The present invention generally relates to a thermal kinetic mixer, or thermokinetic mixer, also named hereinafter K-mixer. More particularly, the invention relates to a shaft assembly and to a K-mixer having improved features for controlling the temperature of the blades of the K-mixer while the K-mixer is operating.
K-mixers are high intensity mixers (see U.S. Pat. No. 4,332,479 to Crocker et al.) that can be used, among other applications, for mechanical regenerating of rubber (see U.S. Pat. No. 5,883,140 (Fisher et al.); U.S. Pat. No. 7,342,052 (Fulford et al.); or Applicant's application WO 2011/113148). K-mixers differ from agitators and kneading apparatuses in that they can be operated at higher RPMs (revolutions per minute) and high moments of force (torque). Their components are thus subjected to high temperatures, and in rubber regeneration applications, the thermal inertia of the components prevents operating the K-mixer in a semi-continuous process environment. A semi-continuous process is typically a batch process which can be realised without having to stop or minimally stopping equipment in between batches. In order to mitigate this problem, a cooling jacket can be provided around the mixing chamber and/or a coolant can be circulated in the shaft. While these solutions help to alleviate problems related to over-heating in the K-mixer, they are still insufficient for some applications, especially for rubber regeneration.
Agitators, kneaders, bladed rotors or other sorts of apparatuses including temperature-controlled systems have been disclosed in the past, such as in U.S. Pat. No. 4,040,768 (Christian); U.S. Pat. No. 4,856,907 (Moriyama) or U.S. Pat. No. 7,540,651 B2 (Matsumoto et al.). However, none of these US patents discloses temperature-controlled systems adapted for K-mixers.
Referring to U.S. Pat. No. 4,856,907 to Moriyama, a kneader is disclosed. The kneader has a shaft 5 on which external members 7 are fitted. The rotor shaft 5 is provided with heat transfer passages 13, 14 linked to spaces 9 of the blades 10, which are integrally formed by the external members 7. As shown in FIG. 2 of the patent, the passages 13, 14 of the shaft 5 are located on the central axis of the shaft, meaning that the outer periphery of the shaft where there are no blades is not thermally-controlled by the heat transfer liquid. In addition, the space 9 of the blades is completely hollow, the heat transfer liquid freely circulating in the space, which does not provide for an efficient flow of fluid within the blade. In addition, the flow of fluid within the external members 7 cannot be adjusted.
Referring to U.S. Pat. No. 7,540,651 to Matsumoto et al., an agitator is disclosed, especially adapted for agitating fluids, such as inks and coloring liquids. The agitator includes a rotating shaft 3 and a flat paddle blade 4. The shaft 3 includes inner and outer pipes 3a, 3b, and an integrally formed paddle with a passage 12 for a coolant medium. The passage 12 zigzags in the paddle, which results in the coolant circulating in different directions, clockwise and counter-clockwise, within the paddle. The configuration of the passage therefore requires the coolant to be circulated at high pressure to be able to cool the paddle efficiently. In addition, the blade 4 is integrally formed with the shaft, and is not adapted for K-mixers, for which blades must sometimes be replaced. Furthermore, agitators typically have a single blade and are subject to low intensity loads with a single blade integrally formed at the end of the shaft, oriented in the direction of the shaft. Conversely, K-mixers have typically a plurality of blades that are perpendicular to the shaft which rotate at high RPMs and generate high moments of force.
In view of the above, there is thus a need for an improved K-mixer that would be able to overcome or at least minimize some of the above-discussed concerns. It would be desirable for the improved K-mixer to allow a temperature control of the shaft and of the independent blade(s), and to improve flow of a heat transfer fluid within the shaft assembly and the blade assembly so as to increase heat transfer exchanges. Furthermore, there is also a need for a K-mixer which would facilitate replacement of the blades when the hard facing begins to wear down, and additionally would allow for a custom blade design and replacement. Additionally, a K-mixer allowing temperature control of each blade individually would prove beneficial.
In accordance with the present invention, there is provided a temperature-controlled shaft assembly of a K-mixer, preferably for use in a rubber regenerating process. The K-mixer disclosed herein is an improvement of the K-mixer disclosed in Applicant's application WO 2011/113148, the content of which is incorporated herewith by reference.
