1. Field of the Invention
The present invention relates to a method of optimizing a measurement condition in an NMR measurement.
2. Description of Related Art
a) and 1(b) illustrate the prior art method of optimizing an NMR measurement condition.
The general procedure for finding an optimum value of a measurement condition is described by referring to
As a specific example, a procedure for finding an optimum value of an RF pulse width as a measurement condition is next described by referring to
1H
In the pulse sequence of
“[x_pulse]” indicates an RF pulse. In this example, NMR measurements are performed using a pulse width varied from 0 to 70 μs.
“[acquisition]” indicates an observation. In this example, the time necessary for an observation is 1.81993472 s as shown in Table 1.
Data obtained from a measurement is shown in
In step 2, the obtained NMR data are first Fourier-transformed. The resulting data are shown in
In step 3, a waveform formed by connecting the vertices of spectral intensities of
An NMR instrument designed to quantitatively indicate the nonuniformities in transmit and receive magnetic fields is shown in Japanese Patent Laid-Open No. H3-139330. In particular, NMR scans are made with RF exciting field intensities of different arrays. A curve is applied to each set of corresponding data elements in one set of intensity arrays. The peaks of the applied curves are determined. Corresponding data in the transmit and receive arrays are generated from the determined peaks. Thus, a magnetic field map indicating nonuniformities in an RF magnetic field by means of the magnitudes of data elements is created.
However, the prior art method of finding the optimum RF pulse width has the problem that the reliability of the optimum value is low because the value is found from a created graph by visual estimation. In order to obtain an optimum value with high reliability, it is necessary to increase the number of measurement data items. This prolongs the measurement time. If the number of measurement data items is reduced to shorten the measurement time, the reliability of the obtained optimum value deteriorates.
Furthermore, Japanese Patent Laid-Open No. H3-139330 does not disclose a technique for optimizing measurement conditions, though the reference discloses a technique quantitatively indicating nonuniformities in transmit and receive fields.
It is an object of the present invention to provide a technique for finding a reliable optimum value of a measurement condition with a reduced number of measurement data items, i.e., in a short time.
A method of optimizing an NMR measurement condition in accordance with the present invention starts with gaining NMR measurement data while varying the value of the measurement condition to be optimized. Then, a certain property is extracted as a numerical value from the measurement data. A plot is made along the varied value of the measurement condition to create a curve. A model equation coincident with the measurement condition, its range, and the certain property extracted as a numerical value is established. Curve fitting in which constants of the model equation are varied is done such that the equation agrees with the created curve. Constant values of the model equation and their standard deviation are obtained by curve fitting. An optimum value of the measurement condition is obtained from the results.
In the present invention, curve fitting is used and so a good result can be obtained if the number of data items is reduced as long as they characterize a waveform. A reliable optimum value of a measurement condition can be found in a short time.
Other objects and features of the invention will appear in the course of the description thereof, which follows.
a), 1(b), and 1(c) are flowcharts and a diagram illustrating the prior art method of optimizing an NMR measurement condition;
a) and 34(b) illustrate a first specific example of Embodiment 11;
a) and 35(b) illustrate a second specific example of Embodiment 11; and
a) and 36(b) are diagrams illustrating a third specific example of Embodiment 11.
The preferred embodiments of the present invention are hereinafter described. Of the following embodiments, Embodiments 1–5 pertain to a method of finding an optimum value of an RF pulse width using integrated values in the signal region. Embodiments 6–10 pertain to a method of finding an optimum value of an RF pulse width using peak top intensities of a signal. In the following description, the measurement conditions of Table 1 and the pulse sequence of
a) and 5(b) are flowcharts illustrating Embodiment 1 of the present invention.
