Method of photostabilizing UV absorbers, particularly dibenzyolmethane derivatives, e.g., Avobenzone, with cyano-containing fused tricyclic compounds

Information

  • Patent Grant
  • 9125829
  • Patent Number
    9,125,829
  • Date Filed
    Friday, August 17, 2012
    12 years ago
  • Date Issued
    Tuesday, September 8, 2015
    9 years ago
Abstract
A photostabilized photoactive composition comprising a mixture of a photoactive compound that develops a singlet excited state, or fluoresces when subjected to UV radiation and an effective amount of an excited state quencher comprising a cyano-containing fused tricyclic compound of formula (I):
Description

The present invention is directed to a method of photostabilizing photolabile UV absorbers, particularly dibenzoylmethane derivatives, such as Avobenzone, with cyano-containing fused tricyclic compounds. More particularly, it has been found that cyano-containing fused tricyclic compounds (CCFTs) quench the singlet and/or triplet excited energy state of photounstable UV absorbers, e.g., dibenzoylmethane derivatives; and/or accept or donate an electron from or to UV absorbers, thereby returning photolabile UV absorbers, such as dibenzoylmethane derivatives, back to their ground state so that they can absorb more photons, e.g., from ultraviolet light, thereby photostabilizing the dibenzoylmethane derivatives, particularly butylmethoxy dibenzoylmethane (Avobenzone) in photoactive sunscreen, cosmetic and dermatological compositions. When a photolabile UV absorber, such as dibenzoylmethane derivative is excited to a singlet and/or triplet excited state and is contacted with a cyano-containing fused tricyclic compound (CCFT), regardless of the mechanism, the excited dibenzoylmethane derivative is returned to its ground state so that it can absorb more UV radiation, thereby protecting the skin for longer durations.


BACKGROUND AND PRIOR ART

Dibenzoylmethane derivatives are compounds that absorb the full spectrum of UVA radiation. The absorption of UVA radiation (at 320-400 nm) by a dibenzoylmethane derivative causes the excitation of an electron in the dibenzoylmethane derivative molecule from an initially occupied, lower energy orbital to a higher energy, previously unoccupied orbital. The energy of the absorbed photon is used to energize an electron and cause it to “jump” to a higher energy orbital. See Turro, Modern Molecular Photochemistry, 1991. Two excited electronic states derive from the electronic orbital configuration produced by UV light absorption. In one state, the electron spins are paired (antiparallel) and in the other state the electron spins are unpaired (parallel). The state with paired spins has no resultant spin magnetic moment, but the state with unpaired spins possesses a net spin magnetic moment. A state with paired spins remains a single state in the presence of a magnetic field, and is termed a singlet state. A state with unpaired spins interacts with a magnetic field and splits into three quantized states, and is termed a triplet state.


In the electronically excited state, the UV absorbing molecule, e.g., dibenzoylmethane derivative, is prone to degrade via a number of known pathways and, therefore, can absorb little or no additional UV light. To photostabilize an electronically excited, chromophore-containing, UV absorbing organic molecule in order to provide sufficient UV protection, it must be returned to the ground state before it undergoes a photochemical reaction destructive to its UV absorbing capability.


There are known photostabilizing sunscreen additives, such as Octocrylene, methylbenzylidene camphor, and the esters or polyesters of naphthalene dicarboxylic acid of this assignee's U.S. Pat. Nos. 6,113,931; 6,284,916; 6,518,451; and 6,551,605, all hereby incorporated by reference, that are capable of quenching excited triplet state energy from dibenzoylmethane derivatives. Surprisingly, it has been found that cyano-containing fused tricyclic compounds return chromophore-containing organic molecules, particularly butyl methoxydibenzoylmethane (Avobenzone), octyl methoxycinnamate (Octinoxate), and octyl salicylate (Octisalate), from either an electronically excited singlet state or excited triplet state back to their ground state, thereby photostabilizing the UV-absorbing organic molecules.


Deflandre U.S. Pat. No. 5,576,354 generally discloses a cosmetic sunscreen composition containing at least 1% by weight of an α-cyano-β,β-diphenylacrylate that will photostabilize a dibenzoylmethane derivative, e.g., Parsol 1789 (Avobenzone), so long as the composition contains a fatty phase, e.g., glycerol stearates, isopropyl myristate or the like, and so long as the mole ratio of the α-cyano-β,β-diphenylacrylate to the dibenzoylmethane derivative is at least 0.8.


Octocrylene is known to quench (accept) the excited triplet state energy of an excited photoactive compound by dissipating the energy kinetically in the form of rapid isomerizations. This process is shown below:




embedded image



wherein the α-cyano-β,β-diphenylacrylate compound (octocrylene shown above as structure A), accepts the triplet excited state energy from a photoactive compound and forms a diradical (shown above as structure A*) at the α and β positions of the acrylate, which converts the double bond into a single bond and allows for the free rotation of the phenyl groups. This rotation occurs rapidly and efficiently to dissipate any excited triplet state energy accepted by the α-cyano-β,β-diphenylacrylate compound from the photoactive compound.


While octocrylene is able to quench (accept) the triplet excited state energy from a photoactive compound, thereby photostabilizing, to some degree, dibenzoylmethane derivatives, as shown in examples 1, 4, 6 and 8 of Deflandre et al. U.S. Pat. No. 5,576,354, there exists a need in the photoactive composition art to find one or more compounds that quench (accept) the singlet excited state energy and preferably also the triplet excited state energy from photoactive compounds, which octocrylene does not.


Quite surprisingly, it has been found that the cyano-containing fused tricyclic compounds described herein will quench excited state energy of UV-absorbing organic molecules, such as dibenzoylmethane derivatives, particularly Avobenzone, returning the excited UV-absorbing organic molecules to their ground state for additional UV absorption.


SUMMARY

The electronic excited state energy—singlet state and/or triplet state energy from a UV-absorbing molecule, particularly a dibenzoylmethane derivative, such as Avobenzone, has been found to be readily quenched by contact with a cyano-containing fused tricyclic compound.


In one aspect, the disclosure provides a method of quenching excited state energy from a chromophore compound, particularly a dibenzoylmethane derivative, that has been excited by exposure to and absorption of UV radiation comprising quenching the excited state energy of an excited chromophore, UV absorbing compound


with a cyano-containing fused tricyclic compound of Formula I:




embedded image




    • wherein:

    • A is selected from the group consisting of O, S, C═O, and







embedded image




    • n is selected from the group consisting of 0 and 1; and,

    • R1 and R2 are each independently selected from the group consisting of alkyl, cycloalkyl, ether, aryl, and amino.





In another aspect, the invention provides a sunscreen, cosmetic or dermatological composition for coating a skin surface to protect the skin from absorbing damaging amounts of UV radiation when skin is exposed to sunlight, or other UV radiation, said composition containing a compound of Formula Ia, Ib, Ic, Id, Ie, or a combination thereof:




embedded image




    • wherein R1 and R2 are each independently selected from the group consisting of alkyl, cycloalkyl, ether, aryl, and amino.








BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing the superior ability of cyano-containing fused tricyclic compounds to photostabilize Avobenzone in comparison to the ethylhexyl methoxycrylene of this Assignee's U.S. Pat. Nos. 8,075,808; 7,754,191; 7,173,519; 7,597,825; 7,588,702; and 7,959,834; and U.S. Patent Application No. 2009/0246157.



FIG. 2 is a graph showing the superior ability of cyano-containing fused tricyclic compounds to photostabilize a combination of Avobenzone and octylmethoxy cinnamate (OMC) in comparison to the ethylhexyl methoxycrylene of this Assignee's U.S. Pat. Nos. 8,075,808; 7,754,191; 7,173,519; 7,597,825; 7,588,702; and 7,959,834; and U.S. Patent Application No. 2009/0246157.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.


Quite surprisingly, it has been found that cyano-containing fused tricyclic compounds will quench electronically excited UV-absorbing chromophore molecules, particularly dibenzoylmethane derivatives, caused by the chromophore molecule reaching an excited singlet and/or triplet state when excited by absorption of UV radiation. As a result, the excited state of the chromophore-containing molecules, particularly Avobenzone, is returned to the ground state, thereby photostabilizing the chromophore-containing molecule so that it can absorb additional UV radiation. Accordingly, by applying one or more of the cyano-containing fused tricyclic compounds, in a dermatologically or cosmetically acceptable carrier, onto mammalian skin, e.g., human skin, the skin will not be damaged as a result of the UV absorbing molecule being unable to absorb additional UV radiation. Thus, the compositions and methods described herein advantageously quench the excited states reached by chromophore-containing compounds, particularly dibenzoylmethane derivatives, thereby photostabilizing the UV-absorbing molecules to allow them to absorb additional UV radiation.


DEFINITIONS

The term “alkyl” refers to straight chained and branched saturated hydrocarbon groups containing one to thirty carbon atoms, for example, one to thirty carbon atoms, one to twenty carbon atoms, and/or one to ten carbon atoms. The term Cn means the alkyl group has “n” carbon atoms. For example, C4 alkyl refers to an alkyl group that has 4 carbon atoms. C1-C7 alkyl refers to an alkyl groups having a number of carbon atoms encompassing the entire range (i.e., 1 to 7 carbon atoms), as well as all subgroups (e.g., 1-6, 2-7, 1-5, 3-6, 1, 2, 3, 4, 5, 6, and 7 carbon atoms). Nonlimiting examples of alkyl groups include, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl (2-methylpropyl), t-butyl (1,1-dimethylethyl), 3,3-dimethylpentyl, and 2-ethylhexyl. Unless otherwise indicated, an alkyl group can be an unsubstituted alkyl group or a substituted alkyl group. When the term “alkyl” is in parenthesis (e.g., (alkyl)acrylate), then the alkyl group is optional.


The term “alkenyl” is defined identically as “alkyl” except for containing at least one carbon-carbon double bond, e.g., ethenyl, 1-propenyl, 2-propenyl, and butenyl. Unless otherwise indicated, an alkenyl group can be an unsubstituted alkenyl group or a substituted alkenyl group.


The term “alkynyl” is defined identically as “alkyl” except for containing at least one carbon-carbon triple bond, e.g., ethynyl, 1-propynyl, 2-propynyl, and butynyl. Unless otherwise indicated, an alkynyl group can be an unsubstituted alkynyl group or a substituted alkynyl group.


The term “cycloalkyl” as used herein refers to an aliphatic cyclic hydrocarbon group containing three to eight carbon atoms (e.g., 3, 4, 5, 6, 7, or 8 carbon atoms). The term Cn means the cycloalkyl group has “n” carbon atoms. For example, C5 cycloalkyl refers to a cycloalkyl group that has 5 carbon atoms in the ring. C5-C8 cycloalkyl refers to cycloalkyl groups having a number of carbon atoms encompassing the entire range (i.e., 5 to 8 carbon atoms), as well as all subgroups (e.g., 5-6, 6-8, 7-8, 5-7, 5, 6, 7, and 8 carbon atoms). Nonlimiting examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Unless otherwise indicated, a cycloalkyl group can be an unsubstituted cycloalkyl group or a substituted cycloalkyl group.


