The present invention relates generally to the operation of aircraft on the ground under adverse ground conditions and specifically to a method of moving, under adverse ground conditions, an aircraft equipped with a powered self-propelled drive wheel from a position where the aircraft is temporarily immobile to full mobility and movement.
Arriving and departing aircraft must travel on the ground between landing and subsequent takeoff along runways and taxiways associated with an airport. Over time, the tarmac surface of a runway or taxiway can change as a result of rubber buildup from the application of aircraft brakes, paint used for marking, chemicals, and erosion of the tarmac material. These changes in the runway surface produce changes in the friction between the runway surface and the aircraft's tires. The presence of moisture, whether from rain, slush, snow, or ice, however, is a major factor in the degradation of runway surfaces. At a minimum, braking action is diminished, and a longer landing distance is required.
Aircraft tires may also become stuck to the runway surface under adverse ground conditions. The coefficient of runway friction or slipperiness, μ, is theoretically 1 when the runway friction characteristics are 100%. For a runway with 0% friction characteristics, μ=0. All other friction characteristics fall between 0% (μ=0) and 100% (μ=1). Most new runways have a coefficient of friction of about μ=0.6 (60% friction characteristics). A coefficient of friction μ>0.4 (greater than 40% friction characteristics) is generally considered to be good. The factors mentioned above all contribute to runway deterioration and decrease the coefficient of friction, affecting aircraft braking and landing distance. The presence of moisture, particularly in the form of snow or ice, can have a significant effect on the friction characteristics between an aircraft's tires and the runway surface. This can lead to a situation in which the frictional forces between the tire and the runway cannot be overcome by direct aircraft pressure, resulting in a stuck aircraft with one or more tires adhered to the runway surface.
When an aircraft is completely stopped and at rest on the ground, there are numerous factors in addition to friction characteristics that can make movement of the aircraft from this resting condition difficult, particularly in cold weather. For example, tires that are cold tend to become misshapen, making them harder to turn. When a tire has become flattened where it contacts the tarmac, the force required to move the aircraft includes the force needed to lift the aircraft over the misshapen tire. Aircraft tires can also become stuck to the tarmac when water freezes between the tire and the tarmac or through light adhesion between the tire and tarmac in drier conditions. In winter conditions, snow and slush buildup can exacerbate the situation. In addition, when the aircraft wheel bearings are cold, they are more resistant to movement than when the bearings are warm, adding an additional frictional force to be overcome. Under these conditions, the force required initially to move an aircraft from a resting condition to a moving condition can be much greater than the force required to keep the aircraft moving, once frictional forces and inertia have been overcome and movement has started.
Aircraft are most often n immobile after arrival, when they are parked at a gate or other docking structure. The time an aircraft is required to spend at a gate will depend, in part, on the turnaround schedule. Some aircraft have longer turnaround times than others. In inclement weather, especially when the temperatures are around freezing, the likelihood of ice forming between one of more of the aircraft tires and the tarmac can be quite high, causing the tires and, hence, the wheels to become stuck to the tarmac.
Methods and apparatus for reducing the adhesion between ice on a travel surface and an object traveling on the surface are known. U.S. Pat. No. 7,034,257 to Petrenko et al, for example, proposes a method to modify friction between an object and ice or snow that is suggested to be applicable to aircraft landing gear. This method employs a heating element to apply a pulse of thermal energy to melt ice at the interface of an object and the ice or snow. While this method may be effective in other applications, it involves having available additional equipment and additional ground personnel to use the equipment to free a parked aircraft stuck to ice and get the aircraft moving. U.S. Pat. No. 7,743,653 to Stommel describes a method of adapting tires of aircraft and other vehicles to travel surface conditions by changing the shape of the tire to increase or decrease contact between the tire and the travel surface, thereby increasing or decreasing friction between the tire and the travel surface, by raising or lowering tire pressure in response to a sensed travel situation. Stommel, however, does not even remotely suggest that this system would be effective or could be used in snow, ice, or other conditions to release an aircraft tire that has become stuck, directly or indirectly, to the travel surface.
