Method of Predicting the Responsiveness of a Tumour to Erbb Receptor Drugs

Information

  • Patent Application
  • 20080286771
  • Publication Number
    20080286771
  • Date Filed
    July 20, 2005
    19 years ago
  • Date Published
    November 20, 2008
    15 years ago
Abstract
The invention relates to a method of selecting a mammal having or suspected of having a tumour for treatment with an erbB receptor drug which comprises testing a biological sample from the mammal for expression of anyone of the genes listed in Table 1 or 2 as defined herein whereby to predict an increased likelihood of response to the erbB receptor drug. Preferred genes include anyone of NES, GSPT2, ETR101, TAZ, CHST7, DNAJC3, NPAS2, PIN1, TCEA2, VAMP4, DAPK1, DAPK2, MLLT3, TNNC1, KIAA0931, ACOX2, EMP1, SLC20A1, SPRY2 or PGM1.
Description

The present invention relates to sensitivity of tumours to therapeutic agents which can be predicted from the gene expression profile of the tumour and hence that the suitability of cancer patients for treatment with such therapeutic agents can be determined by measuring the relative expression levels of particular genes in tumour tissue.


The phosphorylation of proteins on tyrosine residues is a key element of signal transduction within cells. Enzymes capable of catalysing such reactions are termed tyrosine kinases. A number of these enzymes exist as integral components of transmembrane receptor molecules and are classified as receptor tyrosine kinases (RTKs). There are several members of this family of RTKs, class I of which includes the erbB family, e.g. epidermal growth factor receptor (BGFR), erbB2, erbB3 and erbB4. Binding of a variety of ligands to the external domain activates the EGFR tyrosine kinase domain. Activation causes EGFR itself and a number of cellular substrates to become phosphorylated on tyrosine residues. These phosphorylation reactions are a major component of growth factor induced proliferation of cells.


The erbB family of receptor tyrosine kinases are known to be frequently involved in driving the proliferation and survival of tumour cells (reviewed in Olayioye et al., EMBO J., 2000, 19, 3159). One mechanism by which this can occur is over expression of the receptor at the protein level, for example as a result of gene amplification. This has been observed in many common human cancers (reviewed in Klapper et al., Adv. Cancer Res., 2000, 77, 25) such as, non-small cell lung cancers (NSCLCs) including adenocarcinomas (Cerny et al., Brit. J. Cancer, 1986, 54, 265; Reubi et al., Int. J. Cancer, 1990, 45, 269; Rusch et al., Cancer Research, 1993, 53, 2379; Brabender et al, Clin. Cancer Res., 2001, 7, 1850) as well as other cancers of the lung (Hendler et al., Cancer Cells, 1989, 7, 347.


It is now several decades since the study of retroviral mediated cellular transformation began to revolutionize our understanding of malignant transformation. Transformation was shown to be dependent on oncogenes carried by viruses and these were shown to have mammalian cellular counterparts, proto-oncogenes. In 1984, EGFR was described as the mammalian counterpart of the retroviral oncogene, v-erbB (Downward et al). This, coupled to earlier observations describing a two component autocrine growth promoting mechanism in cancer cells consisting of EGF ligand and its receptor EGFR (Sporn & Todaro), strengthened the hypothesis that EGFR signalling is an important contributor to tumourigenesis. Subsequent reports continued to provide evidence that EGFR is an attractive target for therapeutic intervention in Cancer (see Yarden & Sliwkowski for review). EGFR is markedly overexpressed across a large variety of epithelial Cancers (see Salomon et al) and some immunohistochemical studies have demonstrated EGFR expression is associated with poor prognosis. In addition to overexpression, it is recognised that there is potential for deregulated EGFR signalling in tumours via a number of alternative mechanisms including i) EGFR mutations ii) increased ligand expression and enhanced autocrine loop and iii) heterodimerisation and cross talk with other erbB receptor family members.


In addition, a wealth of pre-clinical information suggests that the erbB family of receptor tyrosine kinases are involved in cellular transformation. In addition to this, a number of pre-clinical studies have demonstrated that anti-proliferative effects can be induced by knocking out one or more erbB activities by small molecule inhibitors, dominant negatives or inhibitory antibodies (reviewed in Mendelsohn et al., Oncogene, 2000, 19, 6550).


Thus it has been recognised that inhibitors of these receptor tyrosine kinases should be of value as a selective inhibitor of mammalian cancer cells (Yaish et al. Science, 1988, 242, 933, Kolibaba et al, Biochimica et Biophysica Acta, 1997, 133, F217-F248; Al-Obeidi et al, 2000, Oncogene, 19, 5690-5701; Mendelsohn et al, 2000, Oncogene, 19, 6550-6565).


A number of small molecule inhibitors of erbB family of receptor tyrosine kinases are known, particularly inhibitors of EGF and erbB2 receptor tyrosine kinases. For example European Patent Application No. 0566226 and International Patent Applications WO 96/33980 and WO 97/30034 disclose that certain quinazoline derivatives which possess an amino substituent at the 4-position possess EGFR tyrosine kinase inhibitory activity and are inhibitors of cancer tissue.


It has been disclosed by J R Woodburn et al. in Proc. Amer. Assoc. Cancer Research, 1997, 38, 633 and Pharmacol. Ther., 1999, 82, 241-250 that the compound N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy)quinazolin-4-amine is a potent BGFR tyrosine kinase inhibitor. This compound is also known as Iressa (registered trade mark), gefitinib (United States Adopted Name), by way of the code number ZD1839 and Chemical Abstracts Registry Number 184475-35-2. The compound is principally identified hereinafter as gefitinib.


