The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Refer to
As shown in
By repeating the steps above, any change in load characteristics will immediately be compensated for by the present invention in order to provide a sinusoidal current signal with zero phase displacement.
Refer to
In an embodiment of the present invention the slope is determined by the following method. The derivative of a function f at x is the slope of the tangent line to the graph off at x. Since only one point is know from the sample, the tangent line is approximated with multiple secant lines. The secant lines have a progressively shorter distance between the intersecting points. The slope of the tangent line is obtained by taking the limit of the slopes of the nearby secant lines. The derivative is determined by taking the limit of the slope of secant lines as they approach the tangent line. The derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to be a tangent line.
The slope of the line through the points (x, f(x)) and (x+h, f(x+h)) shown in
Therefore, the slope of the voltage sample can be determined by the equation dvldt or the derivative of voltage over the derivative of time or in other words, the derivative of voltage with respect to time.
Refer to
As shown in
In another embodiment of the present invention the slope of the voltage signal is obtained by taking two voltage samples. Next the slope of the voltage signal is calculated as voltage at second sample minus voltage at first sample divided by time at second sample minus time at first sample.
The accuracy of the method in this embodiment is mainly dependant on the frequency of samples taken. The more frequent the samples, the more accurate the resultant current signal is.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the invention and its equivalent.