The present invention generally relates to a method of operating a shifting system for a vehicle transmission.
Conventional vehicles known in the art typically include a motor having a rotational output as a rotational input into a vehicle transmission. The motor is typically an internal combustion engine or an electric motor, and generates the rotational output which is selectively transferred to the vehicle transmission which, in turn, transfers rotational torque to one or more wheels of the vehicle. The vehicle transmission changes the rotational speed and torque generated by the motor through a series of predetermined gearsets, whereby changing between the gearsets enables the vehicle to travel at different vehicle speeds for a given motor speed. Commonly, the motor is the electric motor coupled to the vehicle transmission in an axle connected to the wheels of the vehicle.
Rotational input into the vehicle transmission typically requires a shifting system to selectively transfer torque to the components of the vehicle transmission. A typical shifting system includes an input member (e.g. the rotational output from the motor) rotatable about an axis, a disconnect coupled to the input member, and an output member (e.g. the rotational input to the vehicle transmission) selectively rotatable with the input member about the axis. A shifting assembly is also typically required to selectively rotatably couple the input member and the output member.
The shifting systems known in the art often suffer from in high drag losses, which lowers the efficiency of torque transfer between the motor and the vehicle transmission. Additionally, typical shifting systems produce rough engagement between the motor and the components of the vehicle transmission through connection with the disconnect, resulting in vibrations of the vehicle and an uncomfortable driving experience.
Accordingly, it is desirable to provide an improved shifting system for vehicle transmissions.
A shifting system for a vehicle transmission includes an input member extending along an axis between a first end and a second end spaced from the first end. The vehicle transmission has a gearset including a first gear ratio and a second gear ratio different from the first gear ratio. The input member is rotatable about the axis. The shifting system further includes a clutch coupled to the input member. The clutch is configured to selectively allow torque to be transmitted through one of the first and second gear ratios of the gearset from the input member.
The shifting system also includes a disconnect coupled to the input member. The disconnect is movable between a first disconnect position and a second disconnect position. The shifting system further includes an output member is spaced from the input member, and the output member is selectively rotatable with the input member about the axis to selectively transmit torque through the other of the first and second gear ratios of the gearset.
The shifting system further includes a shifting assembly for selectively rotatably coupling the input member and the output member. The shifting assembly includes an input hub coupled to the input member. The input hub has a disconnectable component engageable with the disconnect, and the disconnectable component of the input hub is disengaged from the disconnect when the disconnect is in the first disconnect position and the disconnectable component of the input hub is engaged with the disconnect when the disconnect is in the second disconnect position.
The input hub has a clutch engagement component. The shifting assembly also includes a plurality of clutch plates is coupled to the clutch engagement component of the input hub. The plurality of clutch plates is movable between an engaged position and a disengaged position. In the engaged position, the clutch plates are engaged with one another. In the disengaged position, the clutch plates are disengaged from one another. The shifting assembly further includes a clutch plate carrier is coupled to the plurality of clutch plates and to the output member to transmit torque from the clutch engagement component of the input hub, through the plurality of clutch plates and the clutch plate carrier, to the output member.
Accordingly, the shifting system results in low drag losses, which increases the efficiency of torque transfer between a motor and the vehicle transmission. Moreover, the shifting system produces smooth engagement between the motor and the vehicle transmission through the shifting assembly (i.e., through the connection with the disconnect and engagement of the plurality of clutch plates), resulting in fewer vibrations and a more comfortable driving experience. Furthermore, the clutch allows the shifting system to achieve low spin losses by rotatably decoupling the shifting assembly when torque is not required to be transmitted through the shifting assembly. The low spin losses allowed by the combination of the clutch and the shifting assembly allow the first and second gear ratios of the vehicle transmission to achieve a net energy savings as compared to a single speed transmission.