In
In step 2, the measurement data are Fourier-transformed and a plot is done along the values of the RF pulse width using integrated values in the signal region. In this way, a curve is created. This processing results in data as shown in
In step 3, cure fitting described later) is performed in which the constants A, B, C, D, and ω of model equation (1) (given later) are varied such that model equation (1) agrees with the curve indicated by the solid line in
where t is the RF pulse width, A, B, C, D, and ω are constants, and y is the theoretical value of the intensity at t.
Curve fitting using model equation (1) produces the results shown in Table 3.
Plotting of the values of Table 3 using model equation (1) produces the curve indicated by the broken line in
Curve fitting is to find the A, B, C, D, and ω which minimize the following evaluation formula (4) using a multi-dimensional variable metric method (Davidon-Fletcher-Powell (DFP) method) described in “Numerical Recipes in C: THE ART OF SCIENTIFIC COMPUTING”, Second Edition (ISEN 0-521-43108-5), 1992, pp. 425–430. The DFP method needs an evaluation equation and initial values. Eq. (4) using Eq. (5) identical with Eq. (1) is employed as this evaluation formula.
In Eq. (4), t is an RF pulse width, PWstart is the start value of the RF pulse width, PWend is the end value of the width, and g(t) is the actually measured value of the intensity at the RF pulse width of t. The theoretical value f(t) of intensity is defined by Eq. (5) and equal to the right side of Eq. (1).
A method of finding the initial values used in the DFP method is next described with reference to
In step 2, if calculations using the LPSVD method are unsuccessful, the program goes to step 3. If the calculations are successful, the program goes to step 7.
In step 3, the number n1 of passes of the curve indicated by the solid line in
In step 4, the results shown in Table 4 are substituted into Eq. (6). As an initial value of ω, we obtain ω=0.21862 rad/μs.
In step 5, the number of positive-going (upward) peaks n2 of the curve indicated by the solid line in
In step 6, the results shown in Table 5 are substituted into Eq. (7). We obtain 121.90106 μs as an initial value of C (C=121.90106 μs).
In step 7, the values of ω and C calculated in step 1 or steps 4 and 6 are substituted into Eq. (8) that is an expansion of Eq. (5). Using each item as a basis function and employing the curve indicated by the solid line in
A=√{square root over (E
2
+F
2
)} (9)
In step 8, the results shown in Table 6 are substituted into calculation formulas (9), (10-1), and (10-2), resulting in A=120149.03035 kabn and B=0.05477 rad.
Then, ω and C calculated in step 1 or steps 4 and 6, D calculated in step 7, and A and B calculated in step 8 are used as initial values in the DFP method. These values are varied. The values of A, B, C, D, and ω that minimize the value of evaluation formula (4) are found. Where the initial values of the DFP method are used, if measurement conditions as listed in Table 1 and the pulse sequence shown in
In the present embodiment, the step of obtaining an optimum RF pulse width contains no manual operation and so reproducible results can be obtained. In the above description, the number of data items is set to the number of data items used in the prior art procedure for convenience of illustration. In curve fitting, in a case where there are data points characterizing a waveform, if the number of data points is reduced, similar results can be obtained. Therefore, good results can be obtained if there are a reduced number of data items. This similarly applies to embodiments described later.
Embodiment 2 of the present invention is described next with reference to
In step 1, NMR measurements are performed while varying an RF pulse width from 24 to 34 μs (i.e., around 360° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and integrated values in the signal region are plotted along the values of the RF pulse width. In this way, a curve is created. This processing results in data shown in
In step 3, the linear least squares method is implemented using model equation (11). The results shown in Table 8 are obtained. Plotting of the contents of Table 8 using model equation (11) results in the curve indicated by the broken line in FIG. 10.
y=At+B (11)
Then, the values in Table 8 are substituted into Eq. (12), producing PW360=29.19169 μs as a 360° pulse. This is substituted into Eq. (3), giving rise to an optimum RF pulse width PW90=7.29792 μs. The standard deviation σ in Table 8 gives an index of the reliability of the obtained RF pulse width.
