If a steam power plant is operated at low load several boundary conditions, including economic and efficiency aspects, have to be met.
From U.S. Pat. No. 4,870,823 it is known to operate a steam turbine at very low load by moving the throttle point from the turbine valves into the boiler. Since no energy is recovered this method is sub-optimal with regard to costs and efficiency.
If steam generators (e. g. if it is operated with constant pressure of the live steam) are operated below a certain level of load initially the temperature THRN at the outlet of the hot reheater (also referred to as intermediate superheater) sinks and with further load reduction the live steam temperature TLS decreases as well.
It is the object of the invention to provide a method to operate a steam power plant at low load that is more efficient and thus more attractive from the economic and environmental aspect.
This objective is achieved by the methods claimed in the independent claims 1 and 3.
The methods according to claims 1 and 3 allow to maintain the maximal live steam temperature (TLS) and the hot reheater temperature THRH can be maintained with very low loads of the turbine as well.
With these methods the change of temperatures during operation at different loads become minimal for the steam generator.
If steam is tapped only between the superheaters the influence on the temperature THRN at the outlet of the hot reheater is minimised.
If steam is tapped upstream of the last subcooler RHS2 the temperature of the live steam remains. This effect could be used, to stabilize the temperature THRN without effecting the temperature of the live steam.
The invention is well suited especially for the following applications:
Stabilizing the live steam temperature TLS at low load and high live steam pressure pLS.
Stabilizing the hot reheater temperature THRH at low load and with remaining/constant high live steam pressure.
Enabling higher load gradients from low load to full load.
Using the coupled-out energy for other processes (e. g. loading a thermal reservoir, drying brown coal or the like).
By using the energy of the extracted steam in one or more of the processes claimed in claim 6 the energy extracted from the steam generator is recovered and the overall efficiency of the processes involved increases. Consequently the energy demand and the emissions are reduced.
In order to counteract the Joule-Thomson-Effect at the control valves of Partial-Arc-Turbines the boiler pressure pLS can be reduced. The simultaneous increase of the temperature TLS to the maximal value reduces the cooling at the turbine control valve(s) in side the turbine. As through this operating mode, compared with steam generator plus turbine with variable pressure, a rather high live steam temperature is maintained and thus higher load gradients can also be applied to the steam power plant.
The claimed invention prevents also cooling of the boiler drum and superheaters (which happens when the plant is operated in gliding pressure mode).
Further advantages and advantageous embodiments of the invention can be taken from the following drawing, its specification and the patent claims. All features described in the drawing, its specification and the patent claims can be relevant for the invention either taken by themselves or in optional combination with each other.
Shown are:
In
In a steam generator 1 under utilization of fossil fuels or by means of biomass out of the feed water live steam is generated, which is expanded in a steam turbine 3 and thus drives a generator G. Turbine 3 can be separated into a high-pressure part HP, a medium-pressure part IP and a low-pressure part LP.
After expanding the steam in turbine 3, it streams into a condenser 5 and is liquefied there. For this purpose a generally liquid cooling medium, as e. g. cooling water, is supplied to condenser 5. This cooling water is then cooled in a cooling tower (not shown) or by a river in the vicinity of the power plant (not shown), before it enters into condenser 5.
The condensate originated in condenser 5 is then supplied, by a condensate pump 7, to several preheaters VW1 to VW5. In the shown embodiment behind the second preheater VW2 a feed water container 8 is arranged and behind the feed water container 8 a feed water pump 9 is provided.
In combination with the invention it is of significance that the condensate from condenser 5 is preheated with steam beginning with the first preheater VW1 until the last preheater VW5. This so-called tapping steam is taken from turbine 3 and leads to a diminution of the output of turbine 3. With the heat exchange between tapping steam and condensate the temperature of the condensate increases from preheater to preheater. Consequently the temperature as well of the steam utilized for preheating must increase from preheater to preheater.
In the shown embodiment the preheaters VW1 and VW2 are heated
with steam from low-pressure part LP of steam turbine 3, whereas the last preheater VW5 is partially heated with steam from high-pressure part HP of steam turbine 3. The third preheater VW3 arranged in the feed water container 8 is heated with steam from medium-pressure part IP of turbine 3.