Gefitinib was developed as an inhibitor of epidermal growth factor receptor-tyrosine kinase (EGFR-TK), which blocks signaling pathways responsible for driving proliferation, invasion, and survival of cancer cells (Wakeling, A. E., et al. Cancer Res, 2002, 62(20), p 5749). Gefitinib has provided clinical validation of small molecule inhibitors of EGFR. Potent anti-tumour effects as well as rapid improvements in NSCLC-related symptoms and quality of life have been observed in clinical studies that enrolled patients with advanced NSCLC who did not respond to platinum-based chemotherapy. The Phase II ‘IDEAL’ trials demonstrated that single agent gefitinib resulted in objective anti-tumour activity, symptomatic improvement and limited toxicity in patients with advanced NSCLC and previously treated with cytotoxic chemotherapy (Fukuoka et al., Kris et al). Objective response rate (Complete Response+Partial Response) was 18.4% and 11.8% respectively in the IDEAL 1 and IDEAL 2 trials. The differences in response in these clinical trials has been attributed to different population groups in the two trials, predominantly Japanese in IDEAL 1 and a predominantly European-derived population in IDEAL 2. Beyond objective responses, additional patients experienced stable disease and/or symptom improvement meaning that approximately 50% of patients overall benefit from gefitinib. The tumour response data has been the basis of initial regulatory approvals of gefitinib in advanced NSCLC in several markets.


It is important to be able to understand the basis of response to anti-cancer therapeutic agents such as gefitinib since this would allow clinicians to maximise the benefit/risk ratio for each patient, potentially via the development of diagnostic tests to identify patients most likely to benefit from gefitinib treatment. An obvious candidate marker of response to gefitinib has been EGFR expression level. However, gefitinib inhibition of growth of some cancer-derived cell lines and tumour xenografts is not well correlated with the level of expression of EGFR. Furthermore, studies alongside the IDEAL trials demonstrated that EGFR protein expression as measured by IHC was not an accurate predictor of response to gefitinib (Bailey et al). Although there are now several additional hypotheses based on genetics, genomics, proteomics, biochemical and other studies, there is still no pre-treatment predictive biomarker of gefitinib response currently approved by regulatory authorities. Possibly the most significant recent breakthrough in understanding gefitinib response has come from recent data (Lynch et al, Paez et al) indicating that mutation in the BGFR kinase domain predicts gefitinib hypersensitivity in NSCLC patients. Hypersensitivity is a vague term but in this field is generally understood to mean patients experiencing objective tumour responses (i.e. marked tumour regression, normally above 50%). As well as demonstrating the EGFR mechanism of action for gefitinib, this may provide a basis for venturing into other disease settings such as first line, adjuvant and possibly earlier cancer intervention with EGFR inhibitors in a targeted subpopulation in NSCLC patients and other types of cancers carrying the EGFR mutation.


However, it is likely that restricting prescription of gefitinib to the mutant EGFR carrying tumour subgroup will deprive many patients who could benefit from gefitinib. Firstly there are emerging reports of gefitinib hypersensitive patients with undetectable EGFR mutation in their tumour and other patients with EGFR mutation who do not respond to gefitinib. Secondly, data reported at ASCO 2004 (Shepherd et al) indicated that the EGFR small molecule tyrosine kinase inhibitor erlotinib (Roche, Genentech, OSI) prolongs survival in advanced NSCLC previously treated with chemotherapy, by ˜2 months across the population with resulting 41% reduction in risk of death at one year. Most interestingly, the survival benefit appears to be is derived from patients in the stable disease response population as well as hypersensitive patients. This highlights the likely importance of identifying likely gefitinib responsive patients beyond those carrying EGFR mutation. Definitive survival benefit is also likely to be demonstrated from ongoing clinical trials with gefitinib.


The differential response of patients to chemotherapy treatments indicates that there is a need to find methods of predicting which treatment regimes best suit a particular patient.


There is an increasing body of evidence that suggests that patients' responses to numerous drugs may be related to a patients' genetic, genomic, proteomic, biochemical or profile and that determination of the genetic factors that influence, for example, response to a particular drug could be used to provide a patient with a personalised treatment regime. Such personalised treatment regimes offer the potential to maximise therapeutic benefit to the patient, whilst minimising, for example side effects that may be associated with alternative and less effective treatment regimes.


Therefore there is a need for methods that can predict a patients' response to a drug based on the results of a test that indicates whether the patient is likely to respond to treatment or to be resistant to treatment.


The present invention is based on the discovery that the sensitivity of tumours to therapeutic agents can be predicted from the gene expression profile of the tumour and hence that the suitability of tumour patients for treatment with such therapeutic agents can be determined by measuring the relative expression levels of particular genes in tumour tissue.


According to one aspect of the present invention there is provided a method of selecting a mammal having or suspected of having a tumour for treatment with an erbB receptor drug which comprises testing a biological sample from the mammal for expression of any one of the genes listed in Table 1 as defined herein whereby to predict an increased likelihood of response to the erbB receptor drug.


According to another aspect of the present invention there is provided a method of selecting a mammal having or suspected of having a tumour for treatment with an erbB receptor drug which comprises testing a biological sample from the mammal for expression of any one of the genes listed in Table 1 or DAPK2 whereby to predict an increased likelihood of response to the erbB receptor drug.


In one embodiment the method comprises testing a biological sample from the mammal for expression of any one of ACOX2, NPAS2, NES, CHST7, GSPT2, DAPK1, DAPK2 or TNNC1. More preferably the method comprises testing a biological sample from the mammal for expression of any one of NPAS2, NES, CHST7 or DAPK1. More preferably the method comprises testing a biological sample from the mammal for expression of at least two of NPAS2, NES, CHST7 or DAPK1. More preferably the method comprises testing a biological sample from the mammal for expression of at least three of NPAS2, NES, CHST7 or DAPK1. More preferably still the method comprises testing a biological sample from the mammal for expression of NPAS2, NES, CHST7 and DAPK1.


