Electrochromic glazings include electrochromic materials that are known to change their optical properties, such as coloration, in response to the application of an electrical potential, thereby making the device more or less transparent or more or less reflective. Typical prior art electrochromic devices include a counter electrode layer, an electrochromic material layer which is deposited substantially parallel to the counter electrode layer, and an ionically conductive layer separating the counter electrode layer from the electrochromic layer respectively, which is incorporated into an insulating glass unit (IGU). In addition, two transparent conductive layers are substantially parallel to and in contact with the counter electrode layer and the electrochromic layer.
Materials for making the counter electrode layer, the electrochromic material layer, the ionically conductive layer and the conductive layers are known and described, for example, in United States Patent Publication No. 2008/0169185, incorporated by reference herein, and desirably are substantially transparent oxides or nitrides. When an electrical potential is applied across the layered structure of the electrochromic device, such as by connecting the respective conductive layers to a low voltage electrical source, ions, such as Li+ ions stored in the counter electrode layer, flow from the counter electrode layer, through the ion conductor layer and to the electrochromic layer.
In addition, electrons flow from the counter electrode layer, around an external circuit including a low voltage electrical source, to the electrochromic layer so as to maintain charge neutrality in the counter electrode layer and the electrochromic layer. The transfer of ions and electrons to the electrochromic layer causes the optical characteristics of the electrochromic layer, and optionally the counter electrode layer in a complementary EC device, to change, thereby changing the coloration and, thus, the transparency of the electrochromic device.
It is possible to use a solar panel mounted to the IGU as the low voltage electrical source. When installing electrochromic glazings, attaching a solar panel to the IGU may require the installer to clean the glass, attach cables to the solar panel, install strips of tape, and manually locate and attach the solar panel to be flush with the frame. The tolerances in window framing systems, it is believed, make it difficult to pre-attach components to an IGU and have those components be flush to the frame. Therefore, a need exists for an improved device and method of pre-attaching assemblies to a glazing or IGU to provide an accurate fit after installation.
An electrochromic assembly according to one aspect of the disclosure includes an IGU, a plate, and a solar panel. In one embodiment, the plate can be movably coupled to the IGU and the solar panel can be fastened to the plate. In one embodiment, at least one mounting bracket may be used to couple the plate to the IGU. In one embodiment, the solar panel may be electrically connected to the IGU. In one embodiment, the mounting bracket can provide the electrical connection between the solar panel and IGU. In other embodiments, a flexible circuit, e.g., a polyimide flexible circuit, can provide the electrical connection between the solar panel and IGU.
A method of installing an electrochromic assembly according to another aspect of the disclosure includes coupling a plate to an IGU, securing a solar panel to the plate, and installing the IGU in a frame. The method can further include the steps of fixing mounting brackets to the IGU, adhering the plate to the mounting bracket, or both fixing and adhering. In some embodiments, the solar panel and plate may remain free to move relative to the IGU after installation.
A method of providing an electrochromic assembly may include providing an electrical connection between the solar panel and the IGU. The electrical connection according to one aspect of the disclosure could be a polyimide flexible circuit or the mounting bracket. Providing an electrochromic assembly can also include installing the IGU in a frame and advancing the plate and solar panel toward the frame until the solar panel is flush with the frame. Trim may be provided which can be installed on the plate adjacent to the solar panel.
Embodiments are illustrated by way of example and are not limited in the accompanying figures.
Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the invention.
The following description in combination with the figures is provided to assist in understanding the teachings disclosed herein. The following discussion will focus on specific implementations and embodiments of the teachings. This focus is provided to assist in describing the teachings and should not be interpreted as a limitation on the scope or applicability of the teachings. However, other embodiments can be used based on the teachings as disclosed in this application.
The terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a method, article, or apparatus that comprises a list of features is not necessarily limited only to those features but may include other features not expressly listed or inherent to such method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive-or and not to an exclusive-or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
Also, the use of “a” or “an” is employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one, at least one, or the singular as also including the plural, or vice versa, unless it is clear that it is meant otherwise. For example, when a single item is described herein, more than one item may be used in place of a single item. Similarly, where more than one item is described herein, a single item may be substituted for that more than one item.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples are illustrative only and not intended to be limiting. To the extent not described herein, many details regarding specific materials and processing acts are conventional and may be found in textbooks and other sources within the electrochromic, window, and glazing arts.
Although the invention disclosed in this application has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended exemplary claims.
In one embodiment, illustrated in
After the glass 11 is installed in the frame 13, a force of about 2 pounds (0.9 kg) to about 7 pounds (3.2 kg) can be exerted on the solar panel 12 and/or plate 41 in the direction of the arrow shown in
An electrochromic assembly comprising:
an insulated glass unit;
a plate; and
a solar panel;
wherein the plate is movably coupled to the insulated glass unit and the solar panel is fastened to the plate.
The electrochromic assembly of Embodiment 1, further comprising at least one mounting bracket coupling the insulated glass unit to the plate.
The electrochromic assembly of Embodiment 1, wherein the solar panel is electrically connected to the insulated glass unit.
The electrochromic assembly of Embodiment 3, wherein the mounting bracket comprises the electrical connection between the solar panel and the insulated glass unit.
The electrochromic assembly of Embodiment 3, further comprising a flexible circuit as the electrical connection between the solar panel and the insulated glass unit.
The electrochromic assembly of Embodiment 2, wherein the mounting bracket comprises a movement limiter.
The electrochromic assembly of Embodiment 6, wherein the movement limiter comprises a pawl and tooth structure.
A method of installing an electrochromic assembly comprising:
coupling a plate to an insulated glass unit;
securing a solar panel to the plate; and
installing the insulated glass unit in a frame.
The method of Embodiment 8, wherein coupling the plate to the insulated glass unit further comprises fixing at least one mounting bracket to the insulated glass unit and adhering the plate to the mounting bracket.
The method of Embodiment 8, wherein the solar panel and plate are movable relative to the insulated glass unit.
The method of Embodiment 8, further comprising electrically connecting the solar panel to the insulated glass unit.
The method of Embodiment 11, wherein a flexible circuit comprises the electrical connection between the solar panel and insulated glass unit.
The method of Embodiment 8, further comprising advancing the plate and solar panel toward the frame in a first direction until the solar panel is flush with the frame.
The method of Embodiment 12, wherein the mounting bracket comprises a movement limiter to prevent movement of the plate in a second direction.
The method of Embodiment 14, further comprising attaching trim to the plate.
Note that not all of the activities described above in the general description or the examples are required, that a portion of a specific activity may not be required, and that one or more further activities may be performed in addition to those described. Still further, the order in which activities are listed is not necessarily the order in which they are performed.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.
The specification and illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The specification and illustrations are not intended to serve as an exhaustive and comprehensive description of all of the elements and features of apparatus and systems that use the structures or methods described herein. Separate embodiments may also be provided in combination in a single embodiment, and conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. Further, reference to values stated in ranges includes each and every value within that range. Many other embodiments may be apparent to skilled artisans only after reading this specification. Other embodiments may be used and derived from the disclosure, such that a structural substitution, logical substitution, or another change may be made without departing from the scope of the disclosure. Accordingly, the disclosure is to be regarded as illustrative rather than restrictive.
The current application claims priority from U.S. Provisional Patent Application No. 62/016,927, filed Jun. 25, 2014, entitled “Method of Pre-Attaching Assemblies to an Electrochromatic Glazing for Accurate Fit or Registration After Installation,” naming as inventors Kyle Gudmunson et al., which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62016927 | Jun 2014 | US |