The improvement consists of a temperature-controlled shaft assembly, embedded inside the shaft and blades of the K-mixer, in order to efficiently control and modify the temperature of the shaft and blades while the K-mixer is functioning.
According to the invention, there is provided a thermokinetic mixer, or K-mixer, comprising a substantially cylindrical stationary chamber for containing the material, the chamber having a chamber inlet for receiving the material and a chamber outlet for discharging the material. The K-mixer includes a shaft assembly coaxial with the chamber and having a portion extending in the stationary chamber. The shaft assembly comprises an inner hollow shaft defining an inner passage which extends therein. The shaft assembly also comprises an outer hollow shaft coaxially surrounding and spaced away from the inner hollow shaft. The outer hollow shaft forming an outer passage with the inner hollow shaft, the outer passage extending between the inner and outer hollow shafts, the inner and outer passages are in fluid communication with each other. The shaft assembly has a motor end connectable to a motor for rotating the shaft assembly, and a joint end connectable to a rotary joint. The joint end has a fluid inlet and a fluid outlet, each communicating with a respective one of the inner and outer passages. The shaft assembly includes a plurality of blades extending from the outer hollow shaft in the stationary chamber, for mixing the material. Each of the blades is provided with channels extending therein, a channel inlet communicating with one of the passages, and a channel outlet communicating with the other one of the passages. The inner passage channels and the outer passage form a continuous flow path allowing a pressurized fluid to circulate within inner and outer hollow shafts and through the plurality of blades, from the fluid inlet to the fluid outlet, for controlling a temperature of the shafts and a temperature of the blades. The channels allow a flow of the fluid in the blades in an opposite direction of a rotational direction of the shaft assembly.
Preferably, each of the blades has a body with a mounting end operatively mounted to the outer hollow shaft, and an outer end opposed to the mounting end. At least some of the channels of each blade extend from the mounting end to the outer end.
In a preferred embodiment, the channels are shaped and configured as concentric U-shaped channels.
Preferably, each of the blades comprises opposed first and second faces which are substantially parallel to a transverse cross-section the hollow shafts. Each blade includes a cavity formed between said lateral faces; and a plurality of sidewalls extend within the cavity from the first to the second lateral face. The sidewalls delimit the channels.
Preferably, each of the blades comprises a mounting mechanism for removably connecting the blade to the outer hollow shaft. The mounting mechanism allows replacement of the blade.
Preferably, the shaft assembly includes pairs of connecting tubes associated with the respective blades. The connecting tubes extend radially relative to the hollow shafts. The connecting tubes connect the channel inlets and the channel outlets to one of the inner and outer passages, respectively.
Preferably, each of the blades is provided with a flow adjustment device sized to individually control the flow of fluid within each blade. Preferably, the flow adjustment device is a gasket.
Preferably, the shaft assembly includes a return flow adjustment mechanism disposed between the inner and outer passages, for controlling flow of the fluid between the inner and the outer passages and an exit flow of the blades.
Preferably, the cross-sectional area of the inner passage substantially matches cross-sectional area of the outer passage.
The fluid can be a cooling or a heating fluid.
Preferably, the outer surfaces of the blades are non-uniform, and some or all can be twisted longitudinally.
Preferably, the K-mixer can include a temperature sensor for sensing the temperature of at least one of the blades.
One of the advantages of the K-mixer disclosed herein is that the surface temperature of the shaft and blades of the K-mixer can be controlled (temperature is maintained constant, decreased or increased) and that the inertial effects caused by the rotational movement of the shaft are used to assist with the circulation of the fluid within the blades. Consequently, if the blades are cooled efficiently, the K-mixer can then be operated in a semi-continuous process environment with consistent temperatures ensuring reliable processing parameters and therefore dependable quality of the regenerated rubber.
The improvements of the K-mixer and their advantages will be better understood upon reading the following description made with reference to the accompanying drawings.
In the following description, the same numerical references refer to similar elements. The embodiments described in the present description are preferred embodiments only; they are given solely for exemplification purposes.
