Claims
- 1-89. (Cancelled).
- 90. A method of operating an electrically programmable and erasable memory device having an electrically conductive floating gate disposed over and insulated from a substrate of semiconductor material, and an electrically conductive control gate having at least a portion thereof disposed laterally adjacent to the floating gate and insulated therefrom by an insulating material, the method comprising the step of:
placing a voltage on the control gate that is sufficiently positive relative to a voltage of the floating gate to induce electrons on the floating gate to laterally tunnel from a horizontally oriented edge extending from a lateral side of the floating gate, through the insulating material, and onto the control gate via Fowler-Nordheim tunneling.
- 91. The method of claim 90, further comprising the steps of:
placing a positive voltage on a source region of the substrate formed at least partially underneath and insulated from the floating gate to capacitively couple the positive voltage onto the floating gate; placing a positive voltage on a drain region of the substrate that is disposed underneath a trench formed in the surface of the substrate; and placing a positive voltage on the control gate which has a first portion extending down into the trench and a second portion disposed laterally adjacent to the floating gate edge; wherein electrons are induced to travel from the drain region, generally along a sidewall of the trench and onto the floating gate.
- 92. A method of operating an electrically programmable and erasable non-volatile memory cell having a first and a second state, and including an electrically conductive floating gate disposed over and insulated from a substrate of semiconductor material, and an electrically conductive control gate having at least a portion thereof disposed laterally adjacent to the floating gate, the method comprising the steps of:
establishing a first state of the memory cell by injecting electrons from a drain region of the substrate onto the floating gate, wherein the source region is disposed below a surface of the substrate and the injected electrons travel through the substrate in a direction generally perpendicular to the surface of the substrate; and establishing a second state of the memory cell by removing electrons from the floating gate to the control gate via Fowler-Nordheim tunneling through an insulating material disposed therebetween, wherein the removed electrons tunnel from a horizontally oriented edge extending from a lateral side of the floating gate, through the insulating material, and onto the control gate in a direction generally parallel to the surface of the substrate.
Parent Case Info
[0001] This application claims the benefit of U.S. Provisional Application No. 60/343,634, filed Dec. 27, 2001, and entitled A Super Self-Aligned Flash E2PROM With Vertical Word-Line Transistor For Program and Horizontal-Oriented Floating-Gate Tips For Erase and of U.S. Provisional Application No. 60/355,363, filed Feb. 6, 2002, and entitled A Super Self-Aligned Flash E2PROM With Vertical Word-Line Transistor For Program and Horizontal-Oriented Floating-Gate Tips For Erase—SAC Option and Metal Source-Line Option.
Provisional Applications (2)
|
Number |
Date |
Country |
|
60343634 |
Dec 2001 |
US |
|
60355363 |
Feb 2002 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
10183834 |
Jun 2002 |
US |
Child |
10849975 |
May 2004 |
US |