A method of operating the shifting system for the vehicle transmission includes the step of disengaging the clutch to prevent torque from being transmitted through one of the first and second gear ratios from the input member. The method also includes the step of moving the clutch plates from an engaged position, where the clutch plates are engaged with one another, to a disengaged position, where the clutch plates are disengaged from one another. The method further includes the step of moving the disconnect from a first disconnect position, where the disconnectable component of the input hub is disengaged from the disconnect, to a second disconnect position, where the disconnectable component of the input hub is engaged with the disconnect.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
With reference to the Figures, wherein like numerals indicate like parts throughout the several views, a vehicle transmission 10 is provided in schematic illustration in
The shifting system 18 includes an input member 20 extending along an axis A between a first end 22 and a second end 24 spaced from the first end 22. The input member 20 is rotatable about the axis A. As non-limiting examples, the input member 20 may be a shaft or a gear. The shifting system 18 also includes a clutch 25 coupled to the input member 20. The clutch 25 is configured to selectively allow torque to be transmitted through one of the first and second gear ratios 14, 16 of the gearset 12 from the input member 20. The clutch 25 may be a variety of clutch types and configurations, which are detailed further below. Notably, although not required, the clutch 25 may be a selectable one-way clutch 26. When present, selectable one-way clutch 26 is rotatably coupled to the input member 20, and the selectable one-way clutch 26 is movable between a first clutch position (denoted as X/X in
In the first clutch position X/X, as shown in
In the second clutch position X/O, as shown in
In the third clutch position O/O, as shown in
The shifting system 18 also includes a disconnect 28 coupled to the input member 20. The disconnect 28 is movable between a first disconnect position DP1, as shown in
The shifting system 18 further includes a shifting assembly 32 for selectively rotatably coupling the input member 20 and the output member 30. With reference to
The disconnect 28 rotatably disconnects the input member 20 and the disconnectable component 36, thus rotatably disconnecting the input member 20 and the input hub 34. In one embodiment, the disconnect 28 is a disconnect clutch. Alternatively, in another embodiment, the disconnect 28 is a synchronizer. In the embodiments where the disconnect 28 is a synchronizer, the synchronizer may have a synchronizer ring, a synchronizer cone, a synchronizer hub, and a synchronizer sleeve. In yet another embodiment, the disconnect 28 is a dog clutch.
The input hub 34 has a clutch engagement component 38. The shifting assembly 32 includes a plurality of clutch plates 40 coupled to the clutch engagement component 38 of the input hub 34. The plurality of clutch plates 40 is movable between an engaged position ENG and a disengaged position D-ENG. In the engaged position ENG, as shown in
The shifting system 18 results in low drag losses, which increases the efficiency of torque transfer between a motor and the vehicle transmission 10. Moreover, the shifting system 18 produces smooth engagement between the motor and the vehicle transmission 10 through the shifting assembly 32 (i.e., through the connection with the disconnect 28 and engagement of the plurality of clutch plates 40), resulting in fewer vibrations and a more comfortable driving experience. Furthermore, the clutch 26 allows the shifting system 18 to achieve low spin losses by rotatably decoupling the shifting assembly 32 when torque is not required to be transmitted through the shifting assembly 32. The low spin losses allowed by the combination of the clutch 26 and the shifting assembly 32 allow the first and second gear ratios 14, 16 of the vehicle transmission 10 to achieve a net energy savings as compared to a single speed transmission.
As discussed above, it is to be appreciated that the clutch 25 may be a variety of clutch types and configurations. In a non-limiting example, the clutch 25 may be the selectable one-way clutch 26. However, in other non-limiting examples, the clutch 25 may be another shifting assembly as described herein, may be a dry friction clutch, may be a wet friction clutch, may be a single plate clutch, may be a multi-plate clutch, may be a cone clutch, may be a dog clutch, or may be a centrifugal clutch. Additionally, in some embodiments, at least a portion of the clutch 25 is rotatably coupled with the input member 14.
It is to be appreciated that the motor may be an internal combustion motor or may be an electric motor. It is also to be appreciated that the motor may be coupled to a back axle of the vehicle. In one embodiment, the motor is the electric motor and is rotatably coupled to the back axle of the vehicle and configured to rotate the back axle of the vehicle to propel the vehicle.
