if the shaft power continues to increase for an extended time period. However, in the case of a sudden inlet blockage, the dynamic counter value 210 will rapidly increase, and once it increases beyond the threshold value of 15, the pool pump 10 will be shut down substantially immediately. In some embodiments, the threshold for the dynamic counter value 210 can depend on the speed of the motor 14 (i.e., the thresholds will follow a curve of threshold versus motor speed). In one embodiment, the dynamic detection can monitor shaft power variation over about one second at a 20 millisecond sampling time to provide fast control and monitoring. FIG. 5C illustrates the dynamic counter value 210 of the dynamic counter for the relative power consumption 208 of FIG. 5B.


In one embodiment, the SVRS can determine that there is an obstructed inlet 18 when both of the following events occur: (1) the relative power variation exceeds a negative threshold; and (2) the dynamic counter value 210 exceeds a positive threshold (e.g., a value of 15). When both of these events occur, the on-board controller 16 can shut down the pool pump 10 substantially immediately. However, in some embodiments, one of these thresholds can be disabled. The relative power variation threshold can be disabled if the relative power variation threshold needs only to be negative to trigger the obstructed inlet alarm. Conversely, the dynamic counter can be disabled if the dynamic counter value needs only to be positive to trigger the obstructed inlet alarm.


The on-board controller 16 can evaluate the relative power consumption 208 in a certain time interval. The on-board controller 16 can adjust the dynamic counter value 210 of the dynamic counter for each time interval. In some embodiments, the time interval can be about 20 milliseconds. In some embodiments, the on-board controller 16 can trigger the SVRS based on one or both of the relative power consumption 208 and the dynamic counter value 210 of the relative counter. The values for the relative power consumption 208 and the dynamic counter value 210 when the on-board controller 16 triggers the SVRS can be programmed into the on-board controller 16.



FIG. 6 illustrates a maximum power consumption curve 212 and a minimum power consumption curve 214 versus the speed of the pool pump 10 according to one embodiment of the invention. In some embodiments, the maximum power consumption curve 212 and/or the minimum power consumption curve 214 can be empirically determined and programmed into the on-board controller 16. The maximum power consumption curve 212 and the minimum power consumption curve 214 can vary depending on the size of the piping system coupled to the pool pump 10 and/or the size of the aquatic applications. In some embodiments, the minimum power consumption curve 214 can be defined as about half the maximum power consumption curve 212.



FIG. 6 also illustrates several intermediate power curves 216. The maximum power consumption curve 212 can be scaled with different factors to generate the intermediate power curves 216. The intermediate power curve 216 resulting from dividing the maximum power consumption curve 212 in half can be substantially the same as the minimum power consumption curve 214. The scaling factor for the maximum power consumption 212 can be programmed into the on-board controller 16. One or more of the maximum power consumption 212 and the intermediate power curves 216 can be used as a threshold value to detect an obstructed inlet 18. In some embodiments, the on-board controller 16 can trigger the SVRS if one or both of the actual power consumption 202 and the current power consumption 204 are below the threshold value.


In some embodiments, the on-board controller 16 can include an absolute counter. If the actual power consumption 202 and/or the current power consumption 204 is below the threshold value, a value of the absolute counter can be increased. A lower limit for the absolute counter can be set to zero. In some embodiments, the absolute counter can be used to trigger the SVRS. The threshold value for the absolute counter before the SVRS is activated can be programmed into the on-board controller 16. In some embodiments, if the absolute counter value is higher than a threshold (e.g., a value of about 10 so that the counter needs to exceed 10 to trigger an obstructed inlet alarm), a dead head obstruction is detected and the pool pump 10 is shut down substantially immediately. In other words, if the actual power consumption 202 stays below a threshold power curve (as described below) for 10 times in a row, the absolute counter will reach the threshold value of 10 and the obstructed inlet alarm can be triggered for a dead head condition.


For use with the absolute counter, the threshold value for the actual power consumption 202 can be a threshold power curve with a sensitivity having a percentage multiplied by ten. For example, a value of 500 can mean 50% sensitivity and can correspond to the measured minimum power curve calculated using second order approximation. A value of 1000 can mean 100% sensitivity and can correspond to doubling the minimum power curve. In some embodiments, the absolute counter can be disabled by setting the threshold value for the actual power consumption 202 to zero. The sensitivity in most applications can be above 50% in order to detect a dead head obstruction within an acceptable time period. The sensitivity in typical pool and spa applications can be about 65%.