In an alternative embodiment the method comprises testing a biological sample from the mammal for expression of any one of NES, GSPT2, ETR101, TAZ, CHST7, DNAJC3, NPAS2, PIN1, TCEA2, VAMP4, DAPK1, DAPK2, MLLT3, TNNC1 or KIAA0931. More preferably the method comprises testing a biological sample from the mammal for expression of any one of DAPK1, DAPK2 or NES. More preferably the method comprises testing a biological sample from the mammal for expression of at least two of DAPK1, DAPK2 or NES. More preferably the method comprises testing a biological sample from the mammal for expression of DAPK1, DAPK2 and NES.


In a preferred embodiment the method additionally comprises testing a biological sample from the mammal for expression of any gene listed in Table 2 as defined herein. More preferably the method comprises testing a biological sample from the mammal for expression of EMP1, SLC20A1, SPRY2 or PGM1. More preferably the method comprises testing a biological sample from the mammal for expression of EMP1.


In an alternative preferred embodiment the method additionally comprises testing a biological sample from the mammal for expression of any gene listed in Table 2 as defined herein. More preferably the method comprises testing a biological sample from the mammal for expression of EMP1, HCA127, UBL5, ZNF23, UROD, CD44, SPRY1, RAPGEF2, SLC20A1, NRP1, PGM1, SPRY2, PTGER3, SCN10A, KITLG, CDH1, HOP, BCL3 or OLFM1. More preferably the method comprises testing a biological sample from the mammal for expression of EMP1.


Preferably the tumour is selected from the group consisting of leukaemia, multiple myeloma, lymphoma, bile duct, bone, bladder, brain, CNS, glioblastoma, breast, colorectal, cervical, endometrial, gastric, head, neck, hepatic, lung, muscle, neuronal, oesophageal, ovarian, pancreatic, pleural membrane, peritoneal membrane, prostate, renal, skin, testicular, thyroid, uterine and vulval. More preferably the tumour is selected from one of non-small cell lung, pancreatic, head or neck. More preferably the tumour is selected from one of non-small cell lung, head or neck.


Preferably the erbB receptor drug is selected from any one of gefitinib, erlotinib, PKI-166, EKB-569, HKI-272, lapatinib, canertinib, AEE788, XL647, BMS 5599626, cetuximab, matuzumab, panitumumab, MR1-1, IMC-11F8 or EGFRL11. Most preferably the erbB receptor drug is gefitinib.


In a further preferred embodiment of the method of the invention the mammal is a human and the method comprises testing a biological sample from the human for increased expression of DAPK1 and decreased expression of NPAS2, NES, CHST7 or EMP1 whereby to predict an increased likelihood of response to gefitinib. In an alternative preferred embodiment of the method of the invention the mammal is a human and the method comprises testing a biological sample from the human for increased expression of DAPK1 and DAPK2 and decreased expression of NES and EMP1 whereby to predict an increased likelihood of response to gefitinib.


According to another aspect of the invention there is provided an isolated set of marker genes identified as having differential expression between tumour cells that are sensitive and resistant to an erbB receptor drug said gene set comprising one or more genes selected from at least the group consisting of the genes listed in Table 1 defined herein or DAPK2, including gene specific oligonucleotides derived from said genes. Preferably the set comprises at least 2 genes, more preferably at least 3 genes, more preferably at least 4 genes. More preferably the set comprises at least one gene selected from Table 2 as defined herein.


According to another aspect of the invention there is provided an isolated set of marker genes identified as having differential expression between tumour cells that are sensitive and resistant to an erbB receptor drug said gene set comprising one or more genes selected from at least the group consisting of the genes listed in Table 1 defined herein, including gene specific oligonucleotides derived from said genes. Preferably the set comprises at least 2 genes, more preferably at least 3 genes. More preferably the set comprises at least one gene selected from Table 2 as defined herein.


The present invention permits the improved selection of a patient, having or suspected of having a tumour, for treatment with an erbB receptor drug, in order to predict an increased likelihood of response to the erbB receptor drug.


In one embodiment, the method comprises testing a biological sample from the mammal for expression of at least one or more of the following from Table 1, which are found at lower levels in sensitive cells NPAS2, NES, CHST7, ACOX2 or GSPT2 or at least one or more of the following which are found at higher levels in sensitive cells DAPK1 or TNNC1. The Affymetrix ID and Affymetrix probe sequence for these genes are displayed in Table 1. In a preferred embodiment, the method further comprises testing a biological sample from the mammal for expression of DAPK2 which is found at higher levels in sensitive cells, whereby to predict an increased likelihood of response to the erbB receptor drug.


In an alternative embodiment, the method comprises testing a biological sample from the mammal for expression of at least one or more of the following from Table 1, which are found at lower levels in sensitive cells NES, GSPT2, ETR101, TAZ, CHST7, DNAJC3, NPAS2, PIN1, TCEA2 or VAMP4 or at least one or more of the following which are found at higher levels in sensitive cells DAPK1, DAPK2, MLLT3, TNNC1 or KIAA0931. The Affymetrix ID and Affymetrix probe sequence for these genes are displayed in Table 1.


In a preferred embodiment, the method further comprises testing a biological sample from the mammal for expression of any one of the genes listed in Table 2, whereby to predict an increased likelihood of response to the erbB receptor drug. In a preferred embodiment, the method comprises testing a biological sample from the mammal for expression of any one of the following genes listed in Table 2, which are found at lower levels in sensitive cells EMP1, SLC20A1, SPRY2 or PGM1, whereby to predict an increased likelihood of response to the erbB receptor drug. More preferably the method comprises testing a biological sample from the mammal for expression of EMP1.


