The invention relates to geophysical exploration technologies, more particularly, to a pre-stack processing of three-dimensional seismic data, and to a method of pre-stack two-dimensional-like transformation of three-dimensional seismic record, which directly applies the mature method of pre-stack processing of two-dimensional seismic data to the processing of three-dimensional seismic data.
In geophysical exploration technologies, the seismic data are processed in various ways to increase accuracy of a seismic inversion. Currently, in processing of three-dimensional seismic record, linear characteristic in the two-dimensional record is presented as nonlinear due to special features of the three-dimensional geometry, which leads to the mature method of two-dimensional pre-stack processing can not be directly applied to three-dimensional data during data processing. In order to maintain ‘linearity’ of a linear noise while pre-stack suppressing the linear noise, it is necessary for the three-dimensional record firstly to be extracted as a common offset gather, or to be corrected on velocity, then a processing of noise removal is made using the method of two-dimensional suppressing linear noise, which is not convenient. Furthermore, in static correction of two-dimensional refractive wave, a method of linear fitting primary wave is often employed to obtain an amount of the static correction. However, in a three-dimensional case, except record of the first break presents linear when the shot point is at a certain receiver line, at other receiver lines, record of the first break presents as non-linear. In addition, curvature of the first break changes as the vertical distance between the shot point and the receiver line varies, which increases difficulty for first break fitting and for static correction, whereby inversely affecting efficiency and precision of the static correction processing.
The present invention provides a method of two-dimensional-like transformation of three-dimensional pre-stack seismic record, on the basis of which, processing of noise-removal and static correction on the three-dimensional seismic record is made to increase efficiency and accuracy of the processing.
The above object of the present invention is accomplished by the following technical solution:
(1) collecting three-dimensional seismic data in the field by a conventional method, and arranging the three-dimensional seismic data in accordance with a shot gather after said data are decoded;
(2) beginning with the first receiver line of the first shot, calculating offsets (offseti) of all receiver points of the shot according to a coordinate (X, Y) of a shot point (S) and coordinates (Xi, Yi) of all the receiver points,
said offsets are calculated in the following equation:
offsetk=√{square root over ((Xk−X)2+(Yk−Y)2)}{square root over ((Xk−X)2+(Yk−Y)2)};
Where k is the offset of the kth receiver point; X, Y are the coordinates of the shot point, and Xk, Yk are the coordinates of the kth receiver point;
(3) making a straight line (L2′) which connects the shot point (S) and the receiver point (R1) of the smallest offset as the transformed coordinate axis;
(4) making the shot point (S) as a center of a circle, drawing circles with the radii of which are the offsets (offseti) of the respective receiver points, then rotating each receiver point to the straight line (L2′); receiver point (R1′) of said offset is coincident with R, and other receiver points forming a new arrangement as R2′, . . . , Rk′, . . . Rn′, thereby accomplishing the two-dimensional-like transformation of the receiver line;
(5) for another receiver line of the shot, repeating steps (2)-(4) until accomplishing the two-dimensional-like transformation of all the receiver lines of the shot;
(6) for each of the remaining shots, repeating steps (2)-(5) in order, to accomplish the two-dimensional-like transformation of the pre-stack three-dimensional seismic data;
(7) obtaining a three-dimensional seismic data graph with high precision, and making a processing of noise removal and static correction on the three-dimensional seismic record using a conventional method.
The present invention can apply a mature two-dimensional refractor static correction technology to processing of three-dimensional data. According to processing of the present invention, linear characteristic of first break and linear noise is restored well, which assists subsequently processing, suppresses linear noise, and removes noise in a better way.
The invention transforms pre-stack three-dimensional record of seismic data to two-dimensional-like record using a method of coordinate transformation and projection.
The process of the invention is illustrated in
The detailed steps are as follows:
(1) collecting three-dimensional seismic data in the field by a conventional method, and arranging the three-dimensional seismic data in accordance with a shot gather after said data are decoded;
(2) beginning with the first receiver line of the first shot, calculating offsets (offseti) of all receiver points of the shot according to a coordinate (X, Y) of a shot point (S) and coordinates (Xi, Yi) of all the receiver points,
said offsets are calculated in the following equation:
offsetk=√{square root over ((Xk−X)2+(Yk−Y)2)}{square root over ((Xk−X)2+(Yk−Y)2)};
Where k is the offset of the kth receiver point; X, Y are the coordinates of the shot point, and Xk, Yk are the coordinates of the kth receiver point;
(3) making a straight line (L2′) which connects the shot point (S) and the receiver point (R1) of the smallest offset as the transformed coordinate axis (as illustrated in
(4) making the shot point (S) as a center of a circle, drawing circles with the radii of which are the offsets (offseti) of the respective receiver points, then rotating each receiver point to the straight line (L2′); receiver point (R1′) of said offset is coincident with R, and other receiver points forming a new arrangement as R2′, . . . , Rk′, . . . Rn′, thereby accomplishing the two-dimensional-like transformation of the receiver line;
(5) for another receiver line of the shot, repeating steps (2)-(4) until accomplishing the two-dimensional-like transformation of all the receiver lines of the shot;
(6) for each of the remaining shots, repeating steps (2)-(5) in order, to accomplish the two-dimensional-like transformation of the pre-stack three-dimensional seismic data;
(7) obtaining a three-dimensional seismic data graph with high precision, and making a processing of noise removal and static correction on the three-dimensional seismic record using a conventional method.
The invention relates to geophysical exploration technologies, more particularly, to a pre-stack processing of three-dimensional seismic data. The invention comprises: collecting three-dimensional seismic data and arranging the data in accordance with a shot gather; calculating offsets of all the receiver points from the first receiver line of the first shot; making the shot point as a center of a circle, drawing circles with the radii of which are the offsets of the respective receiver points, then rotating each receiver point to the straight line which cross the shot point and the receiver point with smallest offset to accomplish the two-dimensional-like transformation of all the receiver lines of the shot, obtaining a three-dimensional seismic data graph with high precision, and making processing of noise removal and static correction on the three-dimensional seismic record using a conventional method. According to the invention, linear characteristic of the first break and the linear noise of the three-dimensional pre-stack seismic data is restored so that the two-dimensional mature refractor static correction technology and two-dimensional linear noise attenuation technology can be applied to processing of three-dimensional data, so that the effect of static correction and suppression of linear noise is good, and efficiency and precision of processing are increased, which assists subsequent processing.
The invention can also be applied to other processing of three-dimensional pre-stack seismic data.
Number | Date | Country | Kind |
---|---|---|---|
200810007296.4 | Feb 2008 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2009/000199 | 2/24/2009 | WO | 00 | 8/25/2010 |