In some embodiments, the SVRS based on the absolute counter can detect an obstructed inlet 18 when the pool pump 10 is being started against an already blocked inlet 18 or in the event of a slow clogging of the inlet 18. The sensitivity of the SVRS can be adjusted by the scaling factor for the maximum power consumption 212 and/or the value of the absolute counter. In some embodiments, the absolute counter can be used as an indicator for replacing and/or cleaning the strainer 42 and/or other filters installed in the piping system of the aquatic applications.


In some embodiments, the dynamic counter and/or the absolute counter can reduce the number of nuisance trips of the SVRS. The dynamic counter and/or the absolute counter can reduce the number of times the SVRS accidently shuts down the pool pump 10 without the inlet 18 actually being obstructed. A change in flow rate through the pool pump 10 can result in variations in the absolute power consumption 202 and/or the relative power consumption 208 that can be high enough to trigger the SVRS. For example, if a swimmer jumps into the pool, waves can change the flow rate through the pool pump 10 which can trigger the SVRS, although no blockage actually occurs. In some embodiments, the relative counter and/or the absolute counter can prevent the on-board controller 16 from triggering the SVRS if the on-board controller 16 changes the speed of the motor 14. In some embodiments, the controller 16 can store whether the type of obstructed inlet was a dynamic blocked inlet or a dead head obstructed inlet.


The actual power consumption 202 varies with the speed of the motor 14. However, the relative power consumption 208 can be substantially independent of the actual power consumption 202. As a result, the power consumption parameter of the motor shaft 56 by itself can be sufficient for the SVRS to detect an obstructed inlet 18 over a wide range of speeds of the motor 14. In some embodiments, the power consumption parameter can be used for all speeds of the motor 14 between the minimum speed setting 124 and the maximum speed setting 126. In some embodiments, the power consumption values can be scaled by a factor to adjust a sensitivity of the SVRS. A technician can program the power consumption parameter and the scaling factor into the on-board controller 16.



FIG. 7 illustrates a pool or spa 300 with a vessel 302, an outlet pipe 304, an inlet pipe 306, and a filter system 308 coupled to the pool pump 10. The vessel 302 can include an outlet 310 and an inlet 312. The outlet pipe 304 can couple the outlet 310 with the inlet 18 of the pool pump 10. The inlet pipe 306 can couple the outlet 20 of the pool pump 10 with the inlet 312 of the vessel 302. The inlet pipe 306 can be coupled to the filter system 308.


An object in the vessel 302, for example a person 314 or a foreign object, may accidently obstruct the outlet 310 or the inlet 18 may become obstructed over time. The on-board controller 16 can detect the blocked inlet 18 of the pool pump 10 based on one or more of the actual power consumption 202, the current power consumption 204, the relative power consumption 208, the dynamic counter, and the absolute counter. In some embodiments, the on-board controller 16 can trigger the SVRS based on the most sensitive (e.g., the earliest detected) parameter. Once an obstructed inlet 18 has been detected, the SVRS can shut down the pool pump 10 substantially immediately. The on-board controller 16 can illuminate an LED 96 on the user interface 60 and/or can activate an audible alarm. In some embodiments, the on-board controller 16 can restart the pool pump 10 automatically after the time period for the SVRS automatic restart 128 has elapsed. In some embodiments, the on-board controller 16 can delay the activation of the SVRS during start up of the pool pump 10. In some embodiments, the delay can be about two seconds.


If the inlet 18 is still obstructed when the pool pump 10 is restarted, the SVRS will be triggered again. Due to the pool pump 10 being started against an obstructed inlet 18, the relative power consumption 208 may be inconclusive to trigger the SVRS. However, the on-board controller 16 can use the actual power consumption 202 and/or the current power consumption 204 to trigger the SVRS. In some embodiments, the SVRS can be triggered based on both the relative power consumption 208 and the actual power consumption 202.