The term “heterocycloalkyl is defined similarly as cycloalkyl, except the ring contains one to three heteroatoms independently selected from the group consisting of oxygen, nitrogen, and sulfur. Nonlimiting examples of heterocycloalkyl groups include piperidine, tetrahydrofuran, tetrahydropyran, dihydrofuran, morpholine, thiophene, and the like. Cycloalkyl and heterocycloalkyl groups can be saturated or partially unsaturated ring systems optionally substituted with, for example, one to three groups, independently selected from the group consisting of alkyl, alkyleneOH, C(O)NH2, NH2, oxo (═O), aryl, haloalkyl, halo, and OH. Heterocycloalkyl groups optionally can be further N-substituted with alkyl, hydroxyalkyl, alkylenearyl, or alkyleneheteroaryl.


The term “cycloalkenyl” is defined identically as “cycloalkyl” except for containing at least one double bond, e.g., cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl. Unless otherwise indicated, a cycloalkenyl group can be an unsubstituted cycloalkenyl group or a substituted cycloalkenyl group.


The term “aryl” as used herein refers to monocyclic or polycyclic (e.g., fused bicyclic and fused tricyclic) carbocyclic aromatic ring systems. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, tetrahydronaphthyl, phenanthrenyl, biphenylenyl, indanyl, indenyl, anthracenyl, and fluorenyl. Unless otherwise indicated, an aryl group can be an unsubstituted aryl group or a substituted aryl group.


The term “heteroaryl” as used herein refers to monocyclic or polycyclic (e.g., fused bicyclic and fused tricyclic) aromatic ring systems, wherein one to four-ring atoms are selected from the group consisting of oxygen, nitrogen, and sulfur, and the remaining ring atoms are carbon, said ring system being joined to the remainder of the molecule by any of the ring atoms. Nonlimiting examples of heteroaryl groups include, but are not limited to, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, tetrazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, furanyl, quinolinyl, isoquinolinyl, benzoxazolyl, benzimidazolyl, and benzothiazolyl. Unless otherwise indicated, a heteroaryl group can be an unsubstituted heteroaryl group or a substituted heteroaryl group.


The term “hydroxy” or “hydroxyl” as used herein refers to an “—OH” group.


The term “alkoxy” or “alkoxyl” as used herein refers to an “−O-alkyl” group.


The term “ester” as used herein refers to a group of the general Formula:




embedded image



wherein R is an alkyl group or a cycloalkyl group.


The term “ether” as used herein refers to a C1-C30 alkyl group that includes at least one oxygen atom inserted within the alkyl group.


The term “amino” as used herein refers a —NH2 or —NH— group, wherein each hydrogen in each Formula can be replaced with an alkyl, cycloalkyl, aryl, heteroaryl, or heterocycloalkyl group.


The term “carboxy” or “carboxyl” as used herein refers to a “—COOH” group.


The term “carboxylic ester” as used herein refers to a “—(C═O)O-alkyl” group.


The term “sulfhydryl” as used herein refers to a “—SH” group.


The term “halo” as used herein refers to a halogen (e.g., F, Cl, Br, or I).


The term “cyano” as used herein refers to a —C≡N group, also designated —CN.


A “substituted” alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, alkoxyl, ester, ether, or carboxylic ester refers to an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, alkoxyl, ester, ether, or carboxylic ester having at least one hydrogen radical that is substituted with a non-hydrogen radical (i.e., a substitutent). Examples of non-hydrogen radicals (or substituents) include, but are not limited to, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, ether, aryl, heteroaryl, heterocycloalkyl, heterocycloalkyl, hydroxyl, oxy (or oxo), alkoxyl, ester, thioester, acyl, carboxyl, cyano, nitro, amino, amido, sulfur, and halo. When a substituted alkyl group includes more than one non-hydrogen radical, the substituents can be bound to the same carbon or two or more different carbon atoms.


The term “hydroxyalkyl” as used herein refers to an alkyl group that is substituted with a hydroxyl group.


The term “carboxyalkyl” as used herein refers to an alkyl group that is substituted with a carboxyl group.


The term “esteralkyl” as used herein refers to an alkyl group that is substituted with an ester group.


The term “sulfhydrylalkyl” as used herein refers to an alkyl group that is substituted with a sulfhydryl group.


EMBODIMENTS

In one aspect, the disclosure provides a method of quenching excited state energy from a chromophore compound, particularly a dibenzoylmethane derivative, that has been excited by exposure to and absorption of UV radiation, by a cyano-containing fused tricyclic compound.


In one embodiment, the chromophore compound is a dibenzoylmethane derivative, which has its singlet and triplet excited states quenched by cyano-containing, fused tricyclic compounds. The dibenzoylmethane derivative may be selected from the group consisting of 2-methyldibenzoylmethane; 4-methyldibenzoylmethane; 4-isopropyldibenzoylmethane; 4-tert-butyldibenzoylmethane; 2,4-dimethydibenzoylmethane; 2-5-dimethydibenzoylmethane; 4,4′-diispropyldibenzoylmethane; 4,4′-dimethoxydibenzoylmethane; 4-tert-butyl-4′-methoxdibenzoylmethane; 2-methyl-5-isopropy-4′-methoxydibenzoylmethane; 2-methyl-5-tert-butyl-4′-methoxydibenzoylmethane; 2,4-dimethyl-4′-methoxydibenzoymethane; 2,6-dimethyl-4-tert-butyl-4′-methoxydibenzolmthane, and combinations thereof.


In other embodiments, the cyano-containing fused tricyclic compounds described herein also photostabilize retinoids, coenzyme Q, cholecalciferol, and resveratrol, disclosed in this assignee's U.S. Pat. No. 8,070,989, and U.S. Patent Application Publication Nos. 2012/0114572, 2012/0107255, 2012/0065232, 2011/0251242, and 2011/0142771, hereby incorporated by reference.


In yet other embodiments, the cyano-containing fused tricyclic compounds described herein photostablize porphyrin compounds. Porphyrin compounds that are useful in the present invention include, but are not limited to, 5-azaprotoporphyrin IX, bis-porphyrin, coproporphyrin III, deuteroporphyrin, deuteroporphyrin IX dichloride, diformyl deuteroprophyrin IX, dodecaphenylporphyrin, hematoporphyrin, hematoporphyrin IX, hematoporphyrin monomer, hematoporphyrin dimer, hematoporphyrin derivative, hematoporphyrin derivative A, hematoporphyrin IX dihydrochloride, hematoporphyrin dihydrochloride, mesoporphyrin, mesoporphyrin IX, monohydroxyethylvinyl deuteroporphyrin, 5,10,15,20-tetra(o-hydroxyphenyl)porphyrin, 5,10,15,20-tetra(m-hydroxyphenyl)porphyrin, 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin, 5,10,15,20-tetrakis(3-methoxyphenyl)-porphyrin, 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)porphyrin, 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin, 5,10,15,20-tetrakis(3,4,5-trimethoxyphenyl)porphyrin, 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, porphyrin c, protoporphyrin, protoporphyrin IX, tetra-(4-N-carboxyphenyl)-porphine, tetra-(3-methoxyphenyl)-porphine, tetra-(3-methoxy-2,4-difluorophenyl)-porphine, 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine, tetra-(4-N-methylpyridyl)-porphine tetrachloride, tetra-(3-N-methylpyridyl)-porphine, tetra-(2-N-methylpyridyl)-porphine, tetra(4-N,N,N-trimethylanilinium)porphine, tetra-(4-N,N,N″-trimethylamino-phenyl)porphine tetrachloride, tetranaphthaloporphyrin, tetraphenylporphyrin, tetra-(4-sulfonatophenyl)-porphine, 4-sulfonatophenylporphine, uroporphyrin, uroporphyrin III, uroporphyrin IX, and uroporphyrin I, and esters thereof.


The cyano-containing fused tricyclic compounds capable of quenching the excited state energy of the UV-absorbing compounds, particularly dibenzoylmethane derivatives, are the compounds of Formula I:




embedded image


Cyano-Containing Fused Tricyclic Compounds

wherein:


A is selected from the group consisting of O, S, C═O, and




embedded image



n is 0 or 1; and,


R1 and R2 are each independently alkyl, cycloalkyl, ether, aryl, or amino.


In some embodiments, the compounds of Formula I include the compounds of Formula Ia, Ib, Ic, Id, Ie, and If:




embedded image


In some embodiments, R1 is C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl. For example, R1 can include, but is not limited to, methyl, ethyl, propyl, isopropyl, or 2-ethylhexyl.


In some embodiments, R2 is C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl. For example, R2 can include, but is not limited to, methyl, ethyl, propyl, isopropyl, or 2-ethylhexyl.


In some exemplary embodiments, the compounds of Formula I are selected from the group consisting of:




embedded image


In accordance with one important embodiment, a cyano-containing fused tricyclic compound of Formula I, Ia, Iai, Ib, Ibi, Ic, Ici, Id, Idi, Ie, Iei, If, Ifi, or a combination thereof is included in a sunscreen, cosmetic or dermatological composition for coating a skin surface to protect the skin from UV damage when exposed to sunlight, or other UV radiation. In preferred embodiments, the sunscreen, cosmetic or dermatological composition includes a UVA filter and/or a UVB filter compound and/or a broad-band filter compound, particularly a dibenzoylmethane derivative UVA filter that is photostabilized by the cyano-containing fused tricyclic compound for protection of the skin from UVA and/or UVB wavelengths.


The cyano-containing fused tricyclic compound of Formula I can be included in the sunscreen, cosmetic or dermatological composition in an amount of about 0.01% by weight to about 20% by weight, preferably from about 0.1 to about 20% by weight, more preferably from about 0.1% to about 10% by weight, in each case based on the total weight of the composition.


The total amount of one or more water-soluble UV filter substances in the finished sunscreen, cosmetic, or dermatological preparations is advantageously chosen from the range 0.01% by weight to about 20% by weight, preferably from about 0.1 to about 20% by weight, more preferably from about 0.1% to about 10% by weight, in each case based on the total weight of the composition.


Preferred UV filter compounds are disclosed in published PCT application WO 2009/020676, hereby incorporated by reference for preferred water-soluble, organic and particulate UV filter compounds.


