This application claims the benefit of Chinese Patent Application No. 03143967.5 filed on Aug. 6, 2003. The disclosure of the above application is incorporated herein by reference.
The invention generally relates to transmission technology on an optical network, specifically to a method of a pilot-tone signal transmission on an optical fiber and a system thereof.
Since 90's of last century, accompanying with the rapid development of the WDM (Wavelength Division Multiplexing) technology, the monitoring technique of WDM networks has been developed. There are three ways to transmit monitor message of a WDM network: a monitoring channel with a specific wavelength, a pilot-tone and a segment overhead. With the pilot-tone technique, small amplitude of an analog or digital signal is added to main signal such as traffic signal at the transmitting end of the WDM network. Message of the pilot-tone service mainly includes wavelength identifiers, state information, optical channel connection and optical channel quality etc., through which every channel state is monitored in real time; this is significant to guarantee the reliability and security of a network operation.
An advantage of the pilot-tone technique is to save optical channels, since the same optical channel bears both main signal and pilot-tone signal at the same time. Nevertheless, a disadvantage of the pilot-tone technique is the spectrum overlap between the main signal and the pilot-tone signal; the pilot-tone signal is a noise to the main signal, and adding the pilot-tone signal will decrease the SN (Signal-to-Noise) ratio of the main signal; the main signal is a noise to the pilot-tone signal too, which cannot be suppressed. It is still a challenge that how to increase the SN ratio of the pilot-tone signal and how to decrease the impact on sensitivity of the main signal.
As shown in
Disadvantages of the digital coding scheme of the pilot-tone are as follow: the amplitude of a pilot-tone signal cannot be too small, randomness of the pseudo random sequence is not good enough, anti-jamming ability is worse etc.; when a pilot-tone signal can be effectively received, it will more impact on the main signal.
Objective of the invention is to provide a method for the pilot-tone signal transmission and a system thereof, which decreases impact on the main signal and improves SN ratio of the pilot-tone signal.
The invention is implemented in the following technique scheme:
A pilot-tone signal transmission method, comprising, at transmitting end, converting physical characteristics of an original pilot-tone signal, and then transmitting the converted pilot-tone signal on an optical fiber;
A pilot-tone signal transmission system comprises, a source device, providing an original pilot-tone signal;
The invention deploys modulation technique in the electrical signal propagation area and/or spread spectrum technique in the wireless area to a pilot-tone signal transmission on an optical fiber. Comparing with the present pilot-tone signal transmission technique under the same receiving sensitivity degradation, the invention provides better SN ratio performance, overcomes carrier/noise ratio limitation, and can effectively recover the pilot-tone signal to its original form even the SN ratio condition is worse.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The invention will be described in more detail with reference to the drawings.
For electrical wave propagation, any carrier wave has three characteristics: an amplitude (A), a frequency (f) and a phase (P). Accordingly, there are three basic digital modulation techniques: the Amplitude Shift Keying (ASK), the Frequency Shift Keying (FSK) and the Phase Shift Keying (PSK). The digital modulation converts the base band waveform into a waveform that is suitable for transmission on a channel, and raises signal anti-jamming ability through interchangeable between the bandwidth and SN ratio. The invention takes the digital modulation technique in a pilot-tone signal in order to reduce its interference in the main signal.
As shown in
The modulation mode of a modulator or a demodulator can be one of the three basic digital modulation modes: ASK, FSK and PSK, or their improved modes or any combination.
In the wireless communication field, the spread spectrum technique spreads a signal to a wider spectrum and then transmits it. It is characterized that the bandwidth of a transmitted signal has tens or even thousands times the said signal bandwidth, and a gain is obtained directly. With this gain, the signal-to-noise ratio on a transmission line can be decreased; in some cases it can be less than 0 dB.
For example, suppose the receiving SN ratio threshold of a main signal A1=20 dB, the receiving SN ratio threshold of the pilot-tone signal A2=10 dB, the noise power spectrum density N=1, the main signal bandwidth is 2.5 GHz, the pilot-tone signal bandwidth is spread from 10 KHz to 2.5 GHz, and then the gain obtained from the spread spectrum is 101 g2.5 G/10K=53 dB. Suppose the power spectrum density of the main signal is S1, the power spectrum density of the pilot-tone signal before spread spectrum is S2, the power spectrum density of the pilot-tone signal after spread spectrum is S2, and the mutual interference of S1 and S2 can be seen as a white noise, the following equation set exists:
There are many solutions for this equation set; following is a solution satisfying that the S1/N and S2/N are as small as possible:
At this moment, the main signal SN ratio at the receiving end is:
A1=S1/(S2′+N)≈21 dB>20 dB
The pilot-tone signal SN ratio is: A2=S2/(S1+N)≈11 dB>10 dB.
Therefore, with this configuration, SN ratio of the main signal and SN ratio of the pilot-tone signal are satisfied at the receiving end.
The above example shows that the SN ratio of the pilot-tone signal added on the main signal has only −21 dB. This means that the pilot-tone signal is drowned in noise, so the pilot-tone signal has only a very little influence on receiving sensitivity of the main signal. The emitting power of the main signal increases S1-20 dB=1 dB because of adding the pilot-tone signal on the main signal. Therefore, after spread spectrum, adding a pilot-tone signal on the main signal has only a less influence on the main signal. For the same reason, on a transmission line, when the main signal has a definite interference on the pilot-tone signal, the SN ratio of the pilot-tone signal at the receiving end is increased obviously, and this will greatly reduce the error rate of a received signal.
Since the bandwidth of a pilot-tone signal after spread spectrum equals to the bandwidth of the main signal, the ratio of the main signal emission power and the pilot-tone signal emission power equals to the ratio of power spectrum densities of the two signals, i.e. 21 dB-(−21 dB)=42 dB. Suppose the total emission power is 1W, only 10−4.2W is the emission power of the pilot-tone signal, which is only a small part of the total emission power.
As shown in
From FIGS. 2 to 4, the electro-optical converter includes a laser and a resistance-capacitance circuit; said pilot-tone signal is added on the laser through the resistance-capacitance circuit; said signal-extracting device is consisted of a resistance-capacitance circuit or an electrical coupler.
The system shown in
A system that combines the modulation and spread spectrum techniques may have more gain, so the pilot-tone signal can be recovered effectively under a low amplitude modulation index, which is the ratio of the amplitude of pilot-tone signal to the amplitude of main signal. With the same amplitude modulation index, the system can have lower error code rate.
Except the modulation and spread spectrum techniques mentioned above, a error code detection and correction techniques also can be added to the system, such as the forward error correction, interleaving and scrambling code etc., to further improve a system performance.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
03143967.5 | Aug 2003 | CN | national |