An aircraft with one or more tires immobilized by ice presents challenges during push back when a tow vehicle or tug is used. The weight of the tug helps to apply sufficient force to overcome the frictional, inertial, and other forces keeping the aircraft stuck in the ice. Aircraft equipped with self-propelled drive wheels powered by electric drivers, such as the system disclosed in U.S. Patent Application No. 2009/0114765 to Cox et al, work very effectively to move aircraft on the ground without external-assistance under almost all environmental conditions. These systems, however, are functionally required to be small and lightweight and cannot apply the same force as a tug to free aircraft wheels stuck in ice. Increasing the size of the driver in a powered self-propelled aircraft wheel to provide more force directly to the wheel to overcome ice adhesion is not a viable solution because these systems must remain as small and lightweight as possible, in part to fit within the space allotted for an aircraft's landing gear.
It would be highly desirable to be able to fully utilize the benefits of a powered self-propelled aircraft drive wheel, particularly at push back, under all types of runway and environmental conditions, especially those which cause adhesion of the aircraft's tires to the tarmac. The prior art has not provided a method for operating a powered self-propelled aircraft drive wheel under adverse runway conditions which have caused one or more of the aircraft's tires to adhere directly or indirectly to the tarmac that employs the powered self-propelled drive wheel to release the aircraft tires and enable the aircraft to move.
It is a primary object of the present invention, therefore, to provide a method for operating a powered self-propelled aircraft drive wheel under adverse runway conditions which have caused one or more of the aircraft's tires to adhere directly or indirectly to the tarmac that employs the powered self-propelled drive wheel to release the aircraft tire and enable the aircraft to move.
It is another object of the present invention to provide a method for using a powered self-propelled aircraft drive wheel to effectively free an aircraft wheel tire that has become stuck directly or indirectly to the tarmac without increasing the size of the wheel driver.
It is a further object of the present invention to provide a method for releasing one or more aircraft tires stuck to the tarmac or to ice on the tarmac that uses the aircraft's steering in conjunction with the aircraft's powered self-propelled wheel driver to release a stuck tire.
It is yet another object of the present invention to provide a method for releasing an aircraft tire stuck directly or indirectly to the tarmac that uses the aircraft powered self-propelled driver wheel driver to apply differential force to the stuck wheel to release it.
It is yet a further object of the present invention to provide a method for utilizing the driver from a powered self-propelled aircraft drive wheel to release stuck aircraft tires that will not otherwise move under direct aircraft pressure.
In accordance with the aforesaid objects, a method is provided for operating a powered self-propelled aircraft drive wheel under adverse runway conditions which have caused one or more of the aircraft's tires from the main wheels or the nose wheels to adhere directly or indirectly to the tarmac that employs the aircraft powered self-propelled drive wheel to release the tire and enable the aircraft to move. The method uses the aircraft steering system to steer the aircraft, preferably by steering the nose wheels, in a first direction and then in a second direction, while powering and activating the wheel driver to move the aircraft in a forward or in a reverse direction during the steering maneuver to apply differential force to the one or more wheels, thereby releasing any tires stuck to the tarmac.
Other objects and advantages will be apparent from the following description, drawings, and claims.
A powered self-propelled nose wheel or other powered aircraft drive wheel is uniquely positioned to maneuver an aircraft in a variety of circumstances on the ground without assistance from external vehicles. The driver for the powered drive wheel optimally exerts sufficient power to move the aircraft at runway speeds, and its small size enables the driver to fit within the landing gear space. When weather conditions and, hence, runway conditions are adverse, particularly when the weather is cold, icy, or snowy, it is not unusual for aircraft tires to adhere either directly to the tarmac or to ice formed by water freezing between the tire and tarmac surface. The method of the present invention uses a powered self-propelled nose wheel or other wheel driver in conjunction with the aircraft steering and, when indicated, the aircraft brakes to apply enough force to a stuck tire to release it from its stuck position, thereby enabling the aircraft to move on the ground in a desired direction.