The selectable one-way clutch 26 may have an inner race 44 and an outer race 46 disposed about the inner race 44, as shown in
The selectable one-way clutch 26 may also have at least one pawl 48 disposed between the inner race 44 and the outer race 46. The pawl 48 selectively rotatably couples the inner race 44 and the outer race 46. In a non-limiting example, the pawl 48 may be rotatable to engage both the inner race 44 and the outer race 46 to prevent relative rotation between the inner race 44 and the outer race 46. It is to be appreciated that the pawl 48 may allow rotational coupling between the inner race 44 and the outer race 46 in the first rotational direction D1 while preventing rotational coupling between the inner race 44 and the outer race 46 in the second rotational direction D2. Alternatively, it is to be appreciated that the pawl 48 may allow rotational coupling between the inner race 44 and the outer race 46 in the second rotational direction D2 while preventing rotational coupling between the inner race 44 and the outer race 46 in the first rotational direction D1. The pawl 48 may also either prevent, or allow, rotational coupling between the inner race 44 and the outer race 46 in both the first rotational direction D1 and the second rotational direction D2.
The at least one pawl 48 may be further defined as a plurality of pawls 50 circumferentially spaced from one another. The selectable one-way clutch 26 may further include an actuator ring 52 coupled to the plurality of pawls 50 for selectively rotatably locking the inner and outer races 44, 46 together. The actuator ring 52 may be in physical contact with the pawls 50 such that movement, for example rotation, of the actuator ring 52 results in movement, for example rotation, of the pawls 50. The actuator ring 52 may be electrically actuated by a small electric motor or solenoid. The small electric motor or solenoid may be coupled to the outer race 46 of the selectable one-way clutch 26. It is also to be appreciated that the actuator ring 52 may be hydraulically, pneumatically, or otherwise actuated.
The shifting assembly 32 may further include a biasing member 54 coupled to the plurality of clutch plates 40 to bias the plurality of clutch plates 40 toward the engaged position ENG. In other words, the plurality of clutch plates 40 may be normally closed and at rest in the engaged position ENG. Because the plurality of clutch plates 40 of the shifting assembly 32 at rest are in the engaged position ENG due to the biasing member 54 biasing the plurality of clutch plates 40 toward the engaged position ENG, the shifting assembly 32 is energy efficient, and thus the shifting system 18 is also energy efficient. Said differently, because power from an electronic actuator or a hydraulic actuator is not needed to maintain the plurality of clutch plates 40 in the engaged position ENG, the shifting assembly 32 is energy efficient, and thus the shifting system 18 is energy efficient.
The shifting assembly 32 may further include an apply plate 56 coupled to the biasing member 54. When present, the apply plate 56 is movable between a first plate position where the plurality of clutch plates 40 are in the engaged position ENG, and a second plate position where the apply plate 56 is engaged with the biasing member 54 and the plurality of clutch plates 40 are in the disengaged position D-ENG.
In one embodiment, the apply plate 56 and the disconnect 28 are movable independent of one another. The apply plate 56 may be moved from the first plate position to the second plate position, resulting in the plurality of clutch plates 40 moving from the engaged position ENG to the disengaged position D-ENG, independent of whether the disconnect 28 is in the first disconnect position DP1 or the second disconnect position DP2 and without affecting the position of the disconnect 28. Likewise, the disconnect 28 may be moved from the first disconnect position DP1 to the second disconnect position DP2, resulting in the input hub 34 being engaged, independent of whether the apply plate 56 is in the first plate position or the second plate position and without affecting the position of the apply plate 56.
In the embodiment where the apply plate 56 and the disconnect 28 are movable independent of one another, the shifting system 18 may also include a first actuator coupled to the disconnect 28 to move the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 independent of the apply plate 56, and a second actuator coupled to the apply plate 56 to move the apply plate 56 from the first plate position to the second plate position independent of the disconnect 28. It is to be appreciated that the first and second actuators may be moved through, but not limited to, mechanical actuation, electrical actuation, hydraulic actuation, or pneumatic actuation.
In some embodiments, the input member 20 is rotatably coupled to the output member 30 when the disconnect 28 is in the second disconnect position DP2 and the apply plate 56 is in the first plate position. In other words, the input member 20 may be rotatably coupled to the output member 30 when the apply plate 56 is in the first plate position where the biasing member 54 is able to bias the plurality of clutch plates 40 toward the engaged position ENG, and when the disconnect 28 is in the second disconnect position DP2 where the disconnect 28 is engaged with the input hub 34. In these positions, torque is able to be transmitted from the input member 20, through the input hub 34, the plurality of clutch plates 40, and the clutch plate carrier 42 to the output member 30.