In a preferred embodiment, the sunscreen, cosmetic or dermatological compositions described herein contain one or more of the cyano-containing fused tricyclic compounds as well as one or more UV-absorbing, chromophore-containing compounds. The compositions preferably include both UV-A and UV-B photoactive compounds in a cosmetically acceptable carrier, optionally including additives, such as emollients, stabilizers, emulsifiers, and combinations thereof. These additives can be used in preparing a UV filter composition in an emulsion (oil-in-water or water-in-oil) from a composition that includes one or more photoactive compounds and a solvent or a solvent combination that includes one or more organic solvents and water. When made, preferably the emulsion is an oil-in-water emulsion, wherein the oil phase is primarily formed from a mixture of the UV filter compound(s), preferably including a dibenzoylmethane derivative, such as Avobenzone, and one or more organic solvents.


A typical photoactive composition includes one or more photoactive compounds, wherein the photoactive compound(s) act to absorb UV radiation and thereby protect the substrate (e.g., human skin, resins, films, and the like) from the harmful effects of UV radiation. The absorption process causes a photoactive compound to reach an excited state, wherein the excited state is characterized by the presence of excited electronic energy (e.g., singlet state energy or triplet state energy), as compared to the ground state of the photoactive compound. Once a photoactive compound reaches an excited state there exists a number of pathways by which the excited photoactive compound can dissipate its excess energy (e.g., singlet and/or triplet energy), however, many of those pathways adversely affect the ability of the photoactive compound to further absorb UV radiation. The cyano-containing fused tricyclic molecules described herein accept electronic singlet excited state energy from UV-absorbers, particularly Avobenzone, octyl methoxycinnamate (Octinoxate), and octyl salicylate (Octisalate). The cyano-containing fused tricyclic compounds also are very effective UVA absorbers in addition to providing electronic singlet state energy quenching of other UV-absorbing compounds in sunscreen, cosmetic and dermatological compositions. The cyano-containing fused tricyclic molecules described herein are especially effective when combined with one or more additional electronic singlet excited state quenching compounds such as oxybenzone and/or any of the alkoxy crylene disclosed in this assignee's U.S. Pat. Nos. 8,075,808; 7,754,191; 7,173,519; 7,597,825; 7,588,702; and 7,959,834; and U.S. Patent Application No. 2009/0246157, hereby incorporated by reference. Particularly surprising photostabilization is achieved in sunscreen compositions containing the cyano-containing fused tricyclic molecules described herein together with octyl methoxycinnamate and Avobenzone.


A photoactive compound is one that responds to light photoelectrically. In the compositions and methods of photostabilization disclosed herein, a photoactive compound is one that responds to UV radiation photoelectrically. For example, all photoactive compound-containing compositions that respond to UV radiation photoelectrically by photoactive compound photodegradation benefit highly by the inclusion of the cyano-containing fused tricyclicmolecules described herein. The cyano-containing fused tricyclic compounds described herein are useful photostabilizers and/or photoactive compounds when combined with any single or combination of photoactive compounds identified in Shaath, Nadim, Encyclopedia of UV filters, © 2007, hereby incorporated by reference. Photostability is a problem with all UV filters because they all reach an electronic singlet excited state upon exposure to UV radiation.


It is theorized that the following UV filters are photostabilized by the cyano-containing fused tricyclic molecules described herein, including all of the following, including combinations of any two or more, and include compounds selected from the following categories (with specific examples) including: p-aminobenzoic acid, its salts and its derivatives (ethyl, isobutyl, glyceryl esters; p-dimethylaminobenzoic acid); anthranilates (o-aminobenzoates; methyl, menthyl, phenyl, benzyl, phenylethyl, linalyl, terpinyl, and cyclohexenyl esters); salicylates (octyl, amyl, phenyl, benzyl, menthyl (homosalate), glyceryl, and dipropyleneglycol esters); cinnamic acid derivatives (menthyl and benzyl esters, alpha-phenyl cinnamonitrile; butyl cinnamoyl pyruvate); dihydroxycinnamic acid derivatives (umbelliferone, methylumbelliferone, methylaceto-umbelliferone); camphor derivatives (3 benzylidene, 4 methylbenzylidene, polyacrylamidomethyl benzylidene, benzalkonium methosulfate, benzylidene camphor sulfonic acid, and terephthalylidene dicamphor sulfonic acid); trihydroxycinnamic acid derivatives (esculetin, methylesculetin, daphnetin, and the glucosides, esculin and daphnin); hydrocarbons (diphenylbutadiene, stilbene); dibenzalacetone; benzalacetophenone; naphtholsulfonates (sodium salts of 2-naphthol-3,6-disulfonic and of 2-naphthol-6,8-disulfonic acids); dihydroxy-naphthoic acid and its salts; n- and p-hydroxydiphenyldisulfonates; coumarin derivatives (7-hydroxy, 7-methyl, 3-phenyl); diazoles (2-acetyl-3-bromoindazole, phenyl benzoxazole, methyl naphthoxazole, various aryl benzothiazoles); quinine salts (bisulfate, sulfate, chloride, oleate, and tannate); quinoline derivatives (8-hydroxyquinoline salts, 2-phenylquinoline); hydroxy- or methoxy-substituted benzophenones; uric acid derivatives; vilouric acid derivatives; tannic acid and its derivatives; hydroquinone; and benzophenones (oxybenzone, sulisobenzone, dioxybenzone, benzoresorcinol, octabenzone, 4-isopropyldibenzoylmethane, butylmethoxydibenzoylmethane, etocrylene, and 4-isopropyl-dibenzoylmethane).


The following UV filters should be particularly photostabilized by the cyano-containing fused tricyclic molecules described herein: 2-ethylhexyl p-methoxycinnamate, 4,4′-t-butyl methoxydibenzoylmethane, octyldimethyl p-aminobenzoate, digalloyltrioleate, ethyl 4-[bis(hydroxypropyl)]aminobenzoate, 2-ethylhexylsalicylate, glycerol p-aminobenzoate, 3,3,5-trimethylcyclohexylsalicylate, and combinations thereof.


Photoactive compositions disclosed herein can include a variety of photoactive compounds, preferably including one or more UV-A photoactive compounds and one or more UV-B photoactive compounds. Preferably, a sunscreen composition includes a photoactive compound selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof; anthranilate and derivatives thereof; dibenzoylmethane and derivatives thereof; salicylate and derivatives thereof; cinnamic acid and derivatives thereof; dihydroxycinnamic acid and derivatives thereof; camphor and salts and derivatives thereof; trihydroxycinnamic acid and derivatives thereof; dibenzalacetone naphtholsulfonate and salts and derivatives thereof; benzalacetophenone naphtholsulfonate and salts and derivatives thereof; dihydroxy-naphthoic acid and salts thereof; o-hydroxydiphenyldisulfonate and salts and derivatives thereof; p-hydroxydiphenyldisulfonate and salts and derivatives thereof; coumarin and derivatives thereof; diazole derivatives; quinine derivatives and salts thereof; quinoline derivatives; uric acid derivatives; vilouric acid derivatives; tannic acid and derivatives thereof; hydroquinone; diethylamino hydroxybenzoyl hexyl benzoate and salts and derivatives thereof; and combinations of the foregoing.


UV A radiation (about 320 nm to about 400 nm), is recognized as contributing to causing damage to skin, particularly to very lightly colored or sensitive skin. A sunscreen composition disclosed herein preferably includes a UV-A photoactive compound. Preferably, a sunscreen composition disclosed herein includes a dibenzoylmethane derivative UV-A photoactive compound. Preferred UV-A absorbing dibenzoylmethane derivatives include, 2-methyldibenzoylmethane; 4-methyldibenzoylmethane; 4-isopropyldibenzoylmethane; 4-tert-butyldibenzoylmethane; 2,4-dimethyldibenzoylmethane; 2,5-dimethyldibenzoylmethane; 4,4′-diisopropyldibenzoylmethane; 4,4′-dimethoxydibenzoylmethane; 4-tert-butyl-4′-methoxydibenzoylmethane; 2-methyl-5-isopropyl-4′-methoxydibenzoylmethane; 2-methyl-5-tert-butyl-4′-methoxydibenzoylmethane; 2,4-dimethyl-4′-methoxydibenzoylmethane; 2,6-dimethyl-4-tert-butyl-4′-methoxydibenzoylmethane, and combinations thereof.


For a product marketed in the United States, preferred cosmetically acceptable photoactive compounds and concentrations (reported as a percentage by weight of the total cosmetic sunscreen composition) include: aminobenzoic acid (also called para aminobenzoic acid and PABA; 15% or less), Avobenzone (also called butyl methoxy dibenzoylmethane; 3% or less), cinoxate (also called 2 ethoxyethyl p methoxycinnamate; 3% or less), dioxybenzone (also called benzophenone 8; 3% or less), homosalate ((also called 3,3,5-trimethylcyclohexyl salicylate, 15% or less), menthyl anthranilate (also called menthyl 2 aminobenzoate; 5% or less), octocrylene (also called 2 ethylhexyl 2 cyano 3,3 diphenylacrylate; 10% or less), octyl methoxycinnamate (7.5% or less), octyl salicylate (also called 2 ethylhexyl salicylate; 5% or less), oxybenzone (also called benzophenone 3; 6% or less), padimate 0 (also called octyl dimethyl PABA; 8% or less), phenylbenzimidazole sulfonic acid (water soluble; 4% or less), sulisobenzone (also called benzophenone 4; 10% or less), titanium dioxide (25% or less), trolamine salicylate (also called triethanolamine salicylate; 12% or less), and zinc oxide (25% or less).


Other preferred cosmetically acceptable photoactive compounds and preferred concentrations (percent by weight of the total cosmetic sunscreen composition) include diethanolamine methoxycinnamate (10% or less), ethyl-[bis(hydroxypropyl)]aminobenzoate (5% or less), glyceryl aminobenzoate (3% or less), 4 isopropyl dibenzoylmethane (5% or less), 4 methylbenzylidene camphor (6% or less), terephthalylidene dicamphor sulfonic acid (10% or less), and sulisobenzone (also called benzophenone 4, 10% or less).


For a product marketed in the European Union, preferred cosmetically acceptable photoactive compounds and preferred concentrations (reported as a percentage by weight of the total cosmetic sunscreen composition) include: PABA (5% or less), camphor benzalkonium methosulfate (6% or less), homosalate (10% or less), benzophenone 3 (10% or less), phenylbenzimidazole sulfonic acid (8% or less, expressed as acid), terephthalidene dicamphor sulfonic acid (10% or less, expressed as acid), butyl methoxydibenzoylmethane (5% or less), benzylidene camphor sulfonic acid (6% or less, expressed as acid), octocrylene (10% or less, expressed as acid), polyacrylamidomethyl benzylidene camphor (6% or less), ethylhexyl methoxycinnamate (10% or less), PEG 25 PABA (10% or less), isoamyl p methoxycinnamate (10% or less), ethylhexyl triazone (5% or less), drometrizole trielloxane (15% or less), diethylhexyl butamido triazone (10% or less), 4 methylbenzylidene camphor (4% or less), 3 benzylidene camphor (2% or less), ethylhexyl salicylate (5% or less), ethylhexyl dimethyl PABA (8% or less), benzophenone 4 (5%, expressed as acid), methylene bis benztriazolyl tetramethylbutylphenol (10% or less), disodium phenyl dibenzimidazole tetrasulfonate (10% or less, expressed as acid), bis ethylhexyloxyphenol methoxyphenol triazine (10% or less), methylene bisbenzotriazolyl tetramethylbutylphenol (10% or less, also called TINOSORB M or Bisoctrizole), and bisethylhexyloxyphenol methoxyphenyl triazine. (10% or less, also called TINOSORB S or Bemotrizinol).


