The present invention relates generally to the field of telecommuncations and more particularly to a method of operating a virtual private network.
Companies often use abbreviated dialing plans at a location. This allows the user to dial an internal number (abbreviated number) to reach other people within the same location. Virtual private networks (VPN) have allowed companies having several locations in the same Local Access and Transport Area (LATA) to share the abbreviated dialing plan. The VPN allows the various locations of a company to also provide other features such as call transfer, multiway calling, and call forwarding. A company that decides to use a VPN can provide all these features without buying expensive Private Branch Exchanges (PBX) for each location and without having to lease lines between each of the locations. This has provided the customer with flexibility and cost savings over setting up a standard private network. Unfortunately, companies that have locations in two or more LATAs could not use a VPN to provide these services. This is because the present regulatory environment requires two or more carriers when connecting two separate LATAs using the Public Switched Telephone Network (PSTN). As a result, these customers were required to lease lines between the LATAs and use access codes for the various locations, to obtain services similar to a VPN.
Thus there exists a need for a method of operating a virtual private network that works across several LATAs and several service providers.
A method of operating a virtual private network that overcomes these and other problems includes the steps of: (a) dialing a custom number; (b) receiving the custom number at a switch of a first carrier; (c) routing the call to a switch of a second carrier based on having received the custom number; and (d) when the call to the switch of the second carrier includes a plain old telephone number translation of the customer number, routing the call over the second carrier to a service switching point of a third carrier.
The intermediate carrier switch 18 is connected by an intelligent network 22 to a network carrier Service Control Point (SCP) 24. A SCP provides a number of intelligent functions, including routing and billing information for calls to a SSP. When the intermediate carrier switch 18 receives the call over the private line 16, it encounters a custom dialing plan trigger. The intermediate carrier switch 18 then sends a query over the intelligent network 22 to the SCP 24. The query (information analyzed query) will include at least the calling party directory number (calling party telephone number) and the dialed digits (on-network telephone number). The SCP 24 will analyze the query and return a message including routing instructions. The message will include at least the plain old telephone number translation (directory number) of the on-network number. In another embodiment the message will include a signaling indication and may also include primary trunk group, secondary trunk group, primary carrier and alternate carrier. The primary trunk group defines a particular line (private line) over which the call should be routed if possible. The primary carrier defines a preferred interexchange carrier over which the call should be routed if possible.
Upon receiving the message and routing instructions the intermediate switch 18 routes the call based on the routing instructions. if the customer at telephone 12 dialed an on-network number of a facility connected to SSP-E 26 (terminating service switching point) in LATA-3, the call would be routed through the intermediate carrier's network 28 to an intermediate switch 30. When the message includes the signaling indication, the call is routed by the intermediate switch to the SSP-E 26 over a private line 32. The SSP-E 26 then routes the call to the called customer.
When the message does not include the signaling indication, the intermediate switch 30 triggers on the plain old telephone number. The intermediate switch 30 sends a query (routing query) to a second service control point (SCP) 34. The routing query includes the plain old telephone number and the calling telephone number. The SCP 34 then determines if the plain old telephone number and the calling telephone number belong to the same virtual private network. When the plain old telephone number and the calling telephone number belong to the same virtual private network, then the call is routed over a private line 32. When the plain old telephone number and the calling telephone number do not belong to the same virtual private network, the call is routed over public facilities to SSP-E.
If the customer at telephone 12 dialed an on-network number of a facility connected to SSP-C 36 or SSP-D 38 in LATA-2, the intermediate switch 18 would route the call through the intermediate carrier's network 28 to an intermediate switch 40. In one embodiment the intermediate carrier's network is a private line connecting the switches 18, 40. The intermediate switch 40 in one embodiment then routes the call over public facilities to SSP-C 36 or SSP-D 38. In another embodiment, the signaling indication tells the switch 40 to route the call over private facilities 42, 44 to SSP-C 36 or SSP-D 38. As explained above the intermediate switch 40, in one embodiment, triggers on the call and sends a query to the SCP 24 to determine if the plain old telephone number and the calling number are part of the same virtual private network. When the numbers are part of the same virtual private network, the intermediate switch 40 routes the call over private lines 42, 44. Using the method described above, a virtual private network connecting facilities connected to SSP-A 14, SSP-B 20, SSP-C 36, SSP-D 38, SSP-E 26 has been described. The virtual private network works across multiple LATAs and multiple service providers.