In some embodiments, the input member 20 is rotatably decoupled from the output member 30 when the disconnect 28 is in the first disconnect position DP1 and/or when the apply plate 56 is in the second plate position. In other words, the input member 20 is rotatably decoupled from the output member 30 when either the disconnect 28 is in the first disconnect position DP1, the apply plate 56 is in the second plate position, or both the disconnect 28 is in the first disconnect position DP1 and the apply plate 56 is in the second plate position. In these positions, torque is unable to be transferred from the input member 20 to the output member 30.
The disconnect 28 and the plurality of clutch plates 40 are disposed in series with one another in the embodiments where the input member 20 is rotatably coupled to the output member 30 only when the disconnect 28 is in the second disconnect position DP2 and the apply plate 56 is in the first plate position. Said differently, if either the disconnect 28 is in the first disconnect position DP1 where the disconnect 28 is disengaged from the input hub 34, or the apply plate 56 is in the second plate position where the plurality of clutch plates 40 are disengaged, then the input member 20 is rotatably decoupled from the output member 30. Therefore, when disposed in series, both the disconnect 28 must be engaged with the input hub 34 and the plurality of clutch plates 40 must be engaged with one another to transfer torque directly from the input member 20 to the output member 30.
The disconnectable component 36 of the input hub 34 and the clutch engagement component 42 of the input hub 34 may be integral with one another. Alternatively, the disconnectable component 36 of the input hub 34 and the clutch engagement component 42 of the input hub 34 may be separate components. In some embodiments, the clutch engagement component 42 of the input hub 34 may be rotatably connected to the disconnectable component 36 of the input hub 34 through use of keys, tabs, or bolts. It is to be appreciated that the input hub 34 may be more than two components and may include a third component or more to transmit torque from the input member 20 to the plurality of clutch plates 40.
In some embodiments, as shown in
Although not required, the shifting assembly 32 may also include a support ring 60 disposed between the biasing member 54 and the clutch engagement component 42 to support the plurality of clutch plates 40. The support ring 60 may be disposed about the axis A and may be rotatable with either the input member 20 or the output member 30. The support ring 60 may be spaced from the plurality of clutch plates 40 along the axis A, as shown in
In some embodiments, as shown in
In other embodiments, as shown in
In some embodiments, the biasing member 54 is a Belleville spring. It is to be appreciated, however, that the biasing member 54 may be any type of spring, including, but not limited to, a wave spring, a coil spring, and a conical spring.
As shown in
It is to be appreciated that in the embodiments illustrated in
As shown in
It is to be appreciated that in the embodiments illustrated in
In some embodiments, the selectable one-way clutch 26 is further movable between a fourth position, as shown in
In the embodiments where the selectable one-way clutch 26 is movable to a fourth clutch position (denoted as O/X in
The vehicle transmission may also include a countershaft 62 spaced from the input member 20 and rotatable about the axis A. It is to be appreciated that the countershaft 62 may also be referred to as a layshaft 62. The clutch 26 may be configured to transmit torque from the input member 20 to the countershaft 62 through the first gear ratio 14. The shifting assembly 32 may be configured to transmit torque from the output member 30 to the countershaft 62 through the second gear ratio 16. It is to be appreciated that the output member 30 may be a shaft, a gear, or even the countershaft 62 itself.
It is to be appreciated that the inner and outer races 44, 46 of the selectable one-way clutch 26 may be disposed about and aligned axially with the input member 20, as shown in
In another embodiment, as shown in
As shown in
As shown in
The shift drum 64 may also be further defined as a first shift drum 70 operatively connected to the clutch 25 and configured to selectively transmit torque through the clutch 25. In this embodiment, the actuator 68 is further defined as a first actuator 72 directly coupled to the shift drum 64 and to the clutch 25 for selectively transmitting torque through the clutch 25. The first actuator 72 may be at least partially disposed in the at least one groove 66 of the shift drum 64 and configured to selectively transmit torque through the clutch 25. It is to be appreciated that the at least one groove 66 may be a first groove 66.