All of the above described UV filters are commercially available. For example, suitable commercially available organic UV filters are identified by trade name and supplier in Table I below:











TABLE I





CTFA Name
Trade Name
Supplier







benzophenone-3
UVINUL M-40
BASF Chemical Co.


benzophenone-4
UVINUL MS-40
BASF Chemical Co.


benzophenone-8
SPECTRA-SORB UV-24
American Cyanamid


DEA-methoxycinnamate
BERNEL HYDRO
Bernel Chemical


diethylamino hydroxybenzoyl hexyl
UVINUL A-PLUS
BASF Chemical Co.


benzoate


diethylhexyl butamido triazone
UVISORB HEB
3V-Sigma


disodium phenyl dibenzylimidazole
NEO HELIOPAN AP
Symrise


ethyl dihydroxypropyl-PABA
AMERSCREEN P
Amerchol Corp.


glyceryl PABA
NIPA G.M.P.A.
Nipa Labs.


homosalate
KEMESTER HMS
Humko Chemical


menthyl anthranilate
SUNAROME UVA
Felton Worldwide


octocrylene
UVINUL N-539
BASF Chemical Co.


octyl dimethyl PABA
AMERSCOL
Amerchol Corp.


octyl methoxycinnamate
PARSOL MCX
Bernel Chemical


PABA
PABA
National Starch


2-phenylbenzimidazole-5-
EUSOLEX 6300
EM Industries


sulphonic acid


TEA salicylate
SUNAROME W
Felton Worldwide


2-(4-methylbenzildene)-camphor
EUSOLEX 6300
EM Industries


benzophenone-1
UVINUL 400
BASF Chemical Co.


benzophenone-2
UVINUL D-50
BASF Chemical Co.


benzophenone-6
UVINUL D-49
BASF Chemical Co.


benzophenone-12
UVINUL 408
BASF Chemical Co.


4-isopropyl dibenzoyl methane
EUSOLEX 8020
EM Industries


butyl methoxy dibenzoyl methane
PARSOL 1789
Givaudan Corp.


etocrylene
UVINUL N-35
BASF Chemical Co.


methylene bisbenzotriazolyl
TINOSORB M
Ciba Specialty


tetramethylbutylphenol

Chemicals


bisethylhexyloxyphenol
TINOSORB S
Ciba Specialty


methoxyphenyl triazine.

Chemicals









Commonly-assigned U.S. Pat. Nos. 6,485,713 and 6,537,529, the disclosures of which are hereby incorporated herein by reference, describe compositions and methods for increasing the photostability of photoactive compounds in a sunscreen composition, e.g., by the addition of polar solvents to the oil phase of a composition. By increasing the polarity of the oil phase of a sunscreen composition including the alkoxy crylenes described herein, e.g., methoxy crylene, the stability of the sunscreen composition is surprisingly increased in comparison to octocrylene. In the sunscreen compositions described herein, preferably, one or more of a highly polar solvent is present in the oil-phase of the composition. Preferably, a sufficient amount of a polar solvent is present in the sunscreen composition to raise the dielectric constant of the oil-phase of the composition to a dielectric constant of at least about 7, preferably at least about 8. With or without the highly polar solvent in the oil phase, the methoxy crylene molecules described herein yield unexpected photostability in comparison to octocrylene.


A photoactive compound can be considered stable when, for example, after 30 MED irradiation the photoactive compound has retained at least about 90% of its original absorbance at a wavelength, or over a range of wavelengths of interest (e.g., the wavelength at which a photoactive compound has a peak absorbance, such as 350-370 nm for Avobenzone). Likewise, a sunscreen composition can include a plurality of photoactive compounds and a sunscreen composition, as a whole, can be considered stable when, for example, after 30 MED irradiation the sunscreen composition has retained at least about 90% of its original absorbance at one or more wavelengths of interest (e.g., at or near the peak absorbance wavelength of the primary photoactive compound).


In accordance with one important embodiment, a cyano-containing fused tricyclic compound formula (I) is combined in a sunscreen, cosmetic or dermatological formulation with a water soluble UV filter compound and/or a broad-band filter compound and optionally, but preferably, together with a dibenzoylmethane derivative and/or a dialkyl naphthalate.


Advantageous water-soluble UV filter substances for the purposes of the present invention are sulfonated UV filters, in particular:

  • phenylene-1,4-bis(2-benzimidazyl)-3,3′-5,5′-tetrasulfonic acid, which has the following structure:




embedded image



and its salts, especially the corresponding sodium, potassium or triethanolammonium salts, in particular phenylene-1,4-bis(2-benzimidazyl)-1-3,3′-5,5′-tetrasulfonic acid bissodium salt




embedded image



with the INCI name disodium phenyl dibenzimidazole tetrasulfonate (CAS No.: 180898-37-7), which is obtainable for example under the proprietary name Neo Heliopan A P from Haarmann & Reimer.


Further advantageous sulfonated UV filters for the purposes of the present invention are the salts of 2-phenylbenzimidazole-5-sulfonic acid, such as its sodium, potassium or its triethanolammonium salts, and the sulfonic acid itself




embedded image


with the INCI name phenylbenzimidazole sulfonic acid (CAS No. 27503-81-7), which is obtainable for example under the proprietary name Eusolex 232 from Merck or under Neo Heliopan Hydro from Haarmann & Reimer.


Further advantageous water-soluble UV-B and/or broad-band filter substances for the purposes of the present invention are, for example, sulfonic acid derivatives of 3-benzylidenecamphor, such as, for example, 4-(2-oxo-3-bornylidenemethyl)benzene-sulfonic acid, 2-methyl-5-(2-oxo-3-bornylidenemethyl)sulfonic acid and the salts thereof.


The total amount of one or more water-soluble UV filter substances in the finished cosmetic or dermatological preparations is advantageously chosen from the range 0.01% by weight to 20% by weight, preferably from 0.1 to 10% by weight, in each case based on the total weight of the preparations.


In accordance with another important embodiment, a cyano-containing fused tricyclic of formula (I), Ia, Iai, Ib, Ibi, Ic, Ici, Id, Idi, Ie, Idi, If, and/or Ifi is combined in a sunscreen, cosmetic or dermatological formulation with a hydroxybenzophenone compound and/or a broad-band filter compound and optionally, but preferably, together with a dibenzoylmethane derivative and/or a dialkyl naphthalate.


With a cyano-containing fused tricyclic compound, it is possible to completely dispense with the use of other UV photostabilizers, in particular the use of ethylhexyl-2-cyano-3,3-diphenylacrylate(octocrylene) or 4-methylbenzylidenecamphor.


Hydroxybenzophenones are characterized by the following structural formula:




embedded image



where R1 and R2 independent of one another are hydrogen, C1C20-alkyl, C3-C10-cycloalkyl or C3-C10-cycloalkenyl, wherein the substituents R1 and R2 together with the nitrogen atom to which they are bound can form a 5- or 6-ring and R3 is a C1-C20 alkyl radical.


A particularly advantageous hydroxybenzophenone is the 2-(4′-diethylamino-2′-hydroxybenzoyl)benzoic acid hexyl ester (also: aminobenzophenone) which is characterized by the following structure:




embedded image



and is available from BASF under the Uvinul A Plus.


According to one embodiment of the invention, sunscreen, cosmetic or dermatological preparations contain 0.1 to 20% by weight, advantageously 0.1 to 15% by weight, very particularly preferred 0.1 to 10% by weight, of one or more hydroxybenzophenones.


Within the scope of the present invention, dialkyl naphthalates for which R1 and/or R2 represent branched alkyl groups with 6 to 10 carbon atoms are advantageous. Within the scope of the present invention diethylhexyl naphthalate is very particularly preferred which is available, e.g., under the trade name Hallbrite TQ™ from HallStar Innovaction Corp. or Corapan TQ™ from H&R.


According to one embodiment of the invention, sunscreen, cosmetic or dermatological preparations advantageously contain 0.001 to 30% by weight, preferably 0.01 to 20% by weight, very particularly preferred 0.5 to 15% by weight, of one or more dialkyl naphthalates.


The cosmetic or dermatological light-protection formulations described herein can be composed as usual and be used for sunscreen, cosmetic or dermatological light-protection, furthermore for the treatment, care and cleansing of the skin and/or hair and as a cosmetic product in decorative cosmetics.


In accordance with another important embodiment, cyano-containing fused tricyclic compound is combined in a sunscreen, cosmetic or dermatological formulation with a benzotriazole derivative compound and/or a broad-band filter compound and optionally, but preferably, together with a dibenzoylmethane derivative and/or a dialkyl naphthalate.


An advantageous benzotriazole derivative is 2,2′-methylenebis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol), which has the chemical structural formula




embedded image


(INCI: bisoctyltriazole). It is obtainable under the proprietary name Tinosorb® from CIBA-Chemikalien GmbH and is distinguished by good UV absorption properties. The disadvantage of this substance is the characteristic of forming imperceptibly thin films on the skin which have unpleasant tactile properties.


In some embodiments, the UV filter compound is a benzotriazole compound having the structure




embedded image


The cosmetic or dermatological compositions can include an additional photoactive compound. In some embodiments, the additional photoactive compound is selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof; anthranilate and derivatives thereof; salicylate and derivatives thereof; cinnamic acid and derivatives thereof; dihydroxycinnamic acid and derivatives thereof; camphor and salts and derivatives thereof; trihydroxycinnamic acid and derivatives thereof; dibenzalacetone naptholsulfonate and salts and derivatives thereof; benzalacetophenone naphtholsulfonate and salts and derivatives thereof; dihydroxy-naphthoic acid and salts thereof; o-hydroxydiphenyldisulfonate and salts and derivatives thereof; p-hydroxdydiphenyldisulfonate and salts and derivatives thereof; coumarin and derivatives thereof; diazole derivatives; quinine derivatives and salts thereof; quinoline derivatives; hydroxyl-substituted benzophenone derivatives; naphthalate derivatives; methoxy-substituted benzophenone derivatives; uric acid derivatives; vilouric acid derivatives; tannic acid and derivatives thereof; hydroquinone; benzophenone derivatives; 1,3,5-triazine derivatives; phenyldibenzimidazole tetrasulfonate and salts and derivatives thereof; terephthalyidene dicamphor sulfonic acid and salts and derivatives thereof; methylene bis-benzotriazolyl tetramethylbutylphenol and salts and derivatives thereof; bis-ethylhexyloxyphenol methoxyphenyl triazine and salts, diethylamino hydroxyl benzoyl and derivatives thereof; and combinations of the foregoing.