In some embodiments, the SVRS can be triggered for reasons other than the inlet 18 of the pool pump 10 being obstructed. For example, the on-board controller 16 can activate the SVRS if one or more of the actual power consumption 202, the current power consumption 204, and the relative power consumption 208 of the pool pump 10 varies beyond an acceptable range for any reason. In some embodiments, an obstructed outlet 20 of the pool pump 10 can trigger the SVRS. In some embodiments, the outlet 20 may be obstructed anywhere along the inlet pipe 306 and/or in the inlet 312 of the pool or spa 300. For example, the outlet 20 could be obstructed by an increasingly-clogged strainer 42 and/or filter system 308.


In some embodiments, the number of restarts of the pool pump 10 after time period for the SVRS automatic restart 128 has been elapsed can be limited in order to prevent excessive cycling of the pool pump 10. For example, if the filter system 308 is clogged, the clogged filter system 308 may trigger the SVRS every time the pool pump 10 is restarted by the on-board controller 16. After a certain amount of failed restarts, the on-board controller 16 can be programmed to stop restarting the pool pump 10. The user interface 60 can also indicate the error on the display 62. In some embodiments, the user interface 60 can display a suggestion to replace and/or check the strainer 42 and/or the filter system 308 on the display 62.


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A method of operating a safety vacuum release system with a controller for a pump including a variable speed motor, the method comprising: measuring an actual power consumption of the motor necessary to pump water and overcome losses;filtering the actual power consumption with a fast low-pass filter to obtain a current power consumption;incrementing an absolute counter value if at least one of the actual power consumption and the current power consumption is greater than a threshold power curve;identifying a dead head condition if the absolute counter value exceeds an absolute counter threshold value; andtriggering the safety vacuum release system when the dead head condition is identified in order to shut down the pump substantially immediately.
  • 2. The method of claim 1 and further comprising: calculating an absolute power variation based on the actual power consumption;incrementing a dynamic counter value if the absolute power variation is negative;calculating a relative power variation based on the actual power consumption;identifying a dynamic suction blockage if at least one of the dynamic counter exceeds a dynamic counter threshold value and the relative power variation is below a negative threshold.
  • 3. The method of claim 2 and further comprising: filtering the actual power consumption with a slow low-pass filter to obtain a lagged power consumption; andcalculating the absolute power variation by subtracting the lagged power consumption from the current power consumption.
  • 4. The method of claim 3 wherein the fast low-pass filter has a time constant of about 200 milliseconds and the slow low-pass filter has a time constant of about 1400 milliseconds.
  • 5. The method of claim 3 wherein the actual power consumption is filtered for about 2.5 seconds.
  • 6. The method of claim 3 wherein the absolute power variation is updated about every 20 milliseconds to provide dynamic suction blockage detection.
  • 7. The method of claim 3 and further comprising calculating a relative power consumption by dividing the absolute power variation by the current power consumption.
  • 8. The method of claim 1 wherein the absolute counter threshold value is 10.
  • 9. The method of claim 1 and further comprising restarting the pump after a time period has elapsed.
  • 10. The method of claim 1 and further comprising preventing the pump from being restarted if the dead head condition is identified again.
  • 11. The method of claim 2 wherein the dynamic counter threshold value is 15.
RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 12/572,774 filed on Oct. 2, 2009 now U.S. Pat. No. 8,313,306, which claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/102,935 filed on Oct. 6, 2008, the entire contents of which are incorporated herein by reference.