As shown in
In one embodiment, the second actuator 76 is directly coupled (e.g., in direct contact with) with the plurality of clutch plates 40 of the shifting assembly 32. As discussed above, however, it is to be appreciated that the second actuator 76 may be in direct contact with the apply plate 56 and/or the intermediate apply plate 58 while still being directly coupled to plurality of clutch plates 40. The second actuator 76 may be movable within the second groove 78 of the second shift drum 74 such that the plurality of clutch plates 40 is moved between the engaged position ENG to the disengaged position D-ENG. In another embodiment, the second actuator 76 is directly coupled with the disconnect 28 and/or the disconnectable component 36 of the shifting assembly 32. The second actuator may be movable within the second groove 78 of the second shift drum 74 such that the disconnect 28 may be moved between the first disconnect position DP1 and the second disconnect position DP2. It is to be appreciated, however, that the second actuator 76 may be movable within the second groove 78 of the second shift drum 74 such that both the clutch plates 40 may be moved between the engaged position ENG and the disengaged position D-ENG while also moving the disconnect 28 between the first disconnect position DP1 and the second disconnect position DP2.
As shown in
More specifically, in the embodiments with the third shift drum 80, third groove 84, and third actuator 82, one of the second and third shift drums 74, 80 may be operatively connected to the disconnect 28 of the shifting assembly 32 and the other of the second and third shift drums 74, 80 may be operatively connected to the clutch plates 40 of the shifting assembly 32. In other words, the second shift drum 74 may be operatively connected to the disconnect 28 of the shifting assembly 32 and the third shift drum 80 may be operatively connected to the clutch plates 40 of the shifting assembly 32. Alternatively, the second shift drum 74 may be operatively connected to the clutch plates 40 of the shifting assembly 32 and the third shift drum 80 may be operatively connected to the disconnect 28 of the shifting assembly 32. In the embodiments with the second and third shift drums 74, 80, the clutch plates 40 and the disconnect 28 may be moved independently of one another.
The shifting system 18 may include an electric motor 86 coupled to the shift drum 64 to rotate the shift drum 64. In the embodiments with first, second, and/or third shift drums 70, 74, 80, it is to be appreciated that the shifting system 18 may have a first electric motor 88 coupled to the first shift drum 70 to rotate the first shift drum 70, and may have a second electric motor 90 coupled to the second shift drum 74 to rotate the second shift drum 74, and/or may have a third electric motor 92 coupled to the third shift drum 80 to rotate the third shift drum 80.
A method 100 of operating the shifting system 18 is also provided. The method 100 includes the step 102 of moving the selectable one-way clutch 26 from the first clutch position X/X where the selectable one-way clutch 26 is configured to allow torque to be transmitted through one of the first and second gear ratios 14, 16 from the input member 20 in either the first rotational direction D1 or the second rotational direction D2 opposite the first rotational direction, to the second clutch position X/O where the selectable one-way clutch 26 is configured to allow torque to be transmitted through one of the first and second gear ratios 14, 16 from the input member 20 in the first rotational direction D1 and prevent torque from being transmitted through one of the first and second gear ratios 14, 16 from the input member 20 in the second rotational direction D2. The step 102 of moving the selectable one-way clutch 26 from the first clutch position X/X to the second clutch position X/O is indicated by a shifting schedule in
The method 100 also includes the step 104 of moving the plurality of clutch plates 40 from the engaged position ENG, where the clutch plates 40 are engaged with one another, to the disengaged position D-ENG, where the clutch plates 40 are disengaged from one another. The step 104 of moving the clutch plates 40 from the engaged position ENG to the disengaged position D-ENG is indicated by the shifting schedule in
The method 100 further includes the step 106 of moving the disconnect 28 from the first disconnect position DP1, where the disconnectable component 36 of the input hub 34 is disengaged from the disconnect 28, to the second disconnect position DP2, where the disconnectable component 36 of the input hub 34 is engaged with the disconnect 28. The step 106 of moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 is indicated by the shifting schedule in
The method 100 further includes the step 108 of moving the selectable one-way clutch 26 from the second clutch position X/O to the third clutch position O/O where the selectable one-way clutch 26 is configured to prevent torque from being transmitted through one of the first and second gear ratios 14, 16 from the input member 20 in either the first rotational direction D1 or the second rotational direction D2 to shift the transmittance of torque from the input member 20 through one of the first and second gear ratios 14, 16, to from the input member 20 through the other of the first and second gear ratios 14, 16. The step 108 of moving the selectable one-way clutch 26 from the second clutch position X/O to the third clutch position O/O is indicated by the shifting schedule in
In one embodiment, the step 102 of moving the selectable one-way clutch 26 from the first clutch position X/X to the second clutch position X/O precedes the step 104 of moving the plurality of clutch plates 40 from the engaged position ENG to the disengaged position D-ENG. Additionally, the step 104 of moving the plurality of clutch plates 40 from the engaged position ENG to the disengaged position D-ENG may precede the step 106 of moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2. In this way, the disconnect 28 may smoothly engage the disconnectable component 36 of the input hub 34 because the clutch plates 40 in the disengaged position D-ENG rotatably decouple the input member 20 from the output member 30.