In an alternative preferred embodiment, the method further comprises testing a biological sample from the mammal for expression of any one of the genes listed in Table 2, whereby to predict an increased likelihood of response to the erbB receptor drug. In a preferred embodiment, the method comprises testing a biological sample from the mammal for expression of any one of the following genes listed in Table 2, which are found at lower levels in sensitive cells EMP1, HCA127, UBL5, ZNF23, UROD, CD44, SPRY1, RAPGEF2, SLC20A1, NRP1, PGM1 or SPRY2 or at least one or more of the following which are found at higher levels in sensitive cells PTGER3, SCN10A, KITLG, CDH1, HOP, BCL3 or OLFM1 whereby to predict an increased likelihood of response to the erbB receptor drug. More preferably the method comprises testing a biological sample from the mammal for expression of EMP1.


In an especially preferred embodiment the method comprises testing a biological sample from the mammal for expression of NPAS2, NES, CHST7, DAPK1 and EMP1. High NPAS2, NES, CHST7 and EMP1 levels are associated with resistance to gefitinib and high DAPK1 levels are associated with sensitivity to gefitinib. Preferably, the assessment of expression comprises determination of whether DAPK1 levels are increased and NPAS2, NES, CHST7 and EMP1 levels are reduced.


In an alternative especially preferred embodiment the method comprises testing a biological sample from the mammal for expression of DAPK1, DAPK2, NES and EMP1. High EMP1 and NES levels are associated with resistance to gefitinib and high DAPK1 and DAPK2 levels are associated with sensitivity to gefitinib. Preferably, the assessment of expression comprises determination of whether DAPK1 and DAPK2 levels are increased and EMP1 and NES levels are reduced. In a most preferred embodiment the invention comprises determining the level of DAPK1 and EMP1.


According to another aspect of the invention there is provided a method for predicting clinical outcome of treatment with an erbB receptor drug for a mammal, having or suspected of having a tumour, comprising determining the level of any of the genes as described hereinabove in a biological sample taken from the tumour, or suspected tumour, wherein a poor outcome is predicted if:


a) the expression level of DAPK1 is reduced; and/or


b) the expression level of NPAS2, NES, CHST7 and EMP1 is increased.


According to another aspect of the invention there is provided a method for classifying cancer comprising, determining the level of any of the genes as described hereinabove in a biological sample taken from a tumour, or suspected tumour, wherein tumours expressing elevated levels of DAPK1 and/or reduced levels of NPAS2, NES, CHST7 or EMP1 are predicted as sensitive to treatment with erbB receptor drugs.


According to another aspect of the invention there is provided a method for predicting clinical outcome of treatment with an erbB receptor drug for a mammal, having or suspected of having a tumour, comprising determining the level of any of the genes as described hereinabove in a biological sample taken from the tumour, or suspected tumour, wherein a poor outcome is predicted if.

    • a) the expression level of DAPK1 or DAPK2 is reduced; and/or
    • b) the expression level of EMP1 or NES is increased.


According to another aspect of the invention there is provided a method for classifying cancer comprising, determining the level of any of the genes as described hereinabove in a biological sample taken from a tumour, or suspected tumour, wherein tumours expressing elevated levels of DAPK1 or DAPK2 and/or reduced levels of EMP1 or NES are predicted as sensitive to treatment with erbB receptor drugs.


According to another aspect of the invention there is provided a method for treating a disease condition in a mammal having, or suspected of having, a tumour, predicted to be resistant or non responsive to erbB receptor drug treatment based on the level of any of the genes as described hereinabove, comprising: providing a resistance-surmounting quantity of an erbB receptor drug and administering the resistance-surmounting quantity of the erbB receptor drug to the mammal.


In a preferred embodiment the mammal is a primate. In a most preferred embodiment the mammal is a human. In a preferred embodiment the patient is a primate. In a most preferred embodiment the patient is a human.


The term “erbB receptor drug” includes drugs acting upon the erbB family of receptor tyrosine kinases, which include EGFR, erbB2 (HER), erbB3 and erbB4 as described in the background to the invention above. In a preferred embodiment the erbB receptor drug is an erbB receptor tyrosine kinase inhibitor. In a preferred embodiment the erbB receptor drug is an EGFR tyrosine kinase inhibitor.


In a more preferred embodiment the EGF receptor tyrosine kinase inhibitor is selected from gefitinib, Erlotinib (OSI-774, CP-358774), PKI-166, EKB-569, HKI-272 (WAY-177820), lapatinib (GW2016, GW-572016), canertinib (CI-1033, PD183805), ABB788, XL647, BMS 5599626 or any of the compounds as disclosed in WO03/082831, WO05/012290, WO05/026157, WO05/026150, WO05/026156, WO05/028470, WO05/028469, WO2004/006846, WO03082831, WO03/082290 or PCT/GB2005/000237.


In another preferred embodiment the erbB receptor drug is an anti-EGFR antibody such as for example one of cetuximab (C225), matuzumab (EMD-72000), panitumumab (ABX-EGF/rHuMAb-EGFr), MR1-1, IMC-11F8 or EGFRL11.


We contemplate that erbB receptor drugs may be used as monotherapy or in combination with other drugs of the same or different classes. In an especially preferred embodiment the EGF receptor tyrosine kinase inhibitor is gefitinib.


In a preferred embodiment the present invention is particularly suitable for use in predicting the response to the erbB receptor drug as described hereinbefore in those patients or patient population with a tumour which is dependent alone, or in part, on an erbB tyrosine kinase receptor. Such tumours include, for example, non-solid tumours such as leukaemia, multiple myeloma or lymphoma, and also solid tumours, for example bile duct, bone, bladder, brain/CNS, glioblastoma, breast, colorectal, cervical, endometrial, gastric, head and neck, hepatic, lung, muscle, neuronal, oesophageal, ovarian, pancreatic, pleural/peritoneal membranes, prostate, renal skin, testicular, thyroid, uterine and vulval tumours.