Referring to
The K-mixer (10) includes a hopper (12), through which the material is fed to the mixer (10). By “hopper”, it is meant a component which allows directing or guiding the material into the mixer (10). A substantially cylindrical stationary chamber (14), also referred to as a “mixing” chamber, allows to contain the material. The chamber (14) has a chamber inlet (16) communicating with the hopper (12), and a chamber outlet (18) for discharging the material. A shaft assembly extends inside the chamber (not shown in the figure), and will be described in more detail with reference to
The shaft assembly has a rotary joint end (36) connectable to an inner shaft. By “rotary joint” it is meant a joint which allows the rotation of the shaft assembly (20) relative to a fixed structure. In this particular embodiment, the rotary joint (38) also allows a fluid from a fluid source (74) to be circulated in and out of the shaft assembly (20). The fluid used is a heat transfer fluid, such as water, chemically treated water or vegetable oil. Of course, other types of heat transfer fluid can be used.
While in the present embodiment the hopper (12) and the feed screw (30) are located away from the motor, other embodiments of the K-mixer (10) can be considered, in which the hopper and feed screw (30) are located close to the motor, and the chamber (14) is located away from it. Preferably, and as shown in enlarged
Referring to
As best shown in
As best shown in
Referring to
As best shown in
Still referring to
Referring now to both
As best shown in
With the present invention, the bent portions of the channels (46), and their configuration which forces the fluid to move in a direction opposite to the rotation of the shaft, allows taking advantage of the inertial effects, and advantageously improve heat transfer between the fluid and the material treated in the mixer. In other words, the channels are designed to <<remove>> as much heat as possible from the inertial mass of the metal. >> The proposed design of channels generally guides the flow of fluid in the blades from the front side to the back side of the blade, the “front side” and “back side” of the blade being determined by the rotational direction of the assembly.
As shown in
Each blade 44 has a pair of connecting tubes (68, 70) extending radially relative to the hollow shafts (22, 26). The connecting tubes (68, 70) are connected to respective gaskets (51) which in turn are connected to the channel inlet (48) and the channel outlet (50). The connecting tubes (68, 70) are also connected to the inner and outer passages (24, 28), respectively. The inner and outer hollow shafts (22, 26) (feed shaft and return) are equipped with perforations to accommodate connecting tubes of the blades. The connected tubes 68, 70 are preferably threaded in the hollow shafts (22,26) but of course other types of connections can be considered.
In the present case, and as best shown in
Still referring to
The K-mixer described therein is especially adapted for the regeneration of crumb rubber, which requires in some applications heating the crumbs at a temperature up to about 225 degrees Celsius, in about 50 seconds, and then cooling it to about 120 degrees Celsius, in about 40 seconds. Preferably, the crumbs must not be heated over 230 to 250 degrees Celsius. In order to be able to operate the K-mixer semi-continuously, which means without interruption (or very little delay ex: 2 to 10 sec) from one batch to the other, the blades and the devulcanized rubber must be cooled rapidly once the devulcanization has occurred, and thus the fluid used is a cooling fluid. The continuous flow path extending in both the shafts and blades of the shaft assembly (20) allows not only to control/limit the temperature increase in the chamber when the devulcanization is reached, but also to decrease the time required to cool down the regenerated crumb rubber, which in turn improves the production yields of the regeneration process. Of course, the temperature of the mixing chamber is also controlled by water jackets surrounding it. Preferably, the RPM of the shaft assembly is controlled based upon the cooled state of the blades. Cooling is preferably only circulated in the shaft and blades when maximum temperature is reached and the water is injected into the chamber, after which the cooling phase begins. By “continuous” flow path, it is meant that the passages in the hollow shafts and the channels in the blades are in fluid communication. The flow of fluid in the path can run continuously, or flow intermittently, according to the specific requirements of the process. Of course, for other applications, it can be considered to use a heating fluid instead of a cooling fluid. The fluid can be heated or cooled using external or internal devices, such as for instance an electric coil or a chiller.