Moreover, the step 106 of moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 may precede the step 108 of moving the selectable one-way clutch 26 from the second clutch position X/O to the third clutch position O/O. The method 100 may further include the step 110 of moving the plurality of clutch plates 40 from the disengaged position D-ENG to the engaged position ENG, as indicated by the shifting schedule in
The step 106 of moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 may precede the step 110 of moving the plurality of clutch plates 40 from the disengaged position D-ENG to the engaged position ENG. In other words, the disconnect 28 may be engaged with the disconnectable component 36 of the input hub 34 before the clutch plates 40 are re-engaged. Re-engaging the clutch plates 40 after the disconnect 28 is in the second disconnect position DP2 smoothly rotatably couples the input member 20 and the output member 30, thus allowing torque to be transmitted through the other of the first and second gear ratios 14, 16. The shift schedule in
It is to be appreciated that one of the first and second gear ratios 14, 16, may be either the first gear ratio 14 or the second gear ratio 16. It is also to be appreciated that the other of the first and second gear ratios 14, 16 may be either the first gear ratio 14 or the second gear ratio 16. In other words, the selectable one-way clutch 26 may be configured to transmit torque through the first gear ratio 14 or may be configured to transmit torque through the second gear ratio 16. The shifting assembly 32, therefore, may be configured to transmit torque through the corresponding first gear ratio 14 or second gear ratio 16. In the embodiment where the selectable one-way clutch 26 is configured to transmit torque through the first gear ratio 14, the shifting assembly 32 is configured to transmit torque through the second gear ratio 16. Alternatively, in the embodiment where the selectable one-way clutch is configured to transmit torque through the second gear ratio 16, the shifting assembly 32 is configured to transmit torque through the first gear ratio 14. It is also to be appreciated that the torque multiplication, or torque reduction, through the first gear ratio 14 may be higher than, or may be lower than, through the second gear ratio 16.
A method 200 of operating the shifting system 18 for the vehicle transmission 10 includes the step 202 of engaging the clutch 25 to operatively couple one of the first and second gear ratios 14, 16 to the input member 20, as indicated by elements A and B in
The steps 202, 204 of engaging the clutch 25 and moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 are performed such that the clutch 25 is operatively coupled to one of the first and second gear ratios 14, 16 at the same time that the shifting assembly 32 is operatively coupled to the other one of the first and second gear ratios 14, 16, thus preventing torque from being transmitted through either the first and second gear ratios 14, 16 of the vehicle transmission 10 to park the vehicle. The result of steps 202, 204 of engaging the clutch 25 and moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 are indicated by element P in
The method 200 may also be performed such that torque is prevented from being transmitted from either of the input member 20 or the output member 30 through either the first and second gear ratios 14, 16 when the clutch 25 is operatively coupled to one of the first and second gear ratios 14, 16 at the same time that the shifting assembly 32 is operatively coupled to the other one of the first and second gear ratios 14, 16. Said differently, the method 200 may prevent torque from being transmitted from the input member 20, through either the first and second gear ratios 14, 16, to the output member 30. Moreover, the method 200 may prevent torque from being transmitted from the output member 30, through either of the first and second gear ratios 14, 16, to the input member 20. In this way, the method 200 may rotatably lock the input member 20 and the output member 30 relative to one another.