In a preferred embodiment the present invention is particularly suitable for identifying a patient with head, neck, pancreatic, glioblastoma, colorectal or breast tumour for drug treatment. In an especially preferred embodiment the present invention also is particularly suitable for identifying those patients with NSCLC, more particularly advanced NSCLC including advanced adenocarcinoma that will respond to treatment with an erbB receptor drug as hereinbefore defined.


The present invention provides advantage in the treatment of tumours such as NSCLC, especially advanced NSCLC by identifying “individual cancer profiles” of NSCLC and so determining which tumours would respond to erbB receptor drug such as gefitinib.


The present invention is particularly useful in the treatment of patients with advanced NSCLC who have failed previous chemotherapy, such as platinum-based chemotherapy. The present invention is also particularly useful in the treatment of patients with locally advanced (stage IIIB) or metastasized (stage IV) NSCLC who have received previous chemotherapy, such as platinum-based chemotherapy. The present invention is also useful in adjuvant therapy or as a first-line therapy.


In a preferred embodiment there is provided a method of selecting a human, having or suspected of having a tumour, for treatment with gefitinib which comprises testing a biological sample, from the mammal for expression of NPAS2, NES, CHST7, DAPK1 and EMP1, whereby to predict an increased likelihood of response to gefitinib.


In a preferred embodiment there is provided a method of selecting a human, having or suspected of having a tumour, for treatment with gefitinib which comprises testing a biological sample, from the mammal for expression of DAPK1, DAPK2, NES and EMP1 whereby to predict an increased likelihood of response to gefitinib.


According to another aspect of the invention there is provided a method of predicting the responsiveness of a patient or patient population with cancer, for example lung cancer, to treatment with chemotherapeutic agents, especially erbB receptor drugs, comprising comparing the differential expression of any of the genes described herein.


In one embodiment the assessment of expression is performed by gene expression profiling using oligonucleotide-based arrays or cDNA-based arrays of any type, particularly where large numbers of genes are analysed simultaneously. In an alternative embodiment, RT-PCR (reverse transcription-Polymerase Chain Reaction), real-time PCR, in-situ hybridisation, Northern blotting, Serial analysis of gene expression (SAGE) for example as described by Velculescu et al Science 270 (5235): 484-487, or differential display or any other method of measuring gene expression at the RNA level could be used. Details of these and other general molecular biology techniques can be found in Current Protocols in Molecular Biology Volumes 1-3, edited by F M Asubel, R Brent and R E Kingston; published by John Wiley, 1998 and Sambrook, J. and Russell, D. W., Molecular Cloning: A Laboratory Manual, the third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001.


In another embodiment the assessment of expression is performed by measurement of protein levels encoded by the aforementioned genes. For example, an immunohistochemistry-based assay or application of an alternative proteomics methodology.


In another embodiment the assessment of expression is performed by measurement of activity of the proteins encoded by the aforementioned genes, for example in a bioassay.


In a preferred embodiment the biological sample would have been obtained using a minimally invasive technique to obtain a small sample of tumour, or suspected tumour, from which to determine gene expression profile. Such techniques include, for example tumour biopsy, such as transbronchial biopsy. The profile of gene expression of transbronchial biopsy specimens whose size is about 1 mm may be measured for example using a suitable amplification procedure.


Another aspect of the invention provides a kit for use in a method of predicting the responsiveness of a patient or patient population with a tumour, to treatment with chemotherapeutic agents, especially erbB receptor drugs, comprising a means for measuring the levels of any of the genes as described hereinabove. Preferably the genes are attached to a support material or membrane such as nitrocellulose, or nylon or a plastic film or slide.


In a further preferred embodiment the present invention includes administration of an erbB receptor drug to a mammal selected according the methods described hereinabove.


According to another aspect of the invention there is provided a method of using the results of the methods described above in determining an appropriate dosage of an erbB receptor drug.


In a preferred embodiment the biological sample comprises either a single sample which may be tested for expression of any of the genes as described hereinabove, or multiple samples which may be tested for expression of one or more of the genes as described hereinabove.





The invention is illustrated by the following non-limiting examples in which:



FIG. 1 illustrates a xenograft (A549 cell line) which when grown as a xenograft in athymic mice is sensitive to gefitinib. This involved oral dosing, once daily, at the dose indicated. Y axis=mean tumour volume in cm3; x axis=days after treatment.



FIG. 2 illustrates a xenograft (MKN45 cell line) which when grown as a xenograft in athymic mice is resistant to gefitinib. This involved oral dosing, once daily, at the dose indicated. Y axis=mean tumour volume in cm3; x axis=days after treatment.



FIGS. 3, 4, 5 and 6 show examples of specific gene expression profiled across a wider panel of gefitinib sensitive and resistant lines, where definition of sensitivity is based on response to gefitinib when grown as a xenograft, to increase confidence that the expression profile of each gene is truly predictive. Iressa sensitivity is based on xenografts data. The cell lines and the tumours from which they are derived are as follows; KB—head and neck, HT29—colon, BT474—breast, DU145—prostate, LoVo—colon, MCF7—breast, GBO—colon, A549—lung, A431—epidermoid, H322—lung, HX147—lung, RT112—bladder, MiaPaCa2—pancreas, MKN45—gastric, MDAMB231—breast, PC3—prostate, Calu6—lung, SW620—colon. The legend key is S=sensitive, U=unknown and R=resistant.



FIG. 3 shows EMP1 basal expression in Cell Culture—wider cell panel (Taqman RT-PCR).