The cosmetic or dermatological composition may include a cinnamate ester, such as 2-ethylhexyl p-methoxycinnamate, isoamyl p-methoxycinnamate, and a combination thereof. For example, the cinnamate ester can be 2-ethylhexyl p-methoxycinnamate. In some of these embodiments, the cinnamate ester is present in the composition in an amount in a range of about 0.1 wt. % to about 15 wt. %, based on the total weight of the composition.


The cosmetic or dermatological composition also may include about 0.1 to about 10 wt. % of a triplet quencher selected from the group consisting of octocrylene, methyl benzylidene camphor, diethylhexyl 2,6-naphthalate, and combinations thereof.


The cosmetic or dermatological composition also may include about 0.1 to about 10 wt. % of a another singlet quencher such as an alkoxy crylene (e.g., ethylhexyl methoxy crylene), as described in U.S. Pat. Nos. 8,075,808; 7,754,191; 7,173,519; 7,597,825; 7,588,702; and 7,959,834; and U.S. Patent Application No. 2009/0246157, a copolymer of adipic acid and neopentyl glycol that is terminated with cyanodiphenyl propenoic acid, and mixtures thereof.


In some embodiments, the another singlet quencher is an alkoxy crylene having formula (IV):




embedded image



wherein at least one of R1 and R2 is a straight or branched chain C1-C30 alkoxy radical, and any non-alkoxy R1 or R2 is hydrogen; and R3 is a straight or branched chain C1-C30 alkyl radical.


The cosmetic or dermatological compositions may have conventional additives and solvents that are conventionally used for the treatment, care and cleansing of skin and/or the hair and as a make-up product in decorative cosmetics.


The cosmetic and dermatological compositions described herein can comprise cosmetic auxiliaries such as those conventionally used in such preparations, e.g. preservatives, bactericides, perfumes, antifoams, dyes, pigments which have a coloring effect, thickeners, moisturizers and/or humectants, fats, oils, waxes or other conventional constituents of a cosmetic or dermatological Formulation, such as alcohols, polyols, polymers, foam stabilizers, electrolytes, organic solvents or silicone derivatives.


An additional content of antioxidants is generally preferred. According to the invention, favorable antioxidants which can be used are any antioxidants suitable or conventional for cosmetic and/or dermatological applications.


The antioxidants are particularly advantageously chosen from the group consisting of amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and derivatives thereof, imidazoles (e.g. urocanic acid) and derivatives thereof, peptides such as D,L-carnosine, D-carnosine, L-carnosine and derivatives thereof (e.g. anserine), carotenoids, carotenes (e.g. α-carotene, β-carotene, lycopene) and derivatives thereof, chlorogenic acid and derivatives thereof, lipoic acid and derivatives thereof (e.g. dihydrolipoic acid), aurothioglucose, propylthiouracil and other thiols (e.g. thioredoxin, glutathione, cysteine, cystine, cystamine and the glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, .gamma.-linoleyl, cholesteryl and glyceryl esters thereof) and salts thereof, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and derivatives thereof (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) and sulfoximine compounds (e.g. buthionine sulfoximines, homocysteine sulfoximine, buthionine sulfones, penta-, hexa-, heptathionine sulfoximine) in very low tolerated doses (e.g. pmol to μmol/kg), and also (metal) chelating agents (e.g. α-hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), α-hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and derivatives thereof, unsaturated fatty acids and derivatives thereof (e.g. gamma.-linolenic acid, linoleic acid, oleic acid), folic acid and derivatives thereof, ubiquinone and ubiquinol and derivatives thereof, vitamin C and derivatives (e.g. ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate), tocopherols and derivatives (e.g. vitamin E acetate), vitamin A and derivatives (vitamin A palmitate) and coniferyl benzoate of gum benzoin, rutinic acid and derivatives thereof, α-glycosylrutin, ferulic acid, furfurylideneglucitol, carnosine, butylhydroxytoluene, butylhydroxyanisole, nordihydroguaiaretic acid, trihydroxybutyro-phenone, uric acid and derivatives thereof, mannose and derivatives thereof, zinc and derivatives thereof (e.g. ZnO, ZnSO4), selenium and derivatives thereof (e.g. selenomethionine), stilbenes and derivatives thereof (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids) of said active ingredients which are suitable according to the invention.


Thus, in some embodiments, the cosmetic or dermatological composition can include one or more oxidation-sensitive or UV-sensitive ingredients selected from the group consisting of retinoid compounds, carotenoid compounds, lipoic acid and derivatives thereof, vitamin E and derivatives thereof, vitamin F and derivatives thereof, and dioic acid in an amount from about 0.0001 wt % to about 10 wt %, based on the total weight of the composition. In particular, the cyano-containing fused tricyclic compounds described herein are very effective at photostabilizing retinoids, coenzyme Q, cholecalciferol, and resveratrol, disclosed in this assignee's U.S. Pat. No. 8,070,989, and U.S. Patent Application Publication Nos. 2012/0114572, 2012/0107255, 2012/0065232, 2011/0251242, and 2011/0142771, hereby incorporated by reference. The cyano-containing fused tricyclic compounds described herein also are effective at photostabilizing protoporphyrin compounds, such as protoporphyrin IX, as previously described herein.


Advantageous hydrophilic active ingredients which (individually or in any combinations with one another) are stabilized by their use together with one or more cyano-containing fused tricyclic compounds include those listed below:


biotin; carnitine and derivatives; creatine and derivatives; folic acid; pyridoxine; niacinamide; polyphenols (in particular flavonoids, very particularly alpha-glucosylrutin); ascorbic acid and derivatives; Hamamelis; Aloe Vera; panthenol; and amino acids.


Particularly advantageous hydrophilic active ingredients for the purposes of the present invention are also water-soluble antioxidants, such as, for example, vitamins.


The amount of hydrophilic active ingredients (one or more compounds) in the preparations is preferably 0.0001 to 10% by weight, particularly preferably 0.001 to 5% by weight, based on the total weight of the preparation.


Particularly advantageous preparations are also obtained when antioxidants are used as additives or active ingredients. According to the invention, the preparations advantageously comprise one or more antioxidants. Favorable, but nevertheless optional antioxidants which may be used are all antioxidants customary or suitable for cosmetic and/or dermatological applications.


The amount of antioxidants (one or more compounds) in the preparations is preferably 0.001 to 30% by weight, particularly preferably 0.05 to 20% by weight, in particular 0.1 to 10% by weight, based on the total weight of the preparation.


If vitamin E and/or derivatives thereof are the antioxidant or antioxidants, it is advantageous to choose their respective concentrations from the range from 0.001 to 10% by weight, based on the total weight of the Formulation.


If vitamin A or vitamin A derivatives, or carotenes or derivatives thereof are the antioxidant or antioxidants, it is advantageous to choose their respective concentrations from the range from 0.001 to 10% by weight, based on the total weight of the Formulation.


It is particularly advantageous when the cosmetic preparations according to the present invention comprise further cosmetic or dermatological active ingredients, preferred active ingredients being antioxidants which can protect the skin against additional oxidative stress.


Advantageous further active ingredients are natural active ingredients and/or derivatives thereof, such as e.g. ubiquinones, retinoids, carotenoids, creatine, taurine and/or β-alanine


Formulations according to the invention, which comprise e.g. known antiwrinkle active ingredients, such as flavone glycosides (in particular α-glycosylrutin), coenzyme Q10, vitamin E and/or derivatives and the like, are particularly advantageously suitable for the prophylaxis and treatment of cosmetic or dermatological changes in skin, as arise, for example, during skin aging (such as, for example, dryness, roughness and formation of dryness wrinkles, itching, reduced refatting (e.g. after washing), visible vascular dilations (teleangiectases, couperosis), flaccidity and formation of wrinkles and lines, local hyperpigmentation, hypopigmentation and abnormal pigmentation (e.g. age spots), increased susceptibility to mechanical stress (e.g. cracking) and the like). In addition, they are advantageously suitable against the appearance of dry or rough skin.


The cosmetic or dermatological compositions can include triazines, benzotriazoles, latex particles, organic pigments, inorganic pigments, and mixtures thereof. In some embodiments, the


Preferred particulate UV filter substances for the purposes of the present invention are inorganic pigments, especially metal oxides and/or other metal compounds which are slightly soluble or insoluble in water, especially oxides of titanium (TiO2), zinc (ZnO), iron (e.g. Fe2O3), zirconium (ZrO2), silicon (SiO2), manganese (e.g. MnO), aluminum (Al2O3), cerium (e.g. Ce2O3), mixed oxides of the corresponding metals, and mixtures of such oxides, and the sulfate of barium (BaSO4).


Zinc oxides for the purposes of the present invention may also be used in the form of commercially available oily or aqueous predispersions Zinc oxide particles and predispersions of zinc oxide particles which are suitable according to the invention are distinguished by a primary particle size of <300 nm and can be obtained under the following proprietary names from the stated companies:











TABLE I





Proprietary name
Coating
Manufacturer







Z-Cote HP1
2% Dimethicone
BASF


Z-Cote
/
BASF


ZnO NDM
5% Dimethicone
H&R


ZnO Neutral
/
H&R


MZ-300
/
Tayca Corporation


MZ-500
/
Tayca Corporation


MZ-700
/
Tayca Corporation


MZ-303S
3% Methicone
Tayca Corporation


MZ-505S
5% Methicone
Tayca Corporation


MZ-707S
7% Methicone
Tayca Corporation


MZ-303M
3% Dimethicone
Tayca Corporation


MZ-505M
5% Dimethicone
Tayca Corporation


MZ-707M
7% Dimethicone
Tayca Corporation


Z-Sperse Ultra
ZnO (>=56%)/Ethylhexyl
Collaborative



Hydroxystearate Benzoate/
Laboratories



Dimethicone/Cyclomethicone


Samt-UFZO-
ZnO (60%)/Cyclomethicone/
Miyoshi Kasei


450/D5 (60%)
Dimethicone









Particularly preferred zinc oxides for the purposes of the invention are Z-Cote HP1 and Z-Cote from BASF and zinc oxide NDM from Haarmann & Reimer.


Titanium dioxide pigments of the invention may be in the form of both the rutile and anatase crystal modification and may for the purposes of the present invention advantageously be surface-treated (“coated”), the intention being for example to form or retain a hydrophilic, amphiphilic or hydrophobic character. This surface treatment may consist of providing the pigments by processes known per se with a thin hydrophilic and/or hydrophobic inorganic and/or organic layer. The various surface coatings may for the purposes of the present invention also contain water.