In one embodiment, the first and second gear ratios 14, 16 are opposing one another. Said differently, transmittance of torque through the first gear ratio 14 prevents transmittance of torque through the second gear ratio 16, and transmittance of torque through the second gear ratio 16 prevents transmittance of torque through the first gear ratio 14. Moreover, there may be no relative motion between the input member 20 and the output member 30 when the clutch 25 is operatively coupled to one of the first and second gear ratios 14, 16 at the same time that the shifting assembly 32 is operatively coupled to the other one of the first and second gear ratios 14, 16.
The method 200 may result in there being no relative motion between the clutch 25 and the shifting assembly 32 when the clutch 25 is operatively coupled to one of the first and second gear ratios 14, 16 at the same time that the shifting assembly 32 is operatively coupled to the other one of the first and second gear ratios 14, 16. In other words, the clutch 25 and the shifting assembly 32 may be static relative to one another throughout the duration of the vehicle being held in park. The clutch 25 is statically held as engaged, and the shifting assembly 32 is statically held such that the clutch plates 40 are in the engaged position and the disconnect 28 is in the second disconnect position DP2.
The clutch 25 may be disposed about the input member 20 and at least partially rotatably coupled to the input member 20, as shown in
In the embodiments where the vehicle transmission 10 includes the countershaft 62, the clutch 25 may be disposed about the countershaft 62 and at least partially rotatably coupled to the countershaft 62, as shown in
The disconnect 28 may be disposed about and axially aligned with the input member 20. In this embodiment, the shifting assembly 32 may be axially aligned with the input member 20 and the input member 20 may directly transmit torque through the shifting assembly 32 without additional componentry to transmit torque from the input member 20 to the shifting assembly 32. Moreover, the size of the vehicle transmission 10 may be reduced because the disconnect 28 is disposed about and axially aligned with the input member 20.
The plurality of clutch plates 40 may be spaced axially from the disconnect 28 such that the disconnect 28 is disposed between the first gear ratio 14 and the plurality of clutch plates 40. Although not required, the arrangement between the plurality of clutch plates 40, the disconnect 28, and the first gear ratio 14 results in an efficient use of space within the vehicle transmission 10 because the first gear ratio 14 and the disconnect 28 may both be partially disposed about the input member 20, and the plurality of clutch plates 40 may be disposed near one of the first and second ends 22, 24 of the input member 20.
The second gear ratio 16 may be spaced axially from the disconnect 28 such that the disconnect 28 is disposed between the first gear ratio 14 and the second gear ratio 16. Although not required, the arrangement between the disconnect 28, the first gear ratio 14, and the second gear ratio 16 results in the disconnect 28, as a component of the shifting assembly 32, being able to assist in operatively coupling one of the first and second gear ratios 14, 16 at the same time that the clutch 25 is operatively coupled to the other of the first and second gear ratios 14, 16, thus preventing torque from being transmitted through either the first and second gear ratios 14, 16 of the vehicle transmission 10 to park the vehicle.
The method 200 may also include the step 206 of moving the plurality of clutch plates from the disengaged position D-ENG where the clutch plates 40 are disengaged with one another, to the engaged position ENG where the clutch plates 40 are engaged with one another, as indicated by element C in
It is to be appreciated that the clutch 25 used in the method 200 may be the selectable one-way clutch 26. However, it is also to be appreciated that the clutch 25 may be any of the clutches disclosed herein, including, but not limited to, another shifting assembly as described herein, a dry friction clutch, a wet friction clutch, a single plate clutch, a multi-plate clutch, a cone clutch, a dog clutch, or a centrifugal clutch.
