The present invention relates to a method of operating a wind turbine. More particularly, it relates to a method of operating a wind turbine above nominal wind speed.
Modern wind turbines are commonly used to supply electricity into the electrical grid. Wind turbines of this kind generally comprise a rotor with a rotor hub and a plurality of blades. The rotor is set into rotation under the influence of the wind on the blades. The rotation of the rotor shaft either directly drives the generator rotor (“directly driven”) or through the use of a gearbox.
An important auxiliary system generally provided on wind turbines is a pitch system. Pitch systems are employed for adapting the position of a wind turbine blade to varying wind conditions by rotating the blade along its longitudinal axis. In this respect, it is known to rotate a wind turbine blade in such a way that it generates less lift (and drag) when the wind speed increases. This way, even though the wind speed increases, the torque transmitted by the rotor to the generator remains substantially the same. It is furthermore also known to rotate wind turbine blades towards their stall position (so as to reduce the lift on the blades) when the wind speed increases. These wind turbines are sometimes referred to as “active-stall” wind turbines. Pitching may furthermore also be used for rotation of the blade towards its vane position, when a turbine is temporarily stopped or taken out of operation for e.g. maintenance.
A common control strategy of a variable speed wind turbine is to maintain the blade in a predefined “below rated pitch position” at wind speeds equal to or below nominal wind speed (for example from approximately 3 or 4 m/s to 15 m/s). Said default pitch position may generally be close to a 0° pitch angle. The exact pitch angle in “below rated” conditions depends however on the complete design of the wind turbine. In the lower wind speed regions (at “partial load”), the objective is generally to maximize power output by maintaining pitch constant, thereby catching maximum energy, and varying generator torque and the rotor speed to keep the power coefficient, Cp, at a maximum. Above the nominal speed (for example from approximately 10 m/s to 25 m/s), the blades are rotated to maintain the aerodynamic torque delivered by the rotor substantially constant. Cut-in wind speed may e.g be around 3 m/s, nominal wind speed may be e.g. around 10 m/s and cut-out wind speed may e.g. be around 25 m/s. The nominal wind speed, cut-in wind speed and cut-out wind speed may of course vary depending on the wind turbine design. Said wind speeds may be measured typically at hub height.
Often, a doubly fed induction generator (DFIG) is used on variable speed wind turbines. In these DFIG's, the generator rotor is connected to the grid through a power electronics converter. Such a converter may comprise a Grid-Side-Converter (GSC), a DC link, and a Machine-Side-Converter (MSC). An advantage of using a DFIG with converter in wind turbines is that reactive power can be exported and imported from the converter. Also, through the control over rotor currents and voltages, synchronization with the grid is possible even though the rotor speed varies. Furthermore, a DFIG allows reducing the capacity and dimensions of the converters used.
It is a general goal to try to maximize electricity generation from cut-in wind speed to cut-out wind speed. However, in certain wind turbines with particularly large blades, when the wind speeds reaches a predetermined value above nominal wind speed, the loads on the blades may need to be reduced in order to ensure structural integrity of the wind turbine. Alternatively, the whole of the wind turbine needs to be structurally reinforced to such a point that the Cost-of-Energy (COE) would increase.
One reason for employing relatively large blades may be the limited number of suitable sites for wind turbines. It has become practice in the last couple of years to design and manufacture new wind turbine models which are based on older models, but in which new longer blades are used. In these cases, it may be that only the blades are substituted whereas the other components or many other components of the wind turbine stay the same. This may be useful particularly for generating more electricity at predominant wind speeds. However, at relatively high wind speeds, this kind of configuration could cause structural problems due to high loads. Therefore, the operational range of the wind turbine may be adjusted, i.e. reducing the cut-out wind speed, or the rotor speed of the wind turbine may be reduced at high wind speeds.
In practice, wind turbine designers and manufacturers need to balance the COE, the operational range of the wind turbines and the power that can be generated. The present invention aims at providing a method of operating a wind turbine that improves the balance, e.g. a method that allows increasing the operation range and/or the power generated without substantially increasing the COE.
According to a first aspect, a method of operating a wind turbine in response to a wind speed is provided, wherein the wind turbine has at least a rotor with a plurality of blades and a generator comprising a generator rotor and a generator stator. In accordance with a first aspect, the method comprises increasing the pitch angle of the blades and reduce the rotor speed with increasing wind speed at wind speeds above a first wind speed, said first wind speed being superior to the nominal wind speed. The speed of the rotor is reduced to such an extent that at a second wind speed (superior to said first wind speed), the generator rotor speed is equal to the synchronous generator rotor speed. The method further comprises that at wind speeds superior to said second wind speed, the speed of the generator rotor is lower than the synchronous generator rotor speed.
Implementations according to the first aspect allow a wind turbine design with relatively large blades for increasing energy capture at dominant relatively low wind speeds, while at the same time enabling a large operational range for the wind turbine, i.e. having a conventional cut-out wind speed and further without the necessity to increase the strength and weight of wind turbine components.
Optionally, the generator may be a Doubly Fed Induction Generator (DFIG) and a method of operating a wind turbine further comprises, at wind speeds between said first wind speed and said second wind speed, reducing the generator torque at least at or close to the second wind speed. Additionally, the generator torque may be increased at wind speeds superior to said second wind speed, or the generator torque may be maintained at a reduced level at wind speeds superior to said second wind speed.