Inorganic surface coatings for the purposes of the present invention may consist of aluminum oxide (Al2O3), aluminum hydroxide Al(OH)3 or aluminum oxide hydrate (also: alumina, CAS No.: 1333-84-2), sodium hexametaphosphate (NaPO3)6, sodium metaphosphate (NaPO3)n, silicon dioxide (SiO2) (also: silica, CAS No.: 7631-86-9), or iron oxide (Fe2O3). These inorganic surface coatings may occur alone, in combination and/or in combination with organic coating materials.


Organic surface coatings for the purposes of the present invention may consist of vegetable or animal aluminum stearate, vegetable or animal stearic acid, lauric acid, dimethylpolysiloxane (also: dimethicones), methylpolysiloxane (methicones), simethicones (a mixture of dimethylpolysiloxane with an average chain length of from 200 to 350 dimethylsiloxane units and silica gel) or alginic acid. These organic surface coatings may occur alone, in combination and/or in combination with inorganic coating materials.


Coated and uncoated titanium dioxides of the invention may be used in the form of commercially available oily or aqueous predispersions. It may be advantageous to add dispersion aids and/or solubilization mediators.


Suitable titanium dioxide particles and predispersions of titanium dioxide particles for the purposes of the present invention are obtainable under the following proprietary names from the stated companies:

















Additional





ingredients of the


Proprietary name
Coating
predispersion
Manufacturer







MT-150W
None

Tayca Corporation


MT-150A
None

Tayca Corporation


MT-500B
None

Tayca Corporation


MT-600B
None

Tayca Corporation


MT-100TV
Aluminum hydroxide

Tayca Corporation



Stearic acid


MT-100Z
Aluminum

Tayca Corporation



hydroxide



Stearic acid


MT-100T
Aluminum

Tayca Corporation



hydroxide



Stearic acid


MT-500T
Aluminum

Tayca Corporation



hydroxide



Stearic acid


MT-100S
Aluminum

Tayca Corporation



hydroxide



Lauric acid


MT-100F
Stearic acid Iron

Tayca Corporation



oxide


MT-100SA
Alumina Silica

Tayca Corporation


MT-500SA
Alumina Silica

Tayca Corporation


MT-600SA
Alumina Silica

Tayca Corporation


MT-100SAS
Alumina Silica

Tayca Corporation



Silicone


MT-500SAS
Alumina Silica

Tayca Corporation



Silicone


MT-500H
Alumina

Tayca Corporation


MT-100AQ
Silica

Tayca Corporation



Aluminum



hydroxide



Alginic acid


Eusolex T
Water

Merck KgaA



Simethicone


Eusolex T-2000
Alumina

Merck KgaA



Simethicone


Eusolex T-Olio F
Silica
C12-15
Merck KgaA



Dimethylsilate
Alkylbenzoate



Water
Calcium Poly-




hydroxystearate




Silica




Dimethylsilate


Eusolex T-Olio P
Water
Octyl Palmitate
Merck KgaA



Simethicone
PEG-7




Hydrogenated




Castor Oil




Sorbitan Oleate




Hydrogenated




Castor Oil




Beeswax Stearic




acid


Eusolex T-Aqua
Water Alumina
Phenoxyethanol
Merck KgaA



Sodium
Sodium



metaphosphate
Methylparabens




Sodium




metaphosphate


Eusolex T-45D
Alumina
Isononyl
Merck KgaA



Simethicone
Isononanuate




Polyglyceryl




Ricinoleate


Kronos 1171
None

Kronos


(Titanium dioxide


171)


Titanium dioxide P25
None

Degussa


Titanium dioxide
Octyltri-

Degussa


T805
methylsilane



(Uvinul TiO2)


UV-Titan X610
Alumina

Kemira



Dimethicone


UV-Titan X170
Alumina

Kemira



Dimethicone


UV-Titan X161
Alumina Silica

Kemira



Stearic acid


UV-Titan M210
Alumina

Kemira


UV-Titan M212
Alumina
Glycerol {grave over ( )}
Kemira


UV-Titan M262
Alumina

Kemira



Silicone


UV-Titan M160
Alumina Silica

Kemira



Stearic acid


Tioveil AQ 10PG
Alumina Silica
Water Propylene
Solaveil Uniquema




glycol


Mirasun TiW 60
Alumina Silica
Water
Rhone-Poulenc









Preferred titanium dioxides are distinguished by a primary particle size between 10 nm to 150 nm


Titanium dioxides particularly preferred for the purposes of the present invention are MT-100 Z and MT-100 TV from Tayca Corporation, Eusolex T-2000 from Merck and titanium dioxide T 805 from Degussa.


Further advantageous pigments are latex particles. Latex particles which are advantageous according to the invention are described in the following publications: U.S. Pat. No. 5,663,213 and EP 0 761 201. Particularly advantageous latex particles are those formed from water and styrene/acrylate copolymers and available for example under the proprietary name “Alliance SunSphere” from Rohm & Haas.


An advantageous organic pigment for the purposes of the present invention is 2,2′-methylenebis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl-)phenol) (INCI: bis-octyltriazol), which is obtainable under the proprietary name Tinosorb® M from CIBA-Chemikalien GmbH.


EXAMPLES

Comparison of abilities of cyano-containing fused tricyclic compounds to photostabilize Avobenzone and the combination of oxyymethoxy cinnamate (OMC) and Avobenzone, in comparison to the ethylhexyl methoxycrylene of U.S. Pat. Nos. 8,075,808; 7,754,191; 7,173,519; 7,597,825; 7,588,702; and 7,959,834; and U.S. Patent Application No. 2009/0246157.


Y-1-9=Ethylhexyl cyano xanthenylidene acetate


Y-1-15=Ethylhexyl cyano thioxanthenylidene acetate


Y-1-22=Ethylhexyl dimethyl 2,2′-anthracene-9,10-diylidenebis(cyanoacetate)


APB072707F=Isopropyl cyano fluorenylidene acetate


Experiment 1 compares the cyano-containing fused tricyclic compounds at 3% (w/w) to photostabilize 3% Avobenzone, except for A6, which brings Y-1-22 up to the same molar concentration as the others when they're at 3%. The results as shown in Table I are graphically in FIG. 1.









TABLE I







Experiment 1 (JZ5-124A), 20 uls solution on quartz














Sample ID
A1
A2
A3
A4
A5
A6
A7

















Y-1-9

0.30







Y-1-15


0.30


Y-1-22



0.30

0.45


SolaStay S1




0.30


ABP072707F






0.30


Avobenzone
0.30
0.30
0.30
0.30
0.30
0.30
0.30


PA 18
0.20
0.20
0.20
0.20
0.20
0.20
0.20


C12-15 alkyl benzoate
2.00
1.70
1.70
1.70
1.70
1.55
1.70


Ethyl acetate
7.50
7.50
7.50
7.50
7.50
7.50
7.50


Total
10.00
10.00
10.00
10.00
10.00
10.00
10.00


% UVB remaining,
71.1
99.0
99.8
97.3
96.7
99.0
92.9


quartz, 10med


% UVA remaining,
26.2
95.9
94.7
91.6
97.3
96.7
94.6


quartz, 10med





* SolaStay S1 - ethylhexyl methoxycrylene






Experiment 2 compares the compounds at 3% to photostabilize Avobenzone at 3% and OMC at 7.5%. The results are shown in Table II and graphically in FIG. 2.