US Referenced Citations (431)
Number Name Date Kind
1061919 Miller May 1913 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig et al. Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3191935 Uecker Jun 1965 A
3204423 Resh, Jr. Sep 1965 A
3213304 Landerg et al. Oct 1965 A
3227808 Morris Jan 1966 A
3291058 McFarlin Dec 1966 A
3481973 Wygant Dec 1969 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3581895 Howard et al. Jun 1971 A
3613805 Lindstad Oct 1971 A
3737749 Schmit Jun 1973 A
3778804 Adair Dec 1973 A
3787882 Fillmore Jan 1974 A
3838597 Montgomery et al. Oct 1974 A
3902369 Metz Sep 1975 A
3949782 Athey et al. Apr 1976 A
3953777 McKee Apr 1976 A
3963375 Curtis Jun 1976 A
4021700 Ellis-Anwyl May 1977 A
4041470 Slane et al. Aug 1977 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4151080 Zuckerman Apr 1979 A
4168413 Halpine Sep 1979 A
4225290 Allington Sep 1980 A
4241299 Bertone Dec 1980 A
4263535 Jones Apr 1981 A
4286303 Genheimer et al. Aug 1981 A
4319712 Bar Mar 1982 A
4322297 Bajka Mar 1982 A
4353220 Curwen Oct 1982 A
4370098 McClain et al. Jan 1983 A
4384825 Thomas May 1983 A
4402094 Sanders Sep 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4427545 Arguilez Jan 1984 A
4449260 Whitaker May 1984 A
4462758 Speed Jul 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4578186 Morin Mar 1986 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio et al. Mar 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham et al. Aug 1987 A
4695779 Yates Sep 1987 A
4703387 Miller Oct 1987 A
4705629 Weir Nov 1987 A
4758697 Jeuneu Jul 1988 A
4767280 Markuson Aug 1988 A
4780050 Caine et al. Oct 1988 A
4795314 Prybella Jan 1989 A
4827197 Giebeler May 1989 A
4834624 Jensen May 1989 A
4837656 Barnes Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4963778 Jensen Oct 1990 A
4971522 Butlin Nov 1990 A
4977394 Manson et al. Dec 1990 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs, Jr. Mar 1991 S
4998097 Noth et al. Mar 1991 A
5026256 Kuwabara Jun 1991 A
5076761 Krohn et al. Dec 1991 A
5076763 Anastos et al. Dec 1991 A
5079784 Rist et al. Jan 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata et al. Mar 1992 A
RE33874 Miller Apr 1992 E
5117233 Hamos et al. May 1992 A
5123080 Gillett Jun 1992 A
5151017 Sears et al. Sep 1992 A
5156535 Budris Oct 1992 A
5158436 Jensen Oct 1992 A
5159713 Gaskill et al. Oct 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe Apr 1993 S
5240380 Mabe Aug 1993 A
5295790 Bossart Mar 1994 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5418984 Livingston et al. May 1995 A
D359458 Pierret Jun 1995 S
D363060 Hunger Oct 1995 S
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein May 1996 A
5519848 Wloka May 1996 A
5520517 Sipin May 1996 A
5540555 Corso et al. Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559762 Sakamoto Sep 1996 A
D375908 Schumaker Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmermann Nov 1996 A
5577890 Nielsen et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5598080 Jensen Jan 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5626464 Schoenmyr May 1997 A
5628896 Klingenberger May 1997 A
5633540 Moan May 1997 A
5654504 Smith Aug 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5711483 Hays Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris Mar 1998 A
5730861 Sterghos et al. Mar 1998 A
5731673 Gilmore Mar 1998 A
5739648 Ellis et al. Apr 1998 A
5754421 Nystrom May 1998 A
5777833 Romillon Jul 1998 A
5791882 Stucker Aug 1998 A
5804080 Klingenberger Sep 1998 A
5819848 Rasmuson Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman et al. Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Sasaki Nov 1998 A
5883489 Konrad Mar 1999 A
5894609 Barnett Apr 1999 A
5907281 Miller, Jr. et al. May 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5941690 Lin Aug 1999 A
5945802 Konrad Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959534 Campbell et al. Sep 1999 A
5961291 Sakagami Oct 1999 A
5969958 Nielsen Oct 1999 A
5973465 Rayner Oct 1999 A
5983146 Sarbach Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasmussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida Apr 2000 A
6048183 Meza Apr 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6091604 Plougsgaard Jul 2000 A
D429699 Davis Aug 2000 S
D429700 Liebig Aug 2000 S
6098654 Cohen et al. Aug 2000 A
6102665 Centers Aug 2000 A
6116040 Stark Sep 2000 A
6121746 Fisher et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6142741 Nishihata Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6199224 Versland Mar 2001 B1
6208112 Jensen Mar 2001 B1
6227808 McDonough May 2001 B1
6238188 Lifson May 2001 B1
6249435 Vicente et al. Jun 2001 B1
6253227 Tompkins et al. Jun 2001 B1
D445405 Schneider Jul 2001 S
6253391 Watanabe et al. Jul 2001 B1
6254353 Polo Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Triezenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6299414 Schoenmyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6326752 Jensen Dec 2001 B1
