The invention relates to a method of optimizing the write power of a radiation beam for recording marks in an information layer of a record carrier by irradiating the information layer by the radiation beam, said information layer having a phase that is reversibly changeable between a first phase and a second phase. The invention especially relates to such a method of recording marks in a record carrier having a phase that is reversibly changeable between a crystal phase and an amorphous phase. The present invention further relates to a recording device and a recording method using such an optimizing method.
When a so-called 1 T write strategy is used for recording marks in the information layer of a record carrier, said information layer containing, for example, phase-change recording materials, an OPC (Optimum Power Control) procedure is usually run to determine the optimum write powers by measuring the modulation change of written test marks with the write power applied during writing of these test marks. The OPC procedure is generally performed in the specially reserved PCA (Power Calibration Area) of a disc. An optimum write power is derived from a resulting curve of measured modulation versus applied write power. If required, disk-related information stored on the disc itself, for example in the ATIP, may be used in deriving the optimum write power.
Increasing the recording speed when recording on phase-change type discs such as, for example, CD-RW and DVD+RW requires faster materials and new write strategies. An important recent development is the introduction of the so-called 2 T write strategies (WS) which have been incorporated in the Ultra-Speed CD-RW standard and the High-Speed DVD+RW standard. OPC procedures for conventional 1T write strategies for phase-change recording derive the optimum write power from the measured modulation vs. applied write power curve. Applying a similar approach to the 2 T write strategies when recording on the faster phase-change materials is not possible (or at least does not provide a robust and satisfactory solution). The main reason for this is that there is no direct relation between the measured modulation and the recording performance (expressed by the jitter of the written marks), as is observed for 1 T write strategies. Thus, the procedures for optimizing write strategy parameters for 2 T write strategies, such as the write powers, have to be redesigned as well.
It is an object of the present invention to provide a method of optimizing the write power for recording marks in an information layer of a record carrier, in particular when applying an nT write strategy, n being an integer greater than 1, preferably for a 2 T write strategy. It is a further object to provide a recording method and a recording device for recording marks in an information layer of a record carrier.
The object is achieved according to the present invention by a method of optimizing the write power for recording marks in an information layer of a record, said information layer having a phase that is reversibly changeable between a first phase and a second phase, wherein said method comprises the steps of:
recording a pattern of test marks at least comprising short marks having a predetermined short nominal runlength onto the record carrier by applying at least three different write powers,
measuring the runlengths of said short marks recorded through the application the at least three different write powers,
determining an optimum write power based on the deviations of the measured runlengths from the nominal runlength of said short marks.
According to an embodiment, the optimum write power is found when the deviation between a measured runlength and the nominal runlength of said short marks is zero, or at least substantially zero.
The object is further achieved by providing a recording method for recording marks representing user data in an information layer of a record carrier by irradiating the information layer with a radiation beam, said information layer having a phase that is reversibly changeable between a first phase and a second phase, said recording method comprising the steps of:
optimizing the write power for recording said marks by a method of optimizing the write power to obtain an optimum write power, and
recording said marks by applying said optimum write power.
The invention is based on the idea to look for an underlying important parameter indicative of the recording performance in order to optimize the write strategy. It has been found that this parameter is the resulting mark length of the short marks recorded on the record carrier, preferably of the shortest allowed mark length. Since the ratio of the short (or the shortest) marks to the longer marks of the total channel code (e.g. NRZI code) in optical recording is quite high (e.g. for CD-RW the ratio of 3 T marks is higher than 30%), and since the shortest marks are the most difficult marks to be optimized, the other marks are recorded satisfactorily and with sufficiently low jitter if the shortest marks are recorded satisfactorily and with sufficiently low jitter.
According to a preferred embodiment, shortest marks having the shortest runlength allowed by the applied modulation method (such as, for example, EFM used for CD and EFM+ used for DVD) are recorded as test marks, and the runlengths of said shortest test marks are measured and used for determining the optimum write power. For example, for CD-RW the shortest runlength allowed by the EFM modulation method is 3 T, so that the runlength of these 3 T marks is measured after recording and used for determining the optimum write power. The difference between the measured runlength and the nominal runlength of said 3 T marks is used in particular for this determination.
In a further preferred embodiment, the test marks are recorded with three different write power values around a default optimum write power value. Said default optimum write power value is obtained on the basis of, for example, previous experiments on a number of record carriers, or is alternatively set to the optimum write power determined in a previous recording action or OPC procedure.
The method of optimizing the write power may be used before each new recording action to find the optimum write power. Alternatively, however, the method is applied continuously or at regular intervals during each recording action (often referred to as “walking OPC”). In this embodiment the method of optimizing the write power further comprises the steps of:
recording marks including short marks onto the record carrier by applying a previously determined optimum write power,
measuring the runlengths of said short marks recorded by applying the previously determined optimum write power,
adjusting the optimum write power on the basis of the deviation between the measured runlength and the nominal runlength of said short marks, such that the deviation between the measured runlength and the nominal runlength of said short marks is substantially zero and/or the jitter is minimal.
Thus patterns of marks representing user data are recorded in this embodiment, and the runlengths of the short marks included therein, preferably the most recently recorded short marks, are measured and used for adjusting the optimum write power.
To check whether the modulation of the recorded marks after writing meets the relevant specification, the following additional steps are proposed in a further embodiment:
measuring the modulations of said short marks recorded with the use of the at least three different write powers,
checking whether the modulation of said short marks recorded with the use of the optimum write power results in a modulation above a predetermined threshold modulation.