TABLE II







Experiment 2, 20ul on quartz, 10MED













Y-1-9
Y-1-15
Y-1-22
SolaStay S1
ABP072707F
















% UVB







0.0
84.7
84.7
84.7
84.7
84.7


1.0
91.8
90.0
87.8
87.8
93.3


2.0
91.1
93.8
92.1
90.1
93.7


4.0
95.3
93.9
94.7
91.5
94.2


% UVA


0.0
76.4
76.4
76.4
76.4
76.4


1.0
88.6
85.5
82.1
81.3
89.6


2.0
88.6
91.0
87.8
84.2
91.8


4.0
94.5
90.8
91.0
87.3
92.8








Claims
  • 1. A photostabilized photoactive composition comprising a mixture of a photoactive compound that develops a singlet excited state, or fluoresces when subjected to UV radiation and an effective amount of an excited state quencher comprising a cyano-containing fused tricyclic compound of formula (I):
  • 2. The photostabilized photoactive composition of claim 1, wherein the cyano-containing fused tricyclic compound of Formula I is selected from the group consisting of:
  • 3. The photostabilized photoactive composition of 2, wherein R1 and R2 are each independently C1-C30 alkyl.
  • 4. The photostabilized photoactive composition of claim 3, wherein R1 and R2 are each independently C1-C20 alkyl.
  • 5. The photostabilized photoactive composition of claim 4, wherein R1 and R2 are each independently C1-C10 alkyl.
  • 6. The photostabilized photoactive composition of claim 5, wherein R1 and R2 are each independently methyl, ethyl, propyl, isopropyl, or 2-ethylhexyl.
  • 7. The photostabilized photoactive composition of claim 6, wherein the compound of Formula I is selected from the group consisting of:
  • 8. The photostabilized photoactive composition of claim 1, wherein the compound of formula (I) is present in an amount in the weight range of 0.1% to 20%, based on the total weight of the composition.
  • 9. The photostabilized photoactive composition of claim 8, wherein the compound of formula (I) is present in an amount in the weight range of 1% to 10%, based on the total weight of the composition.
  • 10. The photostabilized photoactive composition of claim 1, wherein the photoactive compound is selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof; anthranilate and derivatives thereof; dibenzoylmethane and derivatives thereof; salicylate and derivatives thereof; cinnamic acid and derivatives thereof; dihydroxycinnamic acid and derivatives thereof; camphor and salts and derivatives thereof; trihydroxycinnamic acid and derivatives thereof; dibenzalacetone naptholsulfonate and salts and derivatives thereof; benzalacetophenone naphtholsulfonate and salts and derivatives thereof; dihydroxy-naphthoic acid and salts thereof; o-hydroxydiphenyldisulfonate and salts and derivatives thereof; p-hydroxdydiphenyldisulfonate and salts and derivatives thereof; coumarin and derivatives thereof; diazole derivatives; quinine derivatives and salts thereof; quinoline derivatives; hydroxyl-substituted benzophenone derivatives; naphthalate derivatives; methoxy-substituted benzophenone derivatives; uric acid derivatives; vilouric acid derivatives; tannic acid and derivatives thereof; hydroquinone; benzophenone derivatives; 1,3,5-triazine derivatives; disodium phenyl dibenzimidazole and salts thereof; terephthalyidene dicamphor sulfonic acid and salts and derivatives thereof; methylene bis-benzotriazolyl tetramethylbutylphenol and salts and derivatives thereof; bis-ethylhexyloxyphenol methoxyphenyl triazine and salts, diethylamino hydroxyl benzoyl and derivatives thereof; phenylbenzimidazole sulfonic acid and salts thereof; terephthalylidene dicamphor sulfonic acid and salts thereof; and combinations of the foregoing.
  • 11. The photostabilized photoactive composition of claim 1, wherein the photoactive compound comprises a dibenzoylmethane derivative.
  • 12. The photostabilized photoactive composition of claim 10, further including a cinnamate ester.
  • 13. The photostabilized photoactive composition of claim 12, wherein the cinnamate ester is an ester of an alkoxycinnamate.
  • 14. The photostabilized photoactive composition of claim 13, wherein the alkoxycinnamate ester is a methoxycinnamate ester.
  • 15. The photostabilized photoactive composition of claim 12, wherein the cinnamate ester is selected from the group consisting of 2-ethylhexyl p-methoxycinnamate, isoamyl p-methoxycinnamate, and a combination thereof.
  • 16. The photostabilized photoactive composition of claim 13 wherein the cinnamate ester is 2-ethylhexyl p-methoxycinnamate.
  • 17. The photostabilized photoactive composition of claim 11, wherein the dibenzoylmethane derivative comprises butylmethoxy dibenzoylmethane.
  • 18. The photostabilized photoactive composition of claim 1, further including a naphthalene dicarboxylic acid ester in an amount of 0.1 to 10 wt %.
  • 19. The photostabilized photoactive composition of claim 18, wherein the naphthalene dicarboxylic acid ester comprises a diethylhexyl 2,6-naphthalene dicarboxylic acid ester.
  • 20. The photostabilized photoactive composition of claim 1, further including a salicylate or a derivative thereof in an amount of 0.1 to 10 wt %.
  • 21. The photostabilized photoactive composition of claim 15, further including a salicylate or a derivative thereof in an amount of 0.1 to 10 wt %.
  • 22. The photostabilized photoactive composition of claim 1, further including a benzophenone or a derivative thereof in an amount of 0.1 to 10 wt. %.
  • 23. The photostabilized photoactive composition of claim 22, wherein the benzophenone comprises benzophenone-3 in an amount of 0.1 to 10 wt. %.
  • 24. The photostabilized photoactive composition of claim 1, wherein the photoactive compound comprises a 1,3,5-triazine derivative.
  • 25. The photostabilized photoactive composition of claim 1, wherein the photoactive compound comprises 2-(methylbenzilidene)-camphor.
  • 26. The photostabilized photoactive composition of claim 1, wherein the photoactive compound comprises a dibenzoylmethane derivative selected from the group consisting of 2-methyldibenzoylmethane; 4-methyldibenzoylmethane; 4-isopropyldibenzoylmethane; 4-tert-butyldibenzoylmethane; 2,4-dimethydibenzoylmethane; 2-5-dimethydibenzoylmethane; 4,4′-diispropyldibenzoylmethane; 4,4′-dimethoxydibenzoylmethane; 4-tert-butyl-4′-methoxdibenzoylmethane; 2-methyl-5-isopropy-4′-methoxydibenzoylmethane; 2-methyl-5-tert-butyl-4′-methoxydibenzoylmethane; 2,4-dimethyl-4′-methoxydibenzoymethane; 2,6-dimethyl-4-tert-butyl-4′-methoxydibenzolmethane, and combinations thereof.
  • 27. The photostabilized photoactive composition of claim 1 further including 0.1 to 10 wt. % of a triplet quencher selected from the group consisting of octocrylene, methyl benzylidene camphor, diethylhexyl 2,6-naphthalate, diethylhexyl syringylidene malonate, and combinations thereof.
  • 28. The photostabilized photoactive composition of claim 1 further comprising 0.1 to 10 wt. % benzophenone-3.
  • 29. The photostabilized photoactive composition of claim 1 further comprising 0.1 to 10 wt. % octyl salicylate.
  • 30. The photostabilized photoactive composition of claim 1, wherein the composition includes a compound selected from the group consisting of methylene bis-benzotriazolyl tetranl ethylbutylphenol, salts and derivatives thereof; bis-ethylhexyloxyphenol methoxyphenyl triazine, and salts and derivatives thereof.
  • 31. The photostabilized photoactive composition of claim 1, wherein the composition includes a hydroxyl-substituted benzophenone derivative or a methoxy-substituted benzophenone derivative, or a combination thereof.
  • 32. The photostabilized photoactive composition of claim 1, further comprising a diester or polyester of naphthalene dicarboxylic acid selected from the group consisting of compounds of formula (II) and (III), and combinations thereof:
  • 33. The photostabilized photoactive composition of claim 32, comprising a diester of formula (III) wherein R1 and R2 are 2-ethylhexyl.
  • 34. The photostabilized photoactive composition of claim 1 further including about 0.1 wt. % to about 10 wt. % of another singlet quencher.
  • 35. The photostabilized photoactive composition of claim 34, wherein the another singlet quencher is an alkoxy crylene having formula (IV):
  • 36. The photostabilized photoactive composition of claim 1, wherein said mixture includes a cosmetically acceptable carrier.
  • 37. The photostabilized photoactive composition of claim 1, wherein said mixture includes an oil phase having a dielectric constant of at least about 8.
  • 38. A method of increasing the UV absorbing life of a composition containing (a) a dibenzoylmethane derivative and/or (b) a cinnamate ester comprising adding a compound of formula (I) in an amount effective to prevent the reaction of (a) with (b); or to photostabilize (a) and/or (b)
  • 39. The method of claim 38, wherein the compound of formula (I) is selected from the group consisting of:
  • 40. The method of claim 39, wherein R1 and R2 are each independently C1-C30 alkyl.
  • 41. The method of claim 40, wherein R1 and R2 are each independently C1-C20 alkyl.
  • 42. The method of claim 41, wherein R1 and R2 are each independently C1-C10 alkyl.
  • 43. The method of claim 42, wherein R1 and R2 are each independently methyl, ethyl, propyl, isopropyl, or 2-ethylhexyl.
  • 44. The method of claim 43, wherein the compound of Formula I is selected from the group consisting of:
  • 45. The method of claim 38, wherein the compound of formula (I) is present in an amount in the weight range of 0.1% to 20%, based on the total weight of the composition.
  • 46. The method of claim 45, wherein the compound of formula (I) is present in an amount in the weight range of 3% to 10%, based on the total weight of the composition.
  • 47. The method of claim 38, further comprising a photoactive compound selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof; anthranilate and derivatives thereof; dibenzoylmethane and derivatives thereof; salicylate and derivatives thereof; cinnamic acid and derivatives thereof; dihydroxycinnamic acid and derivatives thereof; camphor and salts and derivatives thereof; trihydroxycinnamic acid and derivatives thereof; dibenzalacetone naptholsulfonate and salts and derivatives thereof; benzalacetophenone naphtholsulfonate and salts and derivatives thereof; dihydroxy-naphthoic acid and salts thereof; o-hydroxydiphenyldisulfonate and salts and derivatives thereof; p-hydroxdydiphenyldisulfonate and salts and derivatives thereof; coumarin and derivatives thereof; diazole derivatives; quinine derivatives and salts thereof; quinoline derivatives; hydroxyl-substituted benzophenone derivatives; naphthalate derivatives; methoxy-substituted benzophenone derivatives; uric acid derivatives; vilouric acid derivatives; tannic acid and derivatives thereof; hydroquinone; benzophenone derivatives; 1,3,5-triazine derivatives; disodium phenyl dibenzimidazole and salts thereof; terephthalyidene dicamphor sulfonic acid and salts and derivatives thereof; methylene bis-benzotriazolyl tetramethylbutylphenol and salts and derivatives thereof; bis-ethylhexyloxyphenol methoxyphenyl triazine and salts, diethylamino hydroxyl benzoyl and derivatives thereof; phenylbenzimidazole sulfonic acid and salts thereof; terephthalylidene dicamphor sulfonic acid and salts thereof; and combinations of the foregoing.