In order to adapt the flow of fluid in the shafts and in the blades in function of the need of the K-mixer application, a temperature sensor, preferably an infrared (IR) sensor, such as the LuminSense™ can be located on the bottom of the chamber, at approximately 0.010″ below the inner surface, to measure crumb rubber temperature and possibly the blade temperatures. Additionally, an IR temperature sensor such as sensor 76 identified in
As best shown in
Referring now to
Trials were conducted in order to demonstrate the advantages and benefits of using the improved shaft assembly described above, in which both the shaft and the blades are cooled, compared to a shaft assembly in which only the shaft is cooled. The trials were conducted in the context of regenerating vulcanized crumb rubber. All trials were performed with a LumaSense Photrix™ Infra Red (IR) temperature sensor operating over the span of 65° C. to 950° C. (model number ML-GAPX-LO-M3-MP2-05) to measure the regenerated rubber (RR) temperature. Blade and shaft temperatures were measured with an infra-red hand held thermometer (either at the start or at the end of a cycle).
Shaft Vs. Shaft/Blade Cooling
In a first trial, only the shaft of the K-mixer was cooled during the regeneration cycle of the crumb rubber. In other words, a coolant was circulated solely in the inner and outer hollow shafts of the K-mixer during the cooling phase of the processing. The temperatures for each of the eight (8) blades over 5 consecutive trials were recorded at the end of each cycle followed by a 15 minute cool down period three times to obtain data for 15 trials.
In a second trial, the shaft and all eight blades were cooled, with a continuous flow of coolant circulating in the blades and in the inner and outer hollow shafts during the cooling period which coincides with the injection of the water into the chamber the instant the max temperature set point of the crumb rubber has been achieved. The respective temperatures of the eight blades were recorded, for 15 consecutive trials.
Table 1 summarized the temperature control achieved when the shaft only was cooled compared to when both the shaft and the blades were cooled. Introducing cooling to the blades significantly (α=0.05) reduced the blade temperature by 38° C. (or 29.5%) from 129° C. to 91° C. assuring that the system can be operated semi-continuously with consistent process performance and therefore product quality.
Referring to
In this experiment, five trials were conducted for which the temperature of each of the eight blades was recorded, by position, with the shaft only being cooled, and with the shaft and blades being cooled. The recorded temperatures for each blade were averaged and the results are listed in the table below.
Referring to
As can be appreciated, the added blade cooling significantly reduced the temperature for each blade on average (see Table 2). Furthermore, the variation between blades was appreciably reduced.
RPM and Temperature Vs. Time Curves for Shaft Only and Shaft and Blade Cooling
Referring now to
The table below summarizes the key values presented in the graphs:
As can be appreciated, the shaft and blade cooling allows for consistent and reduced processing temperature profiles which improves productivity while maintaining Regenerated Rubber (RR) product quality.
Typical RPM and Temperature vs. time curves for a shaft only cooling conditions are presented in
Referring to
In
The curve in
As can be appreciated, the cooling time required to decrease the temperature from about 220° C. to about 120° C. is reduced from 40 seconds to about 30 seconds.
The results presented in the graph of
The RPM of the shaft assembly was raised to increase the temperature of the mixture during a first period of time until a devulcanizing temperature is reached. The devulcanizing temperature can be for example 225° C. and is reached within a time period of 25 and 60 seconds, and is preferably about 40-45 seconds. The RPM of the shaft assembly is raised between 1700 and 2000, and preferably to about 1750-1850 rpm. The temperature was then reduced to a lower temperature during a second period of time. For example, the crumb rubber can be cooled from about 225 to about 120 degrees in about 40 seconds, when only the shaft was cooled, and preferably about 30 seconds, which was possible when the shaft and blades were cooled.
During the cooling period, the set point RPM of the shaft was reduced between 400 and 700 rpm, and preferably to about 600 rpm. The mixing chamber was preferably cooled with a cooling jacket surrounding the mixing chamber, and with a spray nozzle injecting a stream or mist of cooling agent, preferably water, in the mixing chamber. Finally, the motor was stopped and the regenerated crumb rubber was recovered from the mixing chamber.
The scope of the invention should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
This application is a continuation of U.S. application Ser. No. 14/422,629, filed Feb. 9, 2015, which is a national stage application under 35 U.S.C. 371 of International Patent Application Serial No. PCT/CA2013/050808, filed Oct. 24, 2013, which claims priority to U.S. Patent Application No. 61/717,878, filed Oct. 24, 2012, the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61717878 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14422629 | Feb 2015 | US |
Child | 15073945 | US |