In
The steam generator 1 that is illustrated in
Following the feed water or condensate coming from the preheater VW5 it enters the steam generator 1 and passes an economizer 11, a evaporator 13, a separator 15 and several superheaters SH1, SH2 and SH3. The claimed invention is not limited to threes stages; it is applicable in cases where more than three stages exist.
In the evaporator 13 the condensate is heated and becomes saturated steam. In the separator 15 liquid particles are separated from the saturated steam and reefed into the condensate line 19 before the evaporator 13.
The live steam or life steam that leaves the last superheater SH is abbreviated with the letters LS. In
Typically subcritical live steam has a pressure of approximately 160 bar (pLS=160 bar) and a temperature of approximately 540° C. (TLS=540° C.).
The live steam after having past the high pressure part HP of the turbine 3 has a reduced temperature and pressure and enters the reheater RSH1 and RSH2. This resuperheated steam HRH enters the intermediate pressure part IP of the turbine 3. The circle HRH in
Typically subcritical steam at the hot end of the reheater has a pressure of approximately 40 bar (pHRH=40 bar) and a temperature of approximately 540° C. (THRH=540° C.).
If this steam power plant is operated at medium or high load it is operated in a way as it is known from the prior art.
As soon as the steam power plant is operated at low load, namely at a load below for example 30% of the maximum load, steam is extracted from the heat generator 1 before/upstream the last superheater SH3. This extraction is illustrated in
This extraction or tapping of superheated steam from the steam generator 1 leads to a reduced mass flow of steam through the superheater(s) downstream the extraction point. Due to that reduced mass flow the convective heat transport between the flue gas and the steam inside the superheaters downstream the extraction point is improved and therefore the achievable temperature is higher.
A further positive effect of this method is that even though a small mass flow of live steam LS enters the high part HP of the turbine 3 the temperature TLS of the steam remains constant. The same applies with regard to the pressure pHP of the steam. The throttling effect is reduced because compared to state of the art, the temperature is higher and the cooling of the turbine is reduced.
The high pressure steam extracted between the superheaters SH3 and SH1 may be used for loading a high temperature and/or a low temperature heat reservoir, for drying and fluidising coal, especially brown coal, for supplying one more of the preheaters with thermal energy and for running a separate steam turbine or a separate steam motor and for the energy supply of other industrial processes that are not part of the steam water cycle of the power plant.
In case a heat reservoir is loaded with the heat or the energy contained in the extracted high pressure steam this energy may be used in times of very high loads of the turbine 3 for heating the condensate before entering the feed water reservoir 8 and/or before entering the boiler 1 and thus reducing the amount of tapping steam needed in the preheaters VW1 to VW5.
This means that in times of high load or peak load the electric output of the steam power plant can be increased since no or only a little amount of tapping steam is extracted from the medium pressure part IP and/or the low pressure part LP of the turbine 3.
All appliances have in common that the energy contained in the high pressure steam is recovered and therefore the overall efficiency of the steam power plant and other industrial processes is increased.
Despite these differences in temperature this steam extracted before or between the reheaters RSH1 and RSH2 may be used in a similar way as has been explained in conjunction with
In
It is further possible to reduce in the three described embodiments the pressure of the boiler (c.f. pLS) at low load and thus minimize the Joule-Thomson-Effect and the control valves that are part of the high pressure part HP of the turbine 3. The Joule-Thomson-Effect causes a temperature degrease of the steam at the entrance into the high pressure part HP of the turbine 3 and should therefore be avoided.
To sum up, it may be stated that all three modes of operation need to stable steam parameters LS and improve the convective head transfer between the flue gas and the steam in the superheaters SH1 and SH2, SH3 as well as in the resuperheaters RSH2 and RSH1. Since the extracted steam can be used in several heats sinks inside the steam power plant or outside the steam power plant the overall efficiency is maintained at a high level. Since the claim methods do not require great operative amendments, it is possible to apply these methods as a retrofit solution for existing steam power plants.
Number | Date | Country | Kind |
---|---|---|---|
11187593.6 | Nov 2011 | EP | regional |