  • 48. The method of claim 38, wherein the photoactive compound comprises a dibenzoylmethane derivative.
  • 49. The method of claim 48, wherein the photoactive compound comprises a cinnamate ester.
  • 50. The method of claim 38, wherein the composition includes a hydroxyl-substituted benzophenone derivative or a methoxy-substituted benzophenone derivative, or a combination thereof.
  • 51. The method of claim 38, wherein the composition includes about 0.1 wt. % to about 10 wt. % of another singlet quencher.
  • 52. The method of claim 51, wherein the another singlet quencher is an alkoxy crylene having formula (IV):
  • 53. A composition comprising a mixture of a photoactive compound that reaches an excited state when exposed to UV radiation from UV-induced photodegradation and an effective amount of an excited state quencher comprising a cyano-containing fused tricyclic compound of formula (I):
  • 54. The photostabilized photoactive composition of claim 53, wherein the protoporphyrin comprises protoporphyrin IX.
  • 55. A method of protecting a photoactive compound that reaches an excited state when exposed to UV radiation from UV-induced photodegradation in a composition containing said photoactive compound, comprising: combining with said photoactive compound a cyano-containing fused tricyclic compound of formula (I):
  • 56. The method of claim 55, wherein the protoporphyrin comprises protoporphyrin IX.
US Referenced Citations (200)
Number Name Date Kind
3218166 Reitter Nov 1965 A
3408187 Joseph Mammino Oct 1968 A
3408188 Joseph Mammino Oct 1968 A
3408190 Joseph Mammino Oct 1968 A
3615412 Hessel Oct 1971 A
3674473 Blanchette Jul 1972 A
3752668 Baltazzi Aug 1973 A
3791824 Bauer et al. Feb 1974 A
3841871 Blanchette Oct 1974 A
3864126 Nishide et al. Feb 1975 A
3933505 Shiba et al. Jan 1976 A
3976485 Groner Aug 1976 A
3984378 Kubota et al. Oct 1976 A
4012251 Turner Mar 1977 A
4018602 Chu Apr 1977 A
4032226 Groner Jun 1977 A
4040735 Winkelmann et al. Aug 1977 A
4069046 Hoegl et al. Jan 1978 A
4106934 Turnblom Aug 1978 A
4256819 Webster et al. Mar 1981 A
4350748 Lind Sep 1982 A
4427753 Fujimura et al. Jan 1984 A
4474865 Ong et al. Oct 1984 A
4515881 Sawada et al. May 1985 A
4546059 Ong et al. Oct 1985 A
4552822 Kazmaier et al. Nov 1985 A
4559287 McAneney et al. Dec 1985 A
4562132 Ong et al. Dec 1985 A
4567124 Ohta et al. Jan 1986 A
4576886 Hirose et al. Mar 1986 A
4579800 Hirose et al. Apr 1986 A
4599287 Fujimaki et al. Jul 1986 A
4606861 Ong et al. Aug 1986 A
4609602 Ong et al. Sep 1986 A
4810608 Ueda Mar 1989 A
4820601 Ong et al. Apr 1989 A
4822704 Akasaki et al. Apr 1989 A
4833054 Akasaki et al. May 1989 A
4835081 Ong et al. May 1989 A
4842971 Sugaiwa et al. Jun 1989 A
4845263 Ong et al. Jul 1989 A
4868080 Umehara et al. Sep 1989 A
4895781 Takai Jan 1990 A
4921769 Yuh et al. May 1990 A
4925757 Takenouchi et al. May 1990 A
4942106 Takai et al. Jul 1990 A
4943501 Kinoshita et al. Jul 1990 A
4948911 Bugner et al. Aug 1990 A
4990634 Mukai et al. Feb 1991 A
4997737 Bugner et al. Mar 1991 A
5011757 Akasaki et al. Apr 1991 A
5011969 Akasaki et al. Apr 1991 A
5017645 Ong et al. May 1991 A
5023356 Mukai et al. Jun 1991 A
5028505 Akasaki et al. Jul 1991 A
5034294 Go et al. Jul 1991 A
5053302 Makino et al. Oct 1991 A
5075189 Ichino et al. Dec 1991 A
5075487 Akasaki et al. Dec 1991 A
5077164 Ueda et al. Dec 1991 A
5080991 Ono et al. Jan 1992 A
5102757 Akasaki et al. Apr 1992 A
5132190 Yamada et al. Jul 1992 A
5153085 Akasaki et al. Oct 1992 A
5158847 Go et al. Oct 1992 A
5166016 Badesha et al. Nov 1992 A
5168024 Yamamoto et al. Dec 1992 A
5194355 Ohmura et al. Mar 1993 A
5213924 Sakamoto May 1993 A
5235104 Yamada et al. Aug 1993 A
5286589 Go et al. Feb 1994 A
5308726 Hirano et al. May 1994 A
5324604 Bugner et al. Jun 1994 A
5336577 Spiewak et al. Aug 1994 A
5356746 Sugiyama et al. Oct 1994 A
5389481 Saita et al. Feb 1995 A
5413885 Datta et al. May 1995 A
5435991 Golman et al. Jul 1995 A
5437950 Yu et al. Aug 1995 A
5492784 Yoshikawa et al. Feb 1996 A
5501927 Imai et al. Mar 1996 A
5578405 Ikegami et al. Nov 1996 A
5658702 Nukada Aug 1997 A
5663213 Jones et al. Sep 1997 A
5677095 Kikuchi et al. Oct 1997 A
5698141 Kumar Dec 1997 A
5698355 Imai et al. Dec 1997 A
5723072 Kumar Mar 1998 A
5744267 Meerholz et al. Apr 1998 A
5780194 Katsukawa et al. Jul 1998 A
5795690 Takegawa et al. Aug 1998 A
5834144 Kim et al. Nov 1998 A
5871877 Ong et al. Feb 1999 A
5874193 Liu et al. Feb 1999 A
5916719 Kim et al. Jun 1999 A
5942359 Kinoshita et al. Aug 1999 A
6004724 Yamato et al. Dec 1999 A
6187493 Katsukawa et al. Feb 2001 B1
6194110 Hsiao et al. Feb 2001 B1
6287737 Ong et al. Sep 2001 B1
6322941 Hsiao et al. Nov 2001 B1
6465648 Tadokoro et al. Oct 2002 B1
6485886 Yamato et al. Nov 2002 B1
6544701 Tadokoro et al. Apr 2003 B2
6558851 Fjeldstad et al. May 2003 B1
6586148 Graham et al. Jul 2003 B1
6656650 Lin et al. Dec 2003 B1
6756169 Lin et al. Jun 2004 B2
6770410 Yu et al. Aug 2004 B2
6800274 Bonda et al. Oct 2004 B2
6806024 Kura et al. Oct 2004 B1
6849367 Shoshi et al. Feb 2005 B2
6858363 Belknap et al. Feb 2005 B2
6890693 Zhu et al. May 2005 B2
6899984 Tokarski et al. May 2005 B2
6905804 Law et al. Jun 2005 B2
6919473 Bonda et al. Jul 2005 B2
6926887 Bonda et al. Aug 2005 B2
6946226 Wu et al. Sep 2005 B2
6946227 Lin et al. Sep 2005 B2
6955869 Jubran et al. Oct 2005 B2
6962692 Bonda et al. Nov 2005 B2
6964833 Tokarski et al. Nov 2005 B2
6991880 Tong et al. Jan 2006 B2
7011917 Jubran et al. Mar 2006 B2
7029812 Tokarski et al. Apr 2006 B2
7037630 Vong et al. May 2006 B2
7037632 Jubran et al. May 2006 B2
7045263 Zhu et al. May 2006 B2
7045264 Yokota et al. May 2006 B2
7056632 Ioannidis Jun 2006 B2
7063928 Law et al. Jun 2006 B2
7067230 Cammack et al. Jun 2006 B2
7070892 Bender et al. Jul 2006 B2
7070894 Bender et al. Jul 2006 B2
7078139 Yokota et al. Jul 2006 B2
7090953 Getautis et al. Aug 2006 B2
7094510 Jubran et al. Aug 2006 B2
7115348 Zhu et al. Oct 2006 B2
7126013 Heeney et al. Oct 2006 B2
7129012 Sekiya et al. Oct 2006 B2
7163771 Ioannidis et al. Jan 2007 B2
7172843 Lee et al. Feb 2007 B2
7175958 Shoshi et al. Feb 2007 B2
7183026 Zhu et al. Feb 2007 B2
7205080 Iwasaki et al. Apr 2007 B2
7223507 Ioannidis et al. May 2007 B2
7232633 Qi et al. Jun 2007 B2
7235587 Bonda et al. Jun 2007 B2
7244541 Tokarski et al. Jul 2007 B2
7291431 Tokarski et al. Nov 2007 B2
7291432 Lin et al. Nov 2007 B2
7297458 Belknap et al. Nov 2007 B2
7312007 Lin et al. Dec 2007 B2
7326511 Matsumoto et al. Feb 2008 B2
7354534 Lee et al. Apr 2008 B2
7357919 Candau Apr 2008 B2
7357920 Candau Apr 2008 B2
7390601 Wu et al. Jun 2008 B2
7396622 Nagasaka et al. Jul 2008 B2
7431917 Candau Oct 2008 B2
7491989 Loutfy et al. Feb 2009 B2
7501216 Jubran et al. Mar 2009 B2
7544350 Bonda et al. Jun 2009 B2
7544453 Freeman et al. Jun 2009 B2
7560161 Qi et al. Jul 2009 B2
7588702 Bonda et al. Sep 2009 B2
7592113 Nagasaka et al. Sep 2009 B2
7597825 Bonda et al. Oct 2009 B2
7745083 Nagasaka et al. Jun 2010 B2
7776614 Bonda Aug 2010 B2
7799317 Bonda et al. Sep 2010 B2
7893192 Sasaki et al. Feb 2011 B2
7928249 Marks et al. Apr 2011 B2
7981402 Bonda et al. Jul 2011 B2
8119107 Müller et al. Feb 2012 B2
8236469 Belknap et al. Aug 2012 B2
20020102484 Miyamoto et al. Aug 2002 A1
20030211413 Lin et al. Nov 2003 A1
20030228534 Zhu Dec 2003 A1
20040013960 Lim et al. Jan 2004 A1
20040043314 Jubran et al. Mar 2004 A1
20040063011 Lin et al. Apr 2004 A1
20040242841 Cammack et al. Dec 2004 A1
20050089789 Zhu Apr 2005 A1
20060002869 Bonda et al. Jan 2006 A1
20060142444 Lee et al. Jun 2006 A1
20060210898 Jubran Sep 2006 A1
20070077505 Lin et al. Apr 2007 A1
20070148571 Iwasaki et al. Jun 2007 A1
20080075921 Tateishi Mar 2008 A1
20080193793 Johannes et al. Aug 2008 A1
20080194821 Johannes et al. Aug 2008 A1
20080286693 Matsumoto et al. Nov 2008 A1
20080305417 Sugimura et al. Dec 2008 A1
20090039323 Bonda et al. Feb 2009 A1
20100294368 Ushiro et al. Nov 2010 A1
20110037063 Buesing et al. Feb 2011 A1
20110143273 Sekido et al. Jun 2011 A1
20120121524 Müller et al. May 2012 A1
Foreign Referenced Citations (13)
Number Date Country
0761201 Mar 1997 EP
0761214 Mar 1997 EP
1661548 May 2006 EP
H1048554 Feb 1998 JP
2000-162798 Jun 2000 JP
2005-139263 Jun 2005 JP
0061585 Oct 2000 WO
2004047821 Jun 2004 WO
2004110394 Dec 2004 WO
2005048944 Jun 2005 WO
2006034968 Apr 2006 WO
2009020673 Feb 2009 WO
WO-2009020676 Feb 2009 WO
Non-Patent Literature Citations (9)
Entry
US 8,435,706, 05/2013, Sekido (withdrawn)
Nogami et al., Bull. Chem. Soc. Jpn., 1981, 54(11), pp. 3601-3602.
International Search Report and the Written Opinion of PCT/US2013/054408 dated Dec. 2, 2013.
Nogami, et al., “The Synthesis of New Electron Acceptors, 9,10-bis [cyano(ethoxycarbonyl)methylene]-9,10-dihydroanthracene and 10-[cyano(ethoxycarbonyl)methylene]-9-anthrone.” Bulletin of the Chemical society of Japan (1981), 54(11), 3601-2.
Latif, et al., “Cyano esters and malonoitriles. V. Cyano(fluorenyl)acetic esters, hydroxyl nitriles and benzimidazolylacetonitriles.” Australian Journal of Chemistry (1977), 30(10), 2263-9.
Hafez, et al., “Carbonyl and thiocarbonyl compounds. V. Synthesis of Newer Unsaturated Nitriles, Carboxylic Acids, and Esters Derived from Xanthene and Thiaxanthene”. Journal of Organic Chemistry (1961), 26, 3988-91.
Latif, et al., “Cleavage of Xanthene Ethers. A New Route to 9-substituted Xanthenes”. Canadian Journal of Chemistry (1964), 42(7), 1736-40.
Zeid, et al., “Reactions of 4-chloro-9H-xanthene-9-thione with tetrachloro-o-benzoquinone.” Liebigs Annlen der Chemie (1984), 1, 196-8.
P.R. Droupadi et al. “Charge Transfer Complexes of Pheophytin A with Nitroaromatics. Electron Transfer from Excited Singlet of Pheophytin A to Nitroaromatics”, Photochemistry and Photobiology, vol. 39, No. 2, Feb. 1, 1984, pp. 161-167, XP055072972.
Related Publications (1)
Number Date Country
20140050681 A1 Feb 2014 US