In the present embodiment, the step of obtaining the RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 3 of the present invention is next described with reference to
In step 1, NMR measurements are performed while varying an RF pulse width from 4 to 12 μs (i.e., around 90° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and integrated values in the signal region are plotted along the values of the RF pulse width. In this way, a curve is created. This processing results in data shown in
In step 3, the linear least squares method is implemented using model equation (13). The results shown in Table 10 are obtained. Plotting of the contents of Table 10 using model equation (13) results in the curve indicated by the broken line in FIG. 14.
y=At2+Bt+C (13)
Then, the values in Table 10 are substituted into Eq. (12), producing PW90=7.73047 μs as an optimum RF pulse width. The standard deviation σ in Table 10 gives an index of the reliability of the obtained RF pulse width.
In the present embodiment, the step of obtaining the RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 4 of the present invention is next described with reference to
In step 1, NMR measurements are performed while varying an RF pulse width from 12 to 18 μs (i.e., around 180° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and integrated values in the signal region are plotted along the values of the RF pulse width. In this way, a curve is created. This processing results in data shown in
In step 3, the linear least squares method is implemented using model equation (11). The results shown in Table 12 are obtained. Plotting of the contents of Table 12 using model equation (11) results in the curve indicated by the broken line in
Then, the values in Table 12 are substituted into Eq. (14), producing PW90=7.74051 μs as an optimum RF pulse width. The standard deviation σ in Table 12 gives an index of the reliability of the obtained RF pulse width. In the present embodiment, the step of obtaining the RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 5 of the present invention is next described by referring to
In step 1, NMR measurements are performed while varying an RF pulse width from 18 to 26 μs (i.e., around 270° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and integrated values in the signal region are plotted along the values of the RF pulse width. In this way, a curve is created. This processing results in data shown in
In step 3, the linear least squares method is implemented using model equation (13). The results shown in Table 14 are obtained. Plotting of the contents of Table 14 using model equation (13) results in the curve indicated by the broken line in
Then, the values in Table 14 are substituted into Eq. (15), producing PW90=7.40563 μs as an optimum RF pulse width. The standard deviation σ in Table 14 gives an index of the reliability of the obtained RF pulse width.
In the present embodiment, the step of obtaining the RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 6 of the present invention is described with reference to
In step 1, NMR measurements are performed while varying an RF pulse width from 0 to 70 μs in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and the top intensities of maximum peaks in the signal region are plotted along the values of the RF pulse width. This processing results in data as shown in
In step 3, a curve fitting DFP method is performed in which the constants A, B, C, D, and ω of model equation (1) are varied such that model equation (1) agrees with the curve. Consequently, the results shown in Table 16 are obtained.
Plotting of the values of Table 16 using model equation (1) produces the curve indicated by the broken line in
The method of finding the initial values of A, B, C, D, and ω in the curve fitting DFP method is the same as the method illustrated in
In step 1, the LPSVD method is used but calculations are unsuccessfully performed with no results. The program goes to step 3 where the number of times n, that the curve indicated by the solid line in
In step 4, the results shown in Table 17 are substituted into Eq. (6). As an initial value of ω, we obtain ω=0.21846 rad/μs.
In step 5, the number of positive-going (upward) peaks n2 of the curve indicated by the solid line of
In step 6, the results shown in Table 18 are substituted into Eq. (7). We obtain C=146.35619 μs as an initial value of C.
In step 7, the values of ω and C calculated in steps 4 and 6 are substituted into Eq. (8). Using each item as a basis function and employing the curve indicated by the solid line in
In step 8, the results shown in Table 19 are substituted into Eqs. (9), (10-1), and (10-2), resulting in A=5972906.48254 abn and B=0.13371 rad.
The values calculated in this way are taken as initial values in the DFP method. These values are varied. The values of A, B, C, D, and ω that minimize the value of evaluation formula (4) are found. Where the initial values of the DFP method are used, in a case where measurement conditions as listed in Table 1 and the pulse sequence shown in
In the present embodiment, the step of obtaining an optimum RF pulse width contains no manual operation and so reproducible results can be obtained.
