This application is based on and hereby claims priority to PCT Application No. PCT/GB2005/000697 filed Feb. 24, 2005, Great Britain Application No. 0405389.8 filed on Mar. 11, 2004 and Great Britain Application No. 0414717.9 filed on Jul. 1, 2004, the contents of which are hereby incorporated by reference.
This invention relates to a method of packet switched handover in a mobile communication system, in particular for 2nd and 3rd generation mobile phone systems, using general packet radio service (GPRS).
Packet Switched (PS) handover is a relatively new topic in Global System for Mobile communications (GSM) /Enhanced Data rates for GSM Evolution (EDGE) Radio Access Network (GERAN) requiring new mechanisms in the RAN and Core Network. PS handover requires low PS service interruption times, preferably less than 200 ms. In the case of inter-SGSN handover the new SGSN (serving general packet radio service (GPRS) support node) may not be able, or may not want, to support the same set of parameters for the data protocols. In the case of GERAN, these are the Sub-network Dependent Convergence Protocol (SNDCP) and logical link control (LLC) protocols. In this case, a negotiation procedure takes place between the mobile and the SGSN after it establishes itself in the new cell after handover. During this procedure PS data cannot be received by the mobile thus increasing the PS service interruption time.
If new LLC/SNDCP parameters need to be negotiated for the mobile in the new cell, the target SGSN must initiate the procedure by sending an exchange identification (XID) command to the mobile. This can only be carried out when the SGSN knows that the mobile has successfully made access in the target cell by receiving the PS handover complete message as shown in
The inventor proposes a method of packet switched handover in a mobile communication system comprising a terminal, a source node and a destination node comprises negotiating protocol parameters for the destination node on behalf of a new network entity, by communicating with an old network entity whilst the terminal is still connected to the source node; and completing the packet switched handover, such that service interruption on handover is reduced.
According to the method most, if not all, of the negotiation procedure is conducted before the mobile moves to the new cell, thus considerably reducing the service interruption time.
Preferably, the negotiation of protocol parameters comprises including an exchange identification data command in a packet switched handover request.
Preferably, the exchange identification data command is packed in a target to source transparent container at a target base station, transferred to a source base station, unpacked and sent in a packet switched handover command to the terminal.
As a packet switched handover request is not always present, alternatively, the negotiation of protocol parameters comprises including an exchange identification data command in a packet switched handover command and continuing downlink data transfer before the packet switched handover is complete.
Preferably, a packet switched exchange identification response is sent from the terminal to a source base station and thence to the source node; and relayed to the destination node, such that downlink data transfer continues. Typically, the source node is an SGSN.
Preferably, a start time for the terminal to access a target cell in the packet switched handover command is delayed. This has the effect of further reducing the down time.
These and other objects and advantages of the present invention will become more apparent and more readily appreciated from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
The method addresses the problem of the delays caused by having to wait until after the handover is complete to start the protocols set up, by carrying out the negotiation steps, at least partially, while the terminal is still connected to the source cell. An example of a network entity is the SGSN for inter-SGSN handover in 2G systems, but more generally for both 2G and 3G systems, the network entity is any core network end-point that requires different protocol parameters. One option for achieving the negotiation steps for the 2G example is for a target SGSN to pass XID information to a target BSS packed in a target BSS to source BSS transparent container. An XID command is included in a PS handover request from the target SGSN to the target BSS, then packed into the target to source transparent container which is passed via messages to the source BSS where it is unpacked and sent in the PS handover command.
This is explained in more detail with reference to
A further optimisation is possible by providing a mechanism for the XID response message to be sent to the target SGSN whilst the mobile station (MS) is still in the source cell. The MS responds to the XID command sent in the PS handover command by sending a new message on the radio interface called “PS XID Response”. This message is passed on to the source SGSN in a new BSS GPRS protocol (BSSGP) message also called “PS XID Response” and then relayed back to target SGSN via a new GPRS tunnelling protocol (GTP) message called “Relay XID Response”. Once the target SGSN has a satisfactory XID response, downlink LLC PDUs that may have been relayed from the source SGSN can be sent towards the target cell. By delaying the start time for the MS to access the target cell in the PS handover command, the extra PS service interruption time caused by the XID negotiation procedure can be reduced to less than one round trip time (MS to SGSN and back) and possibly reduced to zero depending on how long the MS is able to remain in the source cell.
An example of this optimisation is described with respect to
The invention has been described in detail with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention covered by the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).
Number | Date | Country | Kind |
---|---|---|---|
0405389.8 | Mar 2004 | GB | national |
0414717.9 | Jul 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2005/000697 | 2/24/2005 | WO | 00 | 7/11/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/089002 | 9/22/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6434133 | Hamalainen | Aug 2002 | B1 |
6968190 | Suumaki et al. | Nov 2005 | B1 |
20020131386 | Gwon | Sep 2002 | A1 |
20030053431 | Madour | Mar 2003 | A1 |
20030142648 | Semper | Jul 2003 | A1 |
20060256749 | Rexhepi et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2 374 494 | Oct 2002 | GB |
WO 0130107 | Apr 2001 | WO |
WO 0135586 | May 2001 | WO |
WO 0139525 | May 2001 | WO |
WO 0079808 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070281697 A1 | Dec 2007 | US |