An aircraft with a powered self-propelled nose wheel or other aircraft wheel will have one or more wheel drivers mounted in driving relationship with one or more of the aircraft wheels to move the wheels at a desired speed and torque. Wheel drivers useful for this purpose may be selected from those known in the art. One wheel driver preferred for this purpose is a high phase order electric motor of the kind described in, for example, U.S. Pat. Nos. 6,657,334; 6,838,791; 7,116,019; and 7,469,858, all of which are owned in common with the present invention. A geared motor, such as that shown and described in U.S. Pat. No. 7,469,858, is designed to produce the torque required to move a commercial sized aircraft at an optimum speed for ground movement. The disclosures of the aforementioned patents are incorporated herein by reference. Any form of electric motor capable of driving an aircraft on the ground, including but not limited to electric induction motors, permanent magnet brushless DC motors, and switched reluctance motors, may also be used to power drive wheels in accordance with the present invention. Other motor designs capable of high torque operation across the speed range that can be integrated into an aircraft drive wheel to function as described herein may also be suitable for use in the aircraft ground movement system of the present invention. In addition, hydraulic pump/motor assemblies and pneumatic motors or other types of drivers known in the art could also be used to power an aircraft wheel that can be released when stuck to the tarmac according to the method of the present invention.
The direction of travel of the aircraft is typically controlled by the pilot steering the aircraft nose gear using an aircraft steering system, usually a hydraulic steering system. A nose wheel or other wheel driver may also be used to steer the aircraft, however, by varying the rotation and/or direction of rotation of each wheel in a pair of wheels to apply differential thrust between the wheels.
Referring to the drawings,
It can be seen in
As previously indicated, a tire stuck to the tarmac surface, either directly through light adhesion or indirectly through ice formed when water is present between the tire and the tarmac, is difficult to move and requires the correct application of force to release the tire without damaging the nose gear structures. Even if adhesion exists between only one tire, and/or possibly more sires tires, and the tarmac, all of the aircraft wheels must be operating to move the aircraft. Moreover, the stuck wheel or wheels could be any of the aircraft wheels, including the aircraft main gear wheels as well as the nose gear wheels. The method of the present invention enables a pilot to use a powered self-propelled wheel drive system, such as the nose wheel drive shown in
When confronted with one or more aircraft wheels adhered to the tarmac, the pilot begins the maneuver to release the stuck wheel or wheels by initially steering the aircraft, preferably, but not necessarily, using the nose wheel steering, in a first direction and then in a second direction different from the first direction. The steering maneuver is accomplished by using either the aircraft hydraulic steering or by activating a wheel driver or drivers to produce differential thrust between the wheels. For example, turning the nose gear wheels in a first direction, as shown in
The maneuvers described above can be supplemented by the application of the aircraft brakes to whichever main wheel is not meant to be released, ensuring that full turning power is applied to just one set of main wheels, 28, 30. In an aircraft with a main wheel powered by an onboard driver like the nose wheel driver described above (not shown), the method of the present invention allows all available power to be focused on a single set of aircraft wheels. In an aircraft with the typical tricyclic landing gear configuration shown in
Although it should be apparent to the pilot and/or ground crew when one or more aircraft wheels are stuck because one or more tires has adhered to the tarmac, a sensor associated with each aircraft wheel or tire could be employed to relay information to the flight crew or ground crew confirming this. Devices that sense wheel rotation or movement and other wheel properties relating to wheel rotation or movement are known in the art and could be used with the present method.
It is also contemplated that the present method could be utilized in some runway excursion situations in which the aircraft has left the runway and one or more sets of aircraft wheels is stuck in the surface adjacent to the runway. The surface adjacent to the runway may be a variety of different materials, such as gravel, dirt or grass, and may be covered by snow or ice in the winter. Depending on the depth to which the wheel is stuck, the method described herein may effectively be used to free the aircraft wheel and move the aircraft back onto the tarmac. Additional similar uses are contemplated to be within the scope of the present method.