Embodiment 7 of the present invention is described by referring to
In step 1, NMR measurements are performed while varying an RF pulse width from 24 to 34 μs (i.e., around 360° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and the top intensities of maximum peaks in the signal region are plotted along the values of the RF pulse width. This processing results in data as shown in
In step 3, the linear least squares method is implemented using model equation (11). The results shown in Table 21 are obtained. Plotting of the contents of Table 21 using model equation (11) results in the curve indicated by the broken line in
Then, the values in Table 21 are substituted into Eq. (12), producing PW360=29.40524 μs. This is substituted into Eq. (3), giving rise to PW90=7.35131 μs as an optimum RF pulse width. The standard deviation σ in Table 21 gives an index of the reliability of the obtained RF pulse width.
In the present, the step of obtaining an optimum RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 8 of the present invention is next described with reference to
In step 1, NMR measurements are performed while varying an RF pulse width from 4 to 12 μs (i.e., around 90° pulse width) in increments of 2 μs, using the measurement conditions show in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and the top intensities of the maximum peaks in the signal region are plotted along the values of the RF pulse width. This processing results in data shown in
In step 3, the linear least squares method is implemented using model equation (13). The results shown in Table 23 are obtained. Plotting of the contents of Table 23 using model equation (13) results in the curve indicated by the broken line in
Then, the values in Table 23 are substituted into Eq. (14), producing PW90=13.18934 μs as an optimum RF pulse width. The standard deviation σ in Table 12 gives an index of the reliability of the obtained RF pulse width.
In the present embodiment, the step of obtaining the optimum RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 9 of the present invention is described by referring to
In step 1, NMR measurements are performed while varying an RF pulse width from 12 to 18 μs (i.e., around 180° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed and the top intensities of the maximum peaks in the signal region are plotted along the values of the RF pulse width. This processing results in data as shown in
In step 3, the linear least squares method is implemented using model equation (11). The results shown in Table 25 are obtained. Plotting of the contents of Table 25 using model equation (11) results in the curve indicated by the broken line in
Then, the values in Table 25 are substituted into Eq. (14), producing PW90=7.54752 μs as an optimum RF pulse width. The standard deviation σ in Table 25 gives an index of the reliability of the obtained RF pulse width. In the present embodiment, the step of obtaining the optimum RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 10 of the present invention is described by referring to
In step 1, NMR measurements are performed while varying an RF pulse width from 18 to 26 μs (i.e., around 270° pulse width) in increments of 2 μs, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurement data are Fourier-transformed, and the top intensities of the maximum peaks in the signal region are plotted along the values of the RF pulse width. This processing results in data as shown in
In step 3, the linear least squares method is implemented using model equation (13). The results shown in Table 27 are obtained. Plotting of the contents of Table 27 using model equation (13) results in the curve indicated by the broken line in
Then, the values in Table 27 are substituted into Eq. (15), producing PW90=5.87 μs as an optimum RF pulse width. The standard deviation σ in Table 27 gives an index of the reliability of the obtained RF pulse width.
In the present embodiment, the step of obtaining the optimum RF pulse width does not use visual estimation. Therefore, reproducible results can be obtained.
Embodiment 11 of the present invention is next described with reference to
In step 1, NMR measurements are performed while varying a measurement condition to be optimized as shown in Table 28, using the measurement conditions shown in Table 1 and pulse sequence shown in
In step 2, the measurements data are Fourier-transformed. Then, properties as shown in Table 29 are extracted as numerical values. A curve is created by plotting them along the value varied in step 1.