6330525 Hays Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6351359 Jaeger Feb 2002 B1
6354805 Moller Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364621 Yamauchi Apr 2002 B1
6373204 Peterson Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6380707 Rosholm Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6406265 Hahn Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai Jul 2002 B1
6426633 Thybo Jul 2002 B1
6447446 Smith Sep 2002 B1
6450771 Centers Sep 2002 B1
6464464 Sabini Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain et al. Oct 2002 B2
6474949 Arai Nov 2002 B1
6481973 Struthers Nov 2002 B1
6483278 Harvest Nov 2002 B2
6483378 Blodgett Nov 2002 B2
6493227 Nielsen et al. Dec 2002 B2
6501629 Marriott Dec 2002 B1
6504338 Eichorn Jan 2003 B1
6522034 Nakayama Feb 2003 B1
6534940 Bell et al. Mar 2003 B2
6534947 Johnson et al. Mar 2003 B2
6537032 Horiuchi Mar 2003 B1
6548976 Jensen Apr 2003 B2
6571807 Jones Jun 2003 B2
6591697 Henyan Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6623245 Meza Sep 2003 B2
6636135 Vetter Oct 2003 B1
D482664 Hunt Nov 2003 S
6651900 Yoshida Nov 2003 B1
6672147 Mazet Jan 2004 B1
6676831 Wolfe Jan 2004 B2
6690250 Moller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6709240 Schmalz et al. Mar 2004 B1
6709575 Verdegan Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiassen Apr 2004 B1
6732387 Waldron May 2004 B1
D490726 Eungprabhanth Jun 2004 S
6747367 Cline Jun 2004 B2
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6776584 Sabini Aug 2004 B2
6799950 Meier et al. Oct 2004 B2
6806677 Kelly et al. Oct 2004 B2
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847854 Discenzo Jan 2005 B2
6863502 Bishop et al. Mar 2005 B2
6875961 Collins Apr 2005 B1
6884022 Albright Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Benson et al. May 2005 B2
D507243 Miller Jul 2005 S
6925823 Lifson Aug 2005 B2
6933693 Schuchmann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
6966967 Curry Nov 2005 B2
D512440 Wang Dec 2005 S
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6984158 Satoh Jan 2006 B2
6989649 Mehlhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
7005818 Jensen Feb 2006 B2
7040107 Lee et al. May 2006 B2
7050278 Poulsen May 2006 B2
7080508 Stavale Jul 2006 B2
7083392 Meza Aug 2006 B2
7114926 Oshita Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
D533512 Nakashima Dec 2006 S
7183741 Mehlhorn Feb 2007 B2
7221121 Skaug May 2007 B2
7244106 Kallman Jul 2007 B2
D562349 Bulter Feb 2008 S
D567189 Stiles, Jr. Apr 2008 S
D582797 Fraser Dec 2008 S
D583828 Li Dec 2008 S
7542251 Invankovic Jun 2009 B2
7641094 Kayan et al. Jan 2010 B2
7690897 Branecky Apr 2010 B2
7777435 Aguilar Aug 2010 B2
7821215 Koehl Oct 2010 B2
7874808 Stiles Jan 2011 B2
7925385 Stavale et al. Apr 2011 B2
7931447 Levin et al. Apr 2011 B2
7945411 Kernan et al. May 2011 B2
8011895 Ruffo Sep 2011 B2
8177520 Mehlhorn May 2012 B2
8281425 Cohen Oct 2012 B2
8303260 Stavale et al. Nov 2012 B2
8313306 Stiles et al. Nov 2012 B2
20010041139 Sabini et al. Nov 2001 A1
20020010839 Tirumala et al. Jan 2002 A1
20020018721 Kobayashi Feb 2002 A1
20020032491 Imamura et al. Mar 2002 A1
20020050490 Pittman May 2002 A1
20020070875 Crumb Jun 2002 A1
20020082727 Laflamme et al. Jun 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020150476 Lucke et al. Oct 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030017055 Fong Jan 2003 A1
20030034284 Wolfe Feb 2003 A1
20030061004 Discenzo Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030174450 Nakajima et al. Sep 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040016241 Street et al. Jan 2004 A1
20040025244 Loyd et al. Feb 2004 A1
20040055363 Bristol Mar 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040149666 Leaverton Aug 2004 A1
20040265134 Iimura Dec 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050095150 Leone et al. May 2005 A1
20050123408 Koehl Jun 2005 A1
20050137720 Spira et al. Jun 2005 A1
20050170936 Quinn Aug 2005 A1
20050180868 Miller Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050226731 Mehlhorn et al. Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050260079 Allen Nov 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060090255 Cohen May 2006 A1
20060127227 Mehlhorn Jun 2006 A1
20060138033 Hoal Jun 2006 A1
20060146462 McMillian, IV Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060204367 Meza Sep 2006 A1
20070001635 Ho Jan 2007 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070113647 Mehlhorn May 2007 A1
20070114162 Stiles et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070154319 Stiles Jul 2007 A1
20070154320 Stiles Jul 2007 A1
20070154321 Stiles Jul 2007 A1
20070154322 Stiles Jul 2007 A1
20070154323 Stiles Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20070163929 Stiles et al. Jul 2007 A1
20070183902 Stiles Aug 2007 A1
20070187185 Abraham et al. Aug 2007 A1
20070212210 Kernan et al. Sep 2007 A1
20070212229 Stavale et al. Sep 2007 A1
20070212230 Stavale et al. Sep 2007 A1
20080003114 Levin et al. Jan 2008 A1
20080039977 Clark Feb 2008 A1
