The present invention is related to microwave filters and multiplexers used in antenna feeders and radio-frequency/microwave transceiver systems.
Combline filters have been used in the telecommunication industry for many decades. One of the most common types of filters for RF and microwave applications are combline filters. In particular, they are used in wireless base station applications because they offer low production cost and a relatively high unloaded quality factor (Qu). A combline filter consists of cavity resonators coupled to each other. In a conventional combline filter, each cavity has a single resonant TEM mode supported by two conductors, typically a metal bar of a square or circular cross-section is surrounded by a metallic enclosure. Cavities with more than one resonant mode can be used in dual-band and multiple-band filters. In conventional transceiver architectures, the use of different frequency bands leads to dedicated signal paths for each service requiring the use of a filter for each frequency band, which in turn results in more volume, mass, and, eventually, higher cost. To overcome these drawbacks, several transceiver architectures with dual (and multiple) band filters have been proposed for simplification of system architecture in different contexts. A dual band filter has one input and one output with two pass bands. The use of such type of filters eliminates the use of two filters and two combining networks at the input and output.
The present invention uses a new configuration of combline resonators employing multiple conductors and/or multiple dielectrics with more than one resonant mode per cavity. They are used in realizing compact filters and multiplexers with improved electric-response characteristics for modern telecommunication system applications with multiple services and several frequency bands.
The development of multiple services and the need of using several frequency bands with more flexibility have triggered the demand for advanced filters and multiplexers to further improve the RF/microwave front ends. The present invention uses a new configuration of combline resonators using multiple conductors and multiple dielectrics for obtaining filters and multiplexers with improved characteristics.
The resonators of this invention can be used in several applications, all sharing (a) the so called combline structure with additional multiple conductors and/or multiple-dielectrics, and (b) the use of more than one mode per individual cavity, with different electromagnetic field patterns and well defined resonant frequencies to operate in dual-mode or in dual-band.
The first embodiment described herein provides a combline which has been modified by adding a third conductor. In the simpler version of the present invention, the novel combline resonator has an inner metal rod or post surrounded by an intermediate metallic conductor and a metallic enclosure, providing two resonant modes.
The second embodiment described herein provides a novel combline resonator wherein the inner post is metallic and the intermediate conductor is dielectric.
The third embodiment described herein provides a novel combline resonator wherein the inner post is dielectric and the intermediate conductor is metallic.
The fourth embodiment described herein provides a novel combline resonator wherein the inner post is dielectric and the intermediate conductor is also dielectric made of the same or from a different dielectric material.
The first objective of the present invention is to provide a compact multi-mode resonator. The second objective of the present invention is to provide a triple-conductor combline resonator. The third objective of the present invention is to make the number of cavities used less than the total order of the filters as compared to those used in conventional dual-band filter designs. The fourth objective of the present invention is to enhance the guard-band selectivity by means of the transmission zeros (frequency points at which transmission of energy between input and output is totally suppressed) between the pass-bands inherent to the structure of the present invention. The fifth objective of the present invention is to provide a dual-band filter, where mode 1 in each cavity is resonating in lower pass-band and mode 2 in each cavity is resonating in the upper pass-band.
The aforementioned objects of the present invention are attained by multi-conductor multi-dielectric combline resonators with more than one electrical resonant mode per physical cavity. Other objects, advantages and novel features of the present invention will become readily apparent from the following drawings and detailed description of preferred embodiments.
Embodiments herein will hereinafter be described in conjunction with the appended drawings provided to illustrate and not to limit the scope of the claims, wherein like designations denote like elements, and in which:
a)-4(d) show various views of the three-conductor combline resonator based on the first embodiment of the present invention;
a)-5(b) show various views of the present combline according to the first embodiment wherein the inner conductor is longer than the intermediate conductor;
a)-6(b) show various views of the novel combline according to the first embodiment wherein the inner conductor is shorter than the intermediate conductor;
a)-7(c) show the side view and cross section view of the combline resonator of the present invention with the electric field pattern inside, for the first and second resonant modes, when the inner conductor is shorter than the intermediate conductor;
a)-8(c) show the side view and cross section view of the combline resonator of the present invention with the electric field pattern inside, for the first and second resonant mode, when the inner conductor is longer than the intermediate conductor;
a)-9(b) show a three-dimensional view and a side view of the structure to couple energy from a coaxial cable/feed line to the first and second resonant modes of the combline resonator of the present invention by tapping-in the centre conductor of the coaxial feed line to the intermediate conductor;
a)-10(c) show various views of two multi-conductor adjacent cavities coupled to together to form a 2nd order dual-band filter. The coupling of energy between the first and second resonant modes of one cavity to the first and second resonant modes of the adjacent cavity is controlled by adjusting the space and the windows opened at the intermediate conductors of each cavity;
a) shows various views of a 5th order dual-band filter consisting of 5 cavities according to the first embodiment of the present invention each operating in two resonant modes to provide the 2 pass bands; and
a)-13(b) show pictures of two fabricated dual-band filters: a 3th order filter (3 cavities each operating in two resonant modes to provide the 2 pass bands with 3 resonators per pass band) and 5th order (5 cavities each operating in two resonant modes to provide the 2 pass-bands with 5 resonators per pass band);
a)-15(c) show a cross-sectional view, side view and 3-dimensional view for a novel resonator according to the second preferred embodiment of the present invention, wherein the inner rod is metallic and intermediate rod is dielectric;
a)-16(c) show a cross-sectional view, side view and 3-dimensional view for a novel resonator according to the third preferred embodiment of the present invention, wherein the inner post is made up of dielectric materials and the intermediate conductor is metallic;
a)-17(c) show a cross-sectional view, side view and 3-dimensional view for a novel resonator according to the fourth preferred embodiment of the present invention, wherein the inner post is made up of dielectric materials and the intermediate conductor is dielectric made from the same dielectric materials of the inner post or from a different dielectric materials; and
a)-18(b) show a three-dimensional view and top view of a filter with four cavities and eight resonators in canonical configuration for realizing dual-band filters having an elliptic response.