In step 3, curve fitting is done by varying constants of a model equation as shown in Table 30 such that the model equation coincident with the parameter varied in step 1, its range, and the property extracted in step 2 agrees with the curve created in step 2. In Table 30, x represents the measurement condition varied on the horizontal axis of the graph, and y represents the horizontal axis of the graph and indicates the value of intensity extracted from measurement results under certain measurement conditions. A, B, C, D, and E are constants, and they are varied such that the standard deviation σ decreases during curve fitting.
Values of the constants and their standard deviation are obtained by this curve fitting. From these results, an optimum value of a measurement condition as shown in Table 31 is obtained. The standard deviation σ gives an index of the reliability of the obtained optimum value.
In the present embodiment, the step of obtaining an optimum value of a measurement condition does not use visual estimation. Therefore, reproducible results can be obtained.
a) and 34(b) illustrate a first specific example of Embodiment 11. This first specific example is a method of optimizing the irradiation center frequency in an NMR measurement.
In step 1, NMR measurements are performed using measurement conditions shown in Table 32 and pulse sequence shown in
1H
In step 2, the residual signal derived from light water and indicating the 1D NMR data is Fourier-transformed and integrated values are plotted against the center frequency of irradiation. As a result, a curve as shown in
In step 3, the linear least squares method using model equation (16) from which a graph is created is implemented to obtain optimum A, B, and C. Since the optimum center frequency of irradiation is the value of x at the minimum value of the graph of
y=Ax2+Bx+C (16)
where x is the center frequency of the irradiation and y indicates the integrated value of the residual signal derived from light water at the center frequency x of irradiation.
a) and 35(b) illustrate a second specific example of Embodiment 11. A method of optimizing the wait time δ in 15N-1H HSQC is described.
In step 1, 1D NMR measurements are performed using measurement conditions as shown in Table 33 and pulse sequence shown in
1H
15N
1HB1 pulse intensity
15NB1 pulse intensity
15N decoupled B1 pulse intensity
In step 2, a certain signal indicating 1D NMR data and derived by Fourier transform is integrated. The integrated value is plotted against wait time δ. As a result, a curve as shown in
In step 3, the linear least squares method is implemented using model equation (16) from which a graph is created to obtain optimum A, B, and C. Since the optimum wait time δ is the value of x at the minimum value of the graph of
a) and 36(b) illustrate a third specific example of Embodiment 11. This third example is a method of optimizing magnetic field gradient pulse intensity Gz2 in a 15N-1H HSQC (heteronuclear single quantum coherence) measurement (hereinafter simply referred to as SE-HSQC) using coherence selection utilizing magnetic field gradient pulses.
In step 1, NMR measurements are performed using measurement conditions as shown in Table 34 and pulse sequence shown in
15N labeled urea/dimethyl sulfoxide-d6
1H
15N
1HB1 pulse intensity
15NB1 pulse intensity
15N decoupled B1 pulse intensity
In step 2, 1D NMR data are obtained by Fourier transform and an integrated value derived from a certain signal contained in the data is obtained. The integrated value is plotted against Gz2. As a result, a curve as shown in
In step 3, the linear least squares method is implemented using model equation (16) from which a graph is created to obtain optimum A, B, and C. Since the optimum magnetic field gradient pulse intensity Gz2 is the value of x at the maximum value of the graph of
As described so far, according to the present invention, the step of obtaining an optimum value of a measurement condition in an NMR measurement does not include visual estimation. Therefore, reproducible results can be obtained. Furthermore, the use of a curve fitting method produces good results even if there are a limited number of data items, as long as they characterize a waveform. Consequently, a reliable optimum value of the measurement condition can be found in a short time.
Having thus described our invention with the detail and particularity required by the Patent Laws, what is desired protected by Letters Patent is set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-124272 | Apr 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5001428 | Maier et al. | Mar 1991 | A |
5675253 | Smith et al. | Oct 1997 | A |
5994902 | Xiang et al. | Nov 1999 | A |
6396270 | Smith | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040263164 A1 | Dec 2004 | US |