It is noted that the jitter of the recorded marks may not always be at its very minimum when the deviation between a measured runlength and the nominal runlength of the short marks is zero. In an alternative method of optimizing the write power according to the invention, the jitter itself (in particular the land jitter) is minimized. Now the method of optimizing the write power comprises the step of determining an optimum write power on the basis of the deviations of the measured runlengths from the nominal runlength of the short marks, such that the jitter is minimal.
The invention will now be explained in more detail with reference to the accompanying drawings, in which
However, for a certain write power the resulting jitter of the 3 T marks (especially the land jitter) varies considerably as a function of the applied write strategy (see
Another problem, which is apparent from
A third problem for 2 T write strategies is that the number of WS parameters may be large, and the parameter settings are critical at a given write power. Some of the parameters, especially those related to the shorter marks such as 3 T marks, have to be defined with a high timing resolution (for example a timing resolution of up to 1/16 T). The resulting jitter, especially the land jitter, may be very sensitive to these parameters, as is apparent from
If the curve of the 3 T land jitter is plotted against the difference between the measured 3 T runlength and the nominal 3 T runlength (Δ3TRL), all curves for different parameters settings of a 2 T write strategy become a parabola (see
By measuring three points one can already derive the three parameters of a parabolic curve. Measuring of more points will improve the accuracy of the parabolic curve. The resulting parabola curve readily enables the optimum write power (to be used for recording marks having a low jitter) for a set of 2 T write strategy parameters to be derived.
As described, the land jitter vs. Δ3TRL curves scale to the same basic curve. All different write strategies result in a similar bottom jitter value for a similar Δ3TRL, and therefore for a similar recorded 3 T mark length. Generally, the bottom jitter is found to be equal to zero for a Δ3TRL. For the different 2 T WS parameter settings in
Based on the observations above, an example of a possible OPC method according to the invention for determining the optimum write power for a given 2 T write strategy by measuring of Δ3TRL will be discussed below, with reference to a flowchart shown in
Subsequently (step S2), the runlength of said written shortest marks is measured for each of the three different write powers. Optionally, the resulting modulations of said written shortest marks are measured at the same time.
From the difference Δ3TRL between the measured runlengths and the nominal runlength of said shortest marks (3 T marks), (part of) a parabolic curve of the write power versus Δ3TRL is determined, as is shown in
In the next step S4, the optimum write power is determined. A method of determining the optimum write power is based on the derived parabolic curve of the write power versus Δ3TRL as shown in
This optimum write power is now used in step S5 to write data. When subsequently a “walking OPC” procedure is applied, the runlengths of at least the shortest marks in the written data are measured again in step S6. The Δ3TRL can then again be determined for the measured runlengths, and the new Δ3TRL can then again be compared with the optimum Δ3TRL so as to adjust, if necessary, the optimum write power in step S7. Fluctuations of stack thickness and material composition in the record carrier or drive or temperature variations may cause changes in the optimum write power for different areas of a disc. It is thus possible to adjust the write power for such fluctuations and variations during the process of writing data in that such a “walking OPC” procedure is carried out. After normal data (i.e. data not specifically intended for the OPC procedures) have been written on a disc, the drive measures the Δ3TRL, compares it with the optimum value, and adjusts the write power.
It should be noted that either a single writing step for writing test patterns or two separate writing steps for writing test marks may be used for the above-mentioned combined measurement of the mark lengths and the (optional) measurement of the modulation of the recorded marks in step S2. Furthermore, the invention is not limited to 2T write strategies, but may be generally applied to any nT write strategy, n being an integer greater than 1. The invention is not limited to any particular type of record carrier, but may be applied to any recordable or rewritable type of record carrier, such as any CD, DVD, or BD type of record carrier. For some types of record carriers, the shortest allowed marks may be not 3T marks, but, for example, 2T marks, as is the case for ED record carriers. It is further possible to use and measure not only the runlength of the shortest marks, but also the runlengths of longer marks which can then be taken into account for determining the optimum write power. For example, not only the 3T marks may be used, but also the somewhat longer 4T and 5T marks. The pattern of test marks must then be adapted accordingly.
Number | Date | Country | Kind |
---|---|---|---|
04103408 | Jul 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/052262 | 7/7/2005 | WO | 00 | 1/12/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/008690 | 1/26/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6285639 | Maenza et al. | Sep 2001 | B1 |
6611481 | Koishi et al. | Aug 2003 | B1 |
7269113 | Spruit | Sep 2007 | B2 |
20020136123 | Ogawa | Sep 2002 | A1 |
20030035355 | Morishima | Feb 2003 | A1 |
20030044719 | Katoh et al. | Mar 2003 | A1 |
20030214888 | Kato et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
118265 | Dec 1984 | EP |
1244098 | Sep 2002 | EP |
1249834 | Oct 2002 | EP |
1335356 | Aug 2003 | EP |
1349154 | Oct 2003 | EP |
1361569 | Nov 2003 | EP |
1361570 | Nov 2003 | EP |
1361571 | Nov 2003 | EP |
1548711 | Jun 2005 | EP |
2002347341 | Dec 2002 | JP |
2003187446 | Jul 2003 | JP |
2003208716 | Jul 2003 | JP |
2003228832 | Aug 2003 | JP |
WO 03065357 | Aug 2003 | WO |
2004029944 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080094958 A1 | Apr 2008 | US |