a)-3(b) show a three-dimensional view and cross-section view of a reentrant combline resonator operating in a single-mode (prior art found in Ke-Li Wu, R. R. Mansour, and H. Wang, “A full wave analysis of a conductor post insert reentrant coaxial resonator in rectangular waveguide combline filters,” IEEE MTT-S International Microwave Symposium Digest, 1996., pp. 1639-1642, vol. 3, June 1996). The objective of the top cap 20 is to increase the capacitance between the rod 27 and the enclosure 28, which in turn helps in reducing the cavity size. Such cavity is used in realization of single-band filters.
a)-4(d) illustrate various views of a multi-conductor cavity according to the first preferred embodiment of the present invention. The introduced combline resonator is made up of three metallic conductors: inner post or rod 31, intermediate conductor 32, and enclosure 33. The intermediate conductor 32 and the enclosure 33 are square in this embodiment, but they may have other shapes. The inner post 31 and the intermediate conductor 32 are both short-circuited with the enclosure 33 at one end 34, and open-ended at the other end 35. Their lengths usually differ slightly in order to control the resonant frequencies of the two resonant modes provided by the structure to suite their use in microwave dual-band and dual-mode filters. The third conductor 32 in the novel combline resonator is short circuited at the same end of the inner conductor 31. This structure produces two distinct resonant modes with resonant frequencies close to each other within the same mechanical cavity 36.
a)-5(b) show various views of the novel combline according to the first embodiment, wherein the inner conductor 41 is longer than the intermediate conductor 42.
a)-6(b) show various views of the novel combline according to the first embodiment, wherein the inner conductor 51 is shorter than the intermediate conductor 52.
The relative field intensities inside the resonator are dependent on the relative length of the inner post and the intermediate conductor. Thus, the relative length of the conductors and the separation between them provide a mechanism of controlling the distribution of the field in the outer and internal regions. This is crucial for using the resonator in filter designs, since this provides the means to couple resonant modes between adjacent cavities.
In another embodiment of the present invention, an inner post has a means to adjust its height. Any time of height adjusting means can be used. One type is a threaded end at the inner post that is inserted into the bottom of an enclosure. The inner post also can be connected to the bottom of an enclosure by a telescopic rod or alike.
a)-9(b) show a three-dimensional view and a side view of the structure to couple energy from a coaxial cable/feed line 61 to the first and second resonant modes of the combline resonator of the present invention by tapping-in the centre conductor 63 of the coaxial feed line to the intermediate conductor 62. This structure can be used in filters and multiplexers for the input/output coupling. This configuration provides enough degrees of freedom to realize different ranges and variations of the input coupling to both resonant modes. The design variables to couple the energy from the coaxial cable/feed line 61 as required in filters, are the length of the probe 61 and the tap-in height with respect to the bottom.
As shown in
a) shows a side view and a top view of one half of a 5th order dual-band filter using the multi-conductor resonators according to the first embodiment of the present invention. There are 5 cavities each operating in two modes to realize the 2 pass bands of the dual-band filer with 5 resonators per pass band.
Using probe, iris and dividing walls between adjacent metallic rods and intermediate walls is optional by the usage of the filter and opinion of a person skilled in the art.
The filters effectively use the triple-conductor combline resonator as the basic building block, exploiting its resonant modes 1 and 2 for making a dual-band filter, where mode 1 in each cavity is resonating in the lower pass-band and mode 2 in each cavity is resonating in the upper pass-band. Moreover, they have increased selectivity due to the transmission zeros (frequency points at which transmission of energy between input and output is totally suppressed) between the pass-bands inherent to the structure presented in this invention.
A considerable amount of research dealing with all aspects of the synthesis problem for dual-band filters has been recently published. Analytical methods and optimization techniques have been presented to reach a coupling matrix fulfilling a desired set of specifications. One common approach is to synthesize two bands in a wideband large order filter, then using transmission zeros in the band to create two distinct pass bands with a guard-band in-between. Although this technique allows the use of any type of resonators, such a concept is bulky since it is almost equivalent of having two filters combined together to construct a dual-band filter. For example, if a 3th order dual-band filter is needed for each band, 6 resonators must be used to realize the filter based on this concept. A clear advantage of the triple-conductor combline resonator disclosed in this invention is its compactness. With these resonators, the number of the cavities is reduced to half of the total order of the filter in comparison with conventional dual-band filter designs. In addition, another key advantage of using the triple-conductor combline resonator is that the guard-band selectivity is enhanced by means of the transmission zeros inherent to each cavity, without increasing the order of the filter.
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
With respect to the above description, it is to be realized that the optimum relationships for the parts of the invention in regard to size, shape, form, materials, function and manner of operation, assembly and use are deemed readily apparent and obvious to those skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.