20080041839 Tran Feb 2008 A1
20080063535 Koehl Mar 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos Apr 2008 A1
20080131286 Koehl Jun 2008 A1
20080131289 Koehl Jun 2008 A1
20080131291 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080131296 Koehl Jun 2008 A1
20080140353 Koehl Jun 2008 A1
20080152508 Meza Jun 2008 A1
20080168599 Caudill et al. Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181788 Meza Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080181790 Meza Jul 2008 A1
20080189885 Erlich Aug 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20090014044 Hartman Jan 2009 A1
20090038696 Levin et al. Feb 2009 A1
20090104044 Koehl Apr 2009 A1
20090143917 Uy et al. Jun 2009 A1
20090204237 Sustaeta Aug 2009 A1
20090204267 Sustaeta Aug 2009 A1
20090210081 Sustaeta Aug 2009 A1
20100306001 Discenzo Dec 2010 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20110280744 Ortiz et al. Nov 2011 A1
20110286859 Ortiz et al. Nov 2011 A1
20120020810 Stiles, Jr. et al. Jan 2012 A1
20120100010 Stiles, Jr. et al. Apr 2012 A1
Foreign Referenced Citations (26)
Number Date Country
3023463 Feb 1981 DE
19736079 Aug 1997 DE
19645129 May 1998 DE
10231773 Feb 2004 DE
19938490 Apr 2005 DE
246769 May 1986 EP
0306814 Mar 1989 EP
0314249 May 1989 EP
0709575 May 1996 EP
833436 Sep 1996 EP
0735273 Oct 1996 EP
0831188 Mar 1998 EP
0978657 Feb 2000 EP
1134421 Sep 2001 EP
2529965 Jun 1983 FR
2703409 Oct 1994 FR
2124304 Jun 1983 GB
5010270 Jan 1993 JP
WO9804835 Feb 1998 WO
WO0042339 Jul 2000 WO
WO 0147099 Jun 2001 WO
WO03099705 Dec 2003 WO
WO 2004006416 Jan 2004 WO
WO2004073772 Sep 2004 WO
WO 2004088694 Oct 2004 WO
WO 2006069568 Jul 2006 WO
Non-Patent Literature Citations (120)
Entry
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012.
Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011.
Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011.
Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011.
Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-00459D; Oct. 12, 2011.
Plaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D; Nov. 2, 2011.
Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D; Nov. 23, 2011.
Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 3, 2012.
Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012.
Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012.
Order Denying Motion for Preliminary Injunction for Civil Action 5: 11-cv-00459D; Jan. 23, 2012.
Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 27, 2012.
Order Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012.
Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-00459D; Jun. 13, 2012.
Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012.
Order Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012.
Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-00459D; Jul. 2012.
Order Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-00459D; Jul. 2012.
Notice re Plaintiffs re Order on Motion for Leave to File Excess Pages re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Aug. 2012.
Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; Civil Action 5:11-cv-00459D.
Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; Civil Action 5:11-cv-00459D; Dec. 2, 2011.
STMicroelectronics; “AN1946—Sensorless BLDC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-00459D.
STMicroelectronics; “AN1276 BLDC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; Civil Action 5:11-cv-00459D.
Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Civil Action 5:11-cv-00459D.
Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; Civil Action 5:11-cv-00459D; Dec. 2, 2011.
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; Civil Action 5:11-cv-00459D.
Sabbagh et al.; “A Model for Optimal . . . Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-00459D.
Danfoss; “VLT 5000 Flux Aqua DeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; Civil Action 5:11-cv-00459D.
Danfoss; “VLT 5000 Flux Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; Civil Action 5:11-cv-00459D.
Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; Civil Action 5:11-cv-00459D.
Pentair; “Compool 3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; Civil Action 5:11-cv-00459D.
Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; Civil Action 5:11-cv-00459D.
Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; Civil Action 5:11-cv-00459D.
Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; Civil Action 5:11-cv-00459D.
Danfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; Civil Action 5:11-cv-00459D.
Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; Civil Action 5:11-cv-00459D; 1994.
Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; Civil Action 5:11-cv-00459D; Mar. 2006.
Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; Civil Action 5:11-cv-00459D; Jun. 1999.
Hopkins; “Partitioning Digitally . . . Applications to Ballasts;” pp. 1-6; Civil Action 5:11-cv-00459D; Mar. 2002.
Pentair; Selected Website Pages; pp. 1-29; Civil Action 5:11-cv-00459D; Sep. 2011.