In the embodiments where the clutch 25 is the selectable one-way clutch 26, the step 202 of engaging the clutch 25 to operatively couple one of the first and second gear ratios 14, 16 to the input member 20 may be further defined as a step 208 of moving the selectable one-way clutch 26 from the third clutch position O/O to the first clutch position X/X, as indicated by elements G-P in
In the embodiments where the clutch 25 is the selectable one-way clutch 26, the step 210 of moving the selectable one-way clutch 26 from the third clutch position O/O to the second clutch position X/O, and from the second clutch position X/O to the first clutch position X/X may precede the step 204 of moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2. In other words, although not required, the selectable one-way clutch 26 may be in the lock/free configuration and moved to the lock/lock position before the disconnect 28 is moved from the first disconnect position DP1 to the second disconnect position DP2. In this embodiment, the selectable one-way clutch 26, therefore, is operably coupled to one of the first and second gear ratios 14, 16 before the shifting assembly 32 is operably coupled to the other of the first and second gear ratios 14, 16. It is to be appreciated, however, that the shifting assembly 32 may be operably coupled to one of the first and second gear ratios 14, 16 before the selectable one-way clutch 26 is operably coupled to the other of the first and second gear ratios 14, 16. To do so, the disconnect 28 may be moved from the first disconnect position DP1 to the second disconnect position DP2 before the selectable one-way clutch 26 is moved from the second clutch position X/O to the first clutch position X/X.
It is to be appreciated that the step 206 of moving the plurality of clutch plates 40 from the disengaged position D-ENG to the engaged position ENG may precede the step 210 of moving the selectable one-way clutch 26 from the third clutch position O/O to the second clutch position X/O, and from the second clutch position X/O to the first clutch position X/X. As discussed above, the plurality of clutch plates 40 may be normally closed and at rest in the engaged position ENG. The disconnect 28, however, may be at rest in either the first disconnect position DP1 or the second disconnect position DP2. Thus, the shifting assembly 32 may be at rest when the disconnect 28 is in the first disconnect position DP1 and the plurality of clutch plates 40 are in the engaged position ENG.
The shifting assembly 32, therefore, may be placed at rest before the selectable one-way clutch 26 is moved from the second clutch position X/O to the first clutch position X/X (i.e., from the lock/free configuration to the lock/lock configuration), thus operably coupling one of the first and second gear ratios 14, 16 to the selectable one-way clutch 26. With the disconnect 28 in the first disconnect position DP1 and the selectable one-way clutch 26 in the first clutch position X/X (i.e., the lock/lock configuration), the vehicle is in either the first or second gear.
The vehicle may be then placed at rest such that the vehicle has no forward or backward movement. The method 200 may then be undertaken, including park-shifting through step 204 by moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 such that the vehicle results in being parked. The disconnect 28 may be moved from the first disconnect position DP1 to the second disconnect position DP2 without having to move the plurality of clutch plates 40 from the engaged position ENG to the disengaged D-ENG position prior to moving disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2 because the vehicle is at rest.
More specifically, because no torque is being transmitted through the selectable one-way clutch 26 to one of the first and second gear ratios 14, 16, the disconnect 28 may be moved from the first disconnect position DP1 to the second disconnect position DP2 and operably couple the other of the first and second gear ratios 14, 16 through the shifting assembly 32. When both the first and second gear ratios 14, 16 are operably coupled to the selectable one-way clutch 26 and the shifting assembly 32, respectively, the vehicle is parked and movement of the vehicle is prevented because torque cannot be transferred through either of the first and second gear ratios 14, 16, or through both the first and second gear ratios 14, 16. Said differently, the vehicle is prevented from moving when parked because the vehicle cannot be in first gear and second gear at the same time while transmitting torque through either of the first and second gear ratios 14, 16.
A method 300 of operating the shifting system 18 for the vehicle transmission 10 is depicted by flowchart in
The step 302 of disengaging the clutch may precede the step 304 of moving the clutch plates 40 from the engaged position ENG to the disengaged position D-ENG. Moreover, the step 304 of moving the clutch plates 40 from the engaged position ENG to the disengaged position D-ENG may precede the step 306 from the first disconnect position DP1 to the second disconnect position DP2. The method may further include the step 308 of moving the clutch plates 40 from the engaged position ENG to the disengaged position D-ENG after the step 306 of moving the disconnect 28 from the first disconnect position DP1 to the second disconnect position DP2.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described.
The present application claims priority to and all the benefits of U.S. Provisional Patent Application No. 62/946,156 filed on Dec. 10, 2019, and 63/091,762 filed on Oct. 14, 2020, which are expressly incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63091762 | Oct 2020 | US | |
62946156 | Dec 2019 | US |