When reducing the speed to such an extent that the generator rotor speed decreases to or beyond the synchronous generator rotor speed, and depending on the converters used, a problem may arise in the Machine-Side-Converter (MSC). At synchronous generator rotor speed, DC current may flow through the MSC and the MSC may not be able to endure this situation for very long. One option to avoid this problem is by reducing the generator torque around the operational point corresponding to synchronous speed of the generator rotor. At reduced torque, the MSC will be able to endure the situation for a longer time. And if the torque is below a critical value, the MSC may be able to operate “indefinitely” at this point of operation without problems.
Additional objects, advantages and features of embodiments of the invention will become apparent to those skilled in the art upon examination of the description, or may be learned by practice of the invention.
Particular embodiments of the present invention will be described in the following by way of non-limiting examples, with reference to the appended drawings, in which:
In
The generator 20 further comprises a stator 22. As illustrated, the generator stator may be directly connected to electricity grid 40. Generally, such an electricity grid may have three electric phases as illustrated in
As previously described, the pitch angle is generally not changed until nominal wind speed is reached, e.g. at 11 m/s. At a slightly lower wind speed, e.g. around 8.5 m/s, nominal rotor speed may be reached. At wind speeds above nominal wind speed, the pitch angle may be varied such as to maintain the aerodynamic torque substantially constant. The rotor speed, generator torque and electrical power generated may also be maintained substantially constant. This may be maintained from nominal wind speed to cut-out wind speed. Alternatively, and such as is shown in
At the very top right corner of the diagram, at nominal rotor speed, and maximum torque, nominal power is produced by the wind turbine generator.
Optionally, in accordance with
A first notable difference between this implementation and the prior art control method is that above nominal wind speed, e.g. from approximately 16 m/s the pitch angle of the blades is changed to a further extent than in the previous example, and the rotor speed is reduced at a substantially lower wind speed than in the prior art method of
With increasing wind speed, the generator rotor speed may be further reduced, beyond the point of synchronous speed of the generator rotor, see also
At this point, DC current is produced instead of AC current at the Machine-Side-Converter (MSC).
In principle, a similar situation could potentially also arise at a lower wind speed, as may be seen in the same
However, when synchronous generator rotor speed is reached at high wind speeds, the generator torque (and rotor currents) may be relatively high and it is possible that the wind turbine would need to operate at or close to that point for a prolonged period of time.
In order to avoid the aforementioned problem, several options are available: on the one hand, the power converter may be adapted to account for this situation. However, oversizing of the converter may lead to a higher cost. As this region of operation may not be a very common one, it may not always be a preferred choice.
Various alternative methods are available that are able to follow the method of operating a wind turbine and reduce the speed beyond the synchronous speed. Several of these methods are discussed with reference to
One way to avoid the aforementioned problem of overloading the MSC is illustrated in
From a first wind speed, the rotor speed (and inherently also the generator rotor speed) is reduced. With further increasing wind speed, the generator torque is also reduced in such a way that at a second wind speed, at which the generator rotor reaches the synchronous speed, the currents are smaller than what can be sustained by the MSC. The MSC does not need to be specifically adapted for this situation, the operation range may be maintained, and the Cost-of-Energy may be controlled. At the same time, due to the relatively large blades, more electrical power may be generated at lower wind speeds.
A further alternative is illustrated in
Merely in the area close to the point at which the generator rotor speed may equal synchronous speed (DC operation of the MSC), the generator torque is reduced. With increasing torque, the power generated may also be slightly increased at wind speeds superior to the second wind speed.
Yet a further alternative is illustrated in
Although only a number of particular embodiments and examples of the invention have been disclosed herein, it will be understood by those skilled in the art that other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof are possible. Furthermore, the present invention covers all possible combinations of the particular embodiments described. Thus, the scope of the present invention should not be limited by particular embodiments, but should be determined only by a fair reading of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
11382350 | Nov 2011 | EP | regional |
This application claims the benefit of European Patent Application EP 11382350.4 filed on 17 Nov. 2011 and U.S. Provisional Patent Application Ser. No 61/587,314 filed on 17 Jan. 2012 and U.S. Provisional Patent Application Ser. No. 61/656,413 filed on 6 Jun. 2012, which are herein incorporated in their entirety by reference thereto.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/072839 | 11/16/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/072461 | 5/23/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6809431 | Schippmann | Oct 2004 | B1 |
6840734 | Hansen | Jan 2005 | B2 |
7351033 | McNerney | Apr 2008 | B2 |
20030185665 | Hansen | Oct 2003 | A1 |
20090008938 | Erdman et al. | Jan 2009 | A1 |
20100038909 | Andersen | Feb 2010 | A1 |
20100140938 | Cook | Jun 2010 | A1 |
20110142594 | Dinjus | Jun 2011 | A1 |
20110142634 | Menke | Jun 2011 | A1 |
20110211951 | Kooijman | Sep 2011 | A1 |
20120061962 | Nagasaki | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2794856 | Oct 2011 | CA |
19844258 | Mar 2000 | DE |
10 2010 014165 | Oct 2011 | DE |
Entry |
---|
International Search Report for PCT/EP2012/072839, mailed May 23, 2013, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20140308126 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61587314 | Jan 2012 | US | |
61656413 | Jun 2012 | US |