The switch 60 routes the call based on the plain old telephone number (POTS) through the second carrier to a switch 76, when the call is to facilities connected to SSP-E 62. When the SCP 55 included a signaling indication in its routing message, then the switch 76 routes the call over private facilities 78 to SSP-E 62. When the SCP 55 did not include the signaling indication in its routing message, the switch 76 routes the call over public facilities to SSP-E 62 based on the POTS translation of the dialed number.
When the call is directed to a facility connected to SSP-F 64, the switch 60 routes the call through the second carrier's network to a switch 80. In one embodiment, the switch 60 is connected to switch 80 by a private line 82. In one embodiment, the switch 80 routes the call over public facilities to SSP-F 64, based upon the POTS number. In another embodiment the switch 80 routes the call over private facilities 84 to SSP-F, based upon the signaling indication. In yet another embodiment, the switch 80 routes the call over private facilities 84 after sending a query to SCP 55. The SCP 55 determines that the calling party and called party are part of the same virtual private network.
When the call does not include the POTS number translation of the custom number, the switch of the second carrier sends a query to a network SCP at step 144. Note that the network SCP can be part of the first carrier, second carrier, third carrier or part of a separate carrier. The switch then receives routing instructions including the POTS number translation of the custom number at step 146. Based on the POTS number the call is routed to a second switch of the second carrier at step 148. Next, it is determined if the call includes a signaling indicator (received signaling indicator) at step 150. When the signaling indicator is included, the call is routed over a private line at step 152. The call is connected to the SSP of the third carrier at step 140, which ends the process at step 142.
When the signaling indicator is not included, a query is sent to a second SCP to determine if the POTS number and the originating number are part of the same virtual private network at step 154. When the POTS number and the originating number are part of the same virtual private network, the call is routed over a private line at step 152. The call is connected to the SSP of the third carrier at step 140, which ends the process at step 142. When the POTS number and the originating number are not part of the same virtual private network, the call is routed over the public network at step 156. The call is received at the SSP in the third carrier at step 140, which ends the process at step 142.
Thus there has been described a method of operating a virtual private network works across several LATAs and several service providers. While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alterations, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alterations, modifications, and variations in the appended claims.
This patent arises from a continuation of U.S. patent application Ser. No. 10/795,767 which was filed on Mar. 8, 2004 now U.S. Pat. No. 7,190,780 and which is a continuation of U.S. patent application Ser. No. 09/599,843 which was filed on Jun. 22, 2000, issued as U.S. Pat. No. 6,741,693 and which is a continuation of U.S. patent application Ser. No. 08/969,598 which was filed on Nov. 13, 1997 and issued as U.S. Pat. No. 6,141,409.
Number | Name | Date | Kind |
---|---|---|---|
4348554 | Asmuth | Sep 1982 | A |
4797913 | Kaplan et al. | Jan 1989 | A |
4972464 | Webb et al. | Nov 1990 | A |
5023904 | Kaplan et al. | Jun 1991 | A |
5212691 | Hokari | May 1993 | A |
5247571 | Kay et al. | Sep 1993 | A |
5455855 | Hokari | Oct 1995 | A |
5475749 | Akinpelu et al. | Dec 1995 | A |
5483582 | Pugh et al. | Jan 1996 | A |
5515427 | Carlsen et al. | May 1996 | A |
5517562 | McConnell | May 1996 | A |
5539817 | Wilkes | Jul 1996 | A |
5550912 | Akinpelu et al. | Aug 1996 | A |
5757894 | Kay et al. | May 1998 | A |
5892821 | Turner | Apr 1999 | A |
5892822 | Gottlieb et al. | Apr 1999 | A |
5903639 | Lipchock et al. | May 1999 | A |
5917899 | Moss et al. | Jun 1999 | A |
5974133 | Fleischer et al. | Oct 1999 | A |
5987111 | Madoch et al. | Nov 1999 | A |
6141409 | Madoch et al. | Oct 2000 | A |
6741693 | Madoch et al. | May 2004 | B1 |
7190780 | Madoch et al. | Mar 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20070121610 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10795767 | Mar 2004 | US |
Child | 11627788 | US | |
Parent | 09599843 | Jun 2000 | US |
Child | 10795767 | US | |
Parent | 08969598 | Nov 1997 | US |
Child | 09599843 | US |