The method of the present invention will find its primary applicability for use with aircraft equipped with one or more powered self-propelled drive wheels, each having a driver that is activated to rotate and drive the powered wheel, to maneuver the aircraft from a resting position in which the aircraft has been rendered immobile by the adhesion of one or more tires to the runway or other surface to a fully mobile position in which the aircraft is capable of moving in a desired direction.
This application claims priority from U.S. Provisional Patent Application No. 61/439,579, filed Feb. 4, 2011, the disclosure of which is fully incorporated herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/023840 | 2/3/2012 | WO | 00 | 5/11/2015 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/106643 | 8/9/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1531588 | Williams, Jr. | Mar 1925 | A |
2606726 | Henion | Aug 1952 | A |
2844339 | Stroukoff | Jul 1958 | A |
3565150 | Carr | Feb 1971 | A |
3595199 | Faxas | Jul 1971 | A |
5020745 | Stetson, Jr. | Jun 1991 | A |
5704568 | Watts | Jan 1998 | A |
6657334 | Edelson | Dec 2003 | B1 |
6838791 | Edelson | Jan 2005 | B2 |
7034257 | Petrenko | Apr 2006 | B2 |
7116019 | Edelson | Oct 2006 | B2 |
7226018 | Sullivan | Jun 2007 | B2 |
7237748 | Sullivan | Jul 2007 | B2 |
7302333 | Steen | Nov 2007 | B2 |
7469858 | Edelson | Dec 2008 | B2 |
7743653 | Stommel | Jun 2010 | B2 |
8403259 | Charuel | Mar 2013 | B2 |
8955793 | Sullivan | Feb 2015 | B2 |
20040195442 | Yoshioka | Oct 2004 | A1 |
20050224642 | Sullivan | Oct 2005 | A1 |
20050235765 | Herbster | Oct 2005 | A1 |
20050273239 | Turner | Dec 2005 | A1 |
20060038068 | Sullivan | Feb 2006 | A1 |
20060065779 | McCoskey | Mar 2006 | A1 |
20060237249 | Steen | Oct 2006 | A1 |
20070074918 | Meyer | Apr 2007 | A1 |
20070282491 | Cox | Dec 2007 | A1 |
20080059053 | Cox | Mar 2008 | A1 |
20080179146 | Sullivan | Jul 2008 | A1 |
20080296429 | Edelson | Dec 2008 | A1 |
20090114765 | Cox | May 2009 | A1 |
20090218440 | Dilmaghani | Sep 2009 | A1 |
20090261197 | Cox | Oct 2009 | A1 |
20090294577 | Roques | Dec 2009 | A1 |
20100006699 | Sullivan | Jan 2010 | A1 |
20120168557 | Edelson | Jul 2012 | A1 |
20120310452 | Hahn | Dec 2012 | A1 |
20130112807 | Cox | May 2013 | A1 |
20130214089 | Cox | Aug 2013 | A1 |
20130240665 | Cox | Sep 2013 | A1 |
20140061374 | Cox | Mar 2014 | A1 |
20140309901 | Schneider | Oct 2014 | A1 |
20150129713 | Cox | May 2015 | A1 |
20150142388 | Metzger | May 2015 | A1 |
20150158579 | Cox | Jun 2015 | A1 |
20150291166 | Mair | Oct 2015 | A1 |
20150291167 | Mair | Oct 2015 | A1 |
20150291168 | Mair | Oct 2015 | A1 |
20150291169 | Mair | Oct 2015 | A1 |
20150291170 | Mair | Oct 2015 | A1 |
20150329202 | Cox | Nov 2015 | A1 |
20160176515 | Sullivan | Jun 2016 | A1 |
20160185351 | Jerger | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160052624 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61439579 | Feb 2011 | US |