Pentair; “IntelliFlo Variable Speed Pump” Brochure; 2011; pp. 1-9; Civil Action 5:11-cv-00459D.
Pentair; “IntelliFlo VF Intelligent Variable Flow Pump;” 2011; pp. 1-9; Civil Action 5:11-cv-00459D.
Pentair; “IntelliFlo VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; Civil Action 5:11-cv-00459D.
Sta-Rite; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; Civil Action 5:11-cv-00459D.
Pentair; “IntelliFlo Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; Civil Action 5:11-cv-00459D.
Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; Civil Action 5:11-cv-00459D; 2010.
Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; Civil Action 5:11-cv-00459D; Sep. 30, 2011.
Hayward Pool Products; “Hayward Energy Solutions Brochure;” pp. 1-3; www.haywardnet.com; Civil Action 5:11-cv-00459D; Sep. 2011.
Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; Civil Action 5:11-cv-00459D; Sep. 2011.
Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; Civil Action 5:11-cv-00459D; Sep. 2011.
Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; Civil Action 5:11-cv-00459D.
Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; Civil Action 5:11-cv-00459D; Sep. 2011.
Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; Civil Action 5:11-cv-00459D; Sep. 2011.
Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” Civil Action 5:11-cv-00459; Sep. 2011.
Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011.
Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010.
Plaintiff's Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; Civil Action 5:11-cv-00459; Feb. 21, 2012.
Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; Civil Action 5:11-cv-00459; 2011.
Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662.
Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; Civil Action 5:11-cv-00459.
Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; Civil Action 5:11-cv-00459D.
Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; Civil Action 5:11-cv-00459D.
Robert S. Carrow; “Electrician's Technical Reference—Variable Frequency Drives;” 2001; pp. 1-194.
Baldor; “Baldor Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92.
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118.
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74.
Dinverter; “Dinverter 2B User Guide;” Nov. 1998; pp. 1-94.
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71.
“Product Focus—New AC Drive Series Targets Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2.
Pentair; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60.
Pentair; “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2.
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45.
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; pp. 1-4.
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118.
Shabnam Mogharabi; “Better, Stronger, Faster;” Pool and Spa News; pp. 1-5; Sep. 3, 2004; www/poolspanews.com.
Pentair Pool Products; “IntelliFlo 4X160 a Breathrough in Energy-Efficiency and Service Life;” pp. 1-4; Nov. 2005; www/pentairpool.com.
Pentair Water Pool and Spa, Inc.; “The Pool Pro's Guide to Breakthrough Efficiency, Convenience & Profitability;” pp. 1-8; Mar. 2006; wwwpentairpool.com.
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA.
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” Jan. 2002; Seneca Falls, NY.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA.
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan. 2001; USA.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA.
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement.
AMTROL Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Aug. 2002; West Warwick, RI USA.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark.
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec 19, 2001.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000.
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA.
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999.
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001.
Sje-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA.
Sje-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA.
Sje-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA.
Grundfos; “SmartFlo SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA.
Grundfos; “Grundfos SmartFlo SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA.
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; Undated.
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com.
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA.
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12.
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA.
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA.
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com.
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA.
Related Publications (1)
Number Date Country
20120107140 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61102935 Oct 2008 US
Divisions (1)
Number Date Country
Parent 12572774 Oct 2009 US
Child 13350167 US