FIG. 4 shows DAPK1 basal expression in Cell Culture—wider cell panel (Taqman RT-PCR).



FIG. 5 shows DAPK2 basal expression in Cell Culture—wider cell panel (Taqman RT-PCR).



FIG. 6 shows NES basal expression in Cell Culture—wider cell panel (Taqman RT-PCR).





EXAMPLE 1
Gene Expression in Gefitinib Resistant or Sensitive Tumour Cell Lines
Cell Culture and Xenograft Studies

We identified genes useful to predict response to erbB receptor drugs in the clinic. This is based on studies with gefitinib, but the findings are applicable to erbB receptor drugs in general.


The gene lists have been assembled by comparing tumour cell lines which have been demonstrated to be either sensitive to gefitinib or resistant to gefitinib. This definition is based on the response observed when the tumour cell line is implanted into nude mice and grown as a xenograft. This definition has been used for all the pre-clinical studies described herein.


Initially a small panel of six human tumour cell lines were assembled, three which are sensitive to gefitinib and three which are resistant to gefitinib in the xenograft setting defined above.


The sensitive cell lines were;

    • 1. Lovo (ATCC1 No. CCL-229)—colon tumour cell line
    • 2. KB (ATCC No. CCL-17)—initially reported as a nasopharyngeal cell line (although more recently reported as Hela derived (cervical carcinoma)
    • 3. HT29 (ATCC No. HTB-38)—colon tumour cell line 1ATCC=American Type Culture Collection


      The resistant cell lines were;
    • 1. MKN 45 (source—Nottingham University, UK)—gastric tumour cell line
    • 2. Calu 6 (ATCC No. HTB-56)—lung tumour cell line
    • 3. PC3 (ATCC No. CRL-1435)—prostate tumour cell line


The cell lines were grown both in cell culture and as xenografts, RNA prepared and the basal expression profiles determined by measuring RNA expression on the Affymetrix microarray platform. As part of our studies, the term ‘basal’ has been used to indicate constitutive or steady state expression levels (rather than expression levels which are modulated as a consequence of administration of an erbB ligand or gefitinib to the cells). FIG. 1 illustrates the sensitivity of A549 xenografts (used in Example 3 below) to treatment with gefitinib. FIG. 2 illustrates the resistance of MKN45 xenografts to gefitinib. See Example 2 below for analysis of results.


EXAMPLE 2
Statistical Analyses of Cell Culture and Xenograft Data Sets

The following statistical analyses were performed separately for cell culture and xenograft data sets. Probe sets were eliminated if their signal was not distinguishable from background noise across all RNA samples in the set. Mixed ANOVA (see for example Scheffe, 1959) was applied separately to each remaining probe set to generate p values. The p values were then used to calculate Q values (Storey). The Q values indicate the expected proportion of genes in a gene list which are not truly differentially expressed but have been falsely discovered (False Discovery Rate or FDR). Q value cut-offs appropriate in the different studies were identified and applied, based on graphical examination of the p value and Q value results, in conjunction with fold change. The final genelists for each study were generated using Q value and fold change (FC) cut-offs. The different genelists were then combined to display an overall list of genes which showed consistent differences in expression profiles between the cell lines in the sensitive and resistant groups.


Further details of the analysis procedures are provided as follows. Fold change (FC) was calculated based on the mean of sensitive cells divided by the mean of resistant cells. To generate gene lists, FC cut-off of two-fold (2×) change in either direction was used in all cases. Furthermore FDR Q values were used to narrow down the lists and obtain the most significant gene changes across sensitive versus resistant cell lines. In the case of cell culture, Q value cut-off is 0.3. In the case of xenograft, Q value cut-off is 0.6. The different cut-offs used reflect the different design and variance values associated with each experiment.


In cell culture studies, lists were obtained based on the above criteria for cells grown either in full serum containing medium or in charcoal stripped serum. In the xenograft study, the same as above was performed for separate sets of tumours harvested at 18 hr intervals. Gene lists contain some redundancy in genes where appropriate to illustrate consistency of results obtained for example with different probe sets.


EXAMPLE 3
Identification of Predictive Genes

Genes which have not previously been identified as predictive of erbB receptor drug sensitivity are listed in Table 1. Other genes which we have identified to be optionally used in combination with Table 1 genes are listed in Table 2.


Key to Tables:



  • ‘Affymetrix ID’—the Affymetrix probe set identifier

  • ‘Sequence’—target sequence relating to the Affymetrix probe set indicated by ‘Affymetrix ID’



“+ if up in sensitive” means that the gene is relatively highly expressed in sensitive cells. (Consequently, absence of a “+” means that the gene is relatively highly expressed in resistant cells).


‘Gene Title’—The current annotation of the gene relating to ‘Affymetrix ID’ based on UniGene 133


‘Gene Symbol’—shorthand synonym for the gene title


‘Locus Link’ & RefSeq Transcript ID’ are provided for gene identification purposes.


Combining genes has the potential to generate an improved diagnostic over genes used in isolation. Collective gene expression profiles (at the RNA and/or protein level) may be more likely to identify patients most likely to benefit from gefitinib rather than the expression level of one gene in isolation.


It may be more practical when developing a pre-treatment response prediction diagnostic to work with a truncated gene list from tables 1 and/or 2. A number of criteria have been used to shorten the gene list to identify those genes which are most predictive of response. Firstly the statistical (p values and Q values or FDR values) can indicate the statistical significance of a gene.


Secondly, the differential expression (fold change) between the sensitive and resistant groups indicates the potential sensitivity of a marker to be used in a diagnostic test (highest fold change between sensitive group and resistant group is preferred).


Thirdly, we have performed RT-PCR based expression profiling across a wider panel of gefitinib sensitive and resistant human tumour cell lines to increase confidence that the expression profile of each gene is truly predictive. FIGS. 3, 4, 5 and 6 show examples of specific gene expression profiled across a wider panel of cell lines as set out below.


The sensitive human tumour cell lines, where definition of sensitivity is based on response to Iressa when grown as a xenograft:

    • a. BT474 (ATCC No. HTB-20)—breast tumour cell line
    • b. DU145 (ATCC No. HTB-81)—colon tumour cell line
    • c. MCF7 (ATCC No. HTB-22, sourced from ICRP (now CR-UK), London), —breast tumour cell line
    • d. GEO colon tumour cell line. RNA obtained from Fortunato Ciardiello, Cattedra di Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale “P. Magrassi e A. Lanzara,” Seconda Universita delgi Studi di Napoli, Via S. Pansini, 5-80131, Naples, Italy.
    • e. A549 (ATCC No. CCL-185)—lung tumour cell line
    • f. A431 (ATCC No. CRL-155)—epidermoid cell line


The resistant human tumour cell lines, where definition of sensitivity is based on response to Iressa when grown as a xenograft:


1) HX147—(source: ICRF (now CR-UK), London)—lung tumour cell line


2) RT112—bladder tumour cell line (DSMZ No ACC 418)


3) MiaPac2 (ECACC 85062806, ref. no. 001611) pancreatic tumour cell line


4) MDAMB231 (ATCC No. HTB-26)—breast tumour cell line


5) SW620 (ECACC CCL-227)—colon tumour cell line


ATCC=Arnerican Type Culture Collection
DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (German Collection of Micro-organisms and Cell Cultures)
ECACC=European Collection of Cell Cultures

In isolation, each of these genes is reasonably predictive of gefitinib response, but collectively they can be applied to make predictions with a higher level of confidence.


The Affymetrix probe sets identifiers for the genes in the above diagnostic genelists are indicated in Tables 1 and 2. Current Affy IDs are based on Affy U133 chipset. For the avoidance of doubt, the target sequences of the Affymetrix probe sets which identified the listed genes are also provided in Tables 1 and 2.


Without wishing to be bound by theoretical considerations, it is contemplated that the specific sequences used to detect target genes in the Examples may define specific splice variants or sequences in homologous genes. Therefore in one embodiment, a listed gene for use in the method of the invention is defined by the specific sequence used in said Examples. In another embodiment, a gene for use in the method of the invention is not limited by the specific sequence used in these Examples. Indeed the fact that some genes in Tables 1 and 2 have been identified using different sequences (gene “redundancy”) and confirmatory RT-PCR studies (see Example 4) provides evidence that usefulness in the method of the invention is not generally limited to the specific sequences used to measure the target gene.


Note, in the event of a discrepancy in the sequence between Tables 1 and 2 and the Sequence Listing, the sequence as provided in the Tables is preferred.










TABLE 1







as described in priority application US60/619027 filed on 18/10/2004.
















Gene

Affymetrix
+ up in


RefSeq
SEQ ID



Symbol
Gene Title
ID
sensitive
Sequence
LocusLink
Transcript ID
NO.





ACOX2
““acyl-Coenzyme
205364_at

Gtgcagcatttacagaccctgacgcaatccggagctgaccagcacgaggcttgga
8309
NM_003500
SEQ ID




A oxidase 2,


accagaccactgtcatacacctccaggctgctaaggtgcactgctactatgtcactgtg


NO: 1



branched chain/


aagggttttacagaagctctggagaaactagaaaatgaaccagcgattcagcaggt



acyl-Coenzyme A


gctcaagcgcctctgtgacctccatgccatacatggaatcttgactaactcgggtgact



oxidase 2,


ttctccatgacgccttcctgtctggtgcccaagtggacatggcaagaacagcctacctg



branched chain”


gacctgctccgcctgatccggaaggatgccatcctgttaactgatgcttttgacttcacc






gatcagtgtttaaattcagcccttggctgttatgatggaaacgtctacgaacgcctgttcc






agtgggctcagaagtc





ACTR2
ARP2 actin-
200729_s

gagcttaagatctggtgtrngttaatgcttctgttattccagaagcattaaggtaaccat
10097
NM_005722 SEQ ID



related protein 2
_at

tgccaagtatcattcttgcaaattattcttttatataactgaccagtgcttaataaaacaag


NO: 2



homolog (yeast)


caggtacttacaaataattactggcagtaggttataattggtggtttaaaaataacattg






gaatacaggacttgttgccaattgggtaattttcattagttgttttgtttgttttgatttgaaac






ctggaaatacagtaaaatttgactgtttaaaatgttggccaaaaaaatcaagatttaatt






tttttatttgactgaaaaactaatcataactgttaattctcagccatctttgaagcttgaaa






gaagagtctttggtattttgtaaacgttagcagactttcctgccagtgtcagaaaatccta






tttatgaatccttcggtattccttggtatctgaaaaaaataccaaatagtaccatacatg






agttatttctaa





APOL1
“apolipoprotein L
209546_s
+
agaatagagaggaggcttgaaggaaccagcaatgagaaggccaggaaaagaa
8542
NM_003661/
SEQ ID



1/apolipoprotein
_at

agagctgaaaatggagaaagcccaagagttagaacagttggatacaggagaaga

NM_145343/
NO: 3



L, 1”


aacagcggctccactacagacccagccccaggttcaatgtcctccgaagaatgaag

NM_145344






tctttccctggtgatggtcccctgccctgtctttccagcatccactctcccttgtcctcctgg






gggcatatctcagtcaggcagcggcttcctgatgatggtcgttggggtggttgtcatgtg






atgggtccctccaggttactaaagggtgcatgtcccctgcttgaacactgaagggcag






gtggt





C10orf
chromosome 10
209183_s

aactcatacgtcctgtggtggcattgggagagttcccccatgatgagggccagata
11067
NM_007021
SEQ ID


10
open reading
_at

gaatctgtaccactcagtgctaccatccccacccctacaccacttccacacaggggc


NO: 4



frame 10/


ctcatggatggcagggtcccagctgtaggtgagagcagggcactgtccagctgtc



chromosome 10


cactggggaagcaagatgtaaggcccaggtcagggcatctggagtctgaagg



open reading


accctagttcctagaggcatctggcagcaagaaggtgaggcatcagggaacggga



frame 10


atcaggctgggactgatcagaggtgaagggacagagagaggagaggaggaaga






ttgagctgggggcaacagccaagctcacctgggcaggtctctgccacctccttgctct






gtgagctgtcagtdaggttattctctttttttgtggctatttttaattgctttggatttgttaaatg






ttttctgtcttctgttaagtgtgttt





CALM1
“calmodulin 1
211984_at

tgaacggctgtgcagtaggcccagcgctgctgtgtctcgtcagaggaatagcttacca
801
NM_006888
SEQ ID



(phosphorylase


cgaacccctcagcatactgggaatctcctgaacaacgaatgtaaatttggtcaagt


NO: 5



kinase, delta)”


ctactccgttcattcaattattttaagcatttgaattatttattgtatatcctaaatatatttct






cctttggcagtgactagatttccactaatgtgtcttaatctatccctccagctggcagttac






tgtttttttaatcccctgaagttgtcctgtaggagacagaaattctttgctgtctgtatccctt






ggagtaa





CALM1
“calmodulin 1
211985_s

gaggcaaatggatctcgatatttcagatgggcttttgafgcactgttgccaaggaaggc
801
NM_006888
SEQ ID



(phosphorylase
_at

tttttctgattttttgacaaatgaatttttgcacactttcattggtctttcggcaacttacaca


NO: 6



kinase, delta)”


cattgaaaat





CD44
CD44 antigen
210916_s

caagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgca
960
NM_000610
SEQ ID



(homing function
_at

gatcgatttgaatataacctgccgctttgcaggtgtattccacgtggagaaaaatggtc


NO: 7



and Indian blood


gctacagcatctctcggacggaggccgctgacctgcaaggctttcaatagcacctt



group system)


gcccacaatggcccagatggagaaagctctgagcatcggatttgagacctgcagttt






gcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaa






cagtggcaatggagctgtggaggacagaaagccaagtggactcaacggagaggc






cagcaagtctcaggaaatggtgcatttggtgaacaaggagtcgtcagaaactccag






accagt





CD44
CD44 antigen
212063_at

attgtaaatctttgtgtctcctgaagacttcccttaaaattagctctgagtgaaaaatcaa
960
NM_000610
SEQ ID



(homing function


aagagacaaaagacatcttcgaatcatatttcaagcctggtagaattggcttttctag


NO: 8



and Indian blood


cagaacctttccaaaagttttatattgagattcataacaacaccaagaattgattttgtag



group system)


ccaacattcattcaatactgttatatcagaggagtaggagagaggaaacatttgactta






tctggaaaagcaaaatgtacttaagaataagaataacatggtccattcacctttatgtta






tagatatgtctttgtgtaaatcatttgttttgagttttcaaagaatagcccattgttcattcttgt






gctgtacaatgaccactgttattgttactttgacttttcagagcacaccc





CDS2
CDP-
212864_at

ttctatgcatccacaccaaaatcctgcagaatgtaagtaagctctgctttataagatgg
8760
NM_003818
SEQ ID



diacylglycerol


gttcaccttcatcgcagactgaaagttcagtttttatttttttncagaaagcacgaaaat


NO: 9



synthase


tatttataatagtctggagaaaaaacacactgtaatatttcaagtgtatgcagtagaatg



(phosphatidate


tactgtaactgagccctttcccacatgtctaggctccaatgtctgtctcctgtaggtccacctaaa



cytidylyltransferase)


ctgtgttttcagggacaatgccatccatgtttgtgctgtagacttgctgctgctgaatcct



2


ttctggggactttctcatcgggcagggagcagagggcttctcgttcatgcaccctttgcc






tgaacacccatgtagctgctgtgttgtgtatatattactcttaagaggagtgtgtgtgtctgt






gtttgttttaaaagtcacttatttcttacagtgatttcaattgcaccatgacttcttcactaaa






accacaaagtcctgcttaaaactatggaaaacctaacctgattagagccttgac





CHST7
carbohydrate (N-
208756_at

ggcaatctgcacactctcagagtctgggacttgacttgctaccaacaactgctgtgca
56548
NM_019886
SEQ ID



acetylglucosamine-


attctgctgagcaggaatatcatgagctgttcaataatgacggacgcattggttgagat


NO: 10



6-O)


gaagtttccagtaaggaagtgacagtgcaatgtggatatttatggctgtaaaatagga



sulfotransferase 7/


agagctttagttcccaggctgaacctgccactgctggagccatttcaacaaggcatcc



carbohydrate


tcacaacaaagaagagatgtgatttggtaccatttcacaccagcaggtgtctggacg



(N-


aaaacatcaatgtgaataagggccaagtgcagtcctgtcttgattaaattacttaataat



acetylglucosamine-


attattaaataataataggtctgggcagtattgtttttaacctgactcatccagctgtccttc



6-O)


aaatagctccgtctccctctacccagaactgatttttaaaaagaagtaatttttctccctg



sulfotransferase 7


ggctgggaaaaccctaatgaactgaaacacacttttactttaaaatttttctgtctggcgt






ttttgtaatc





COMM
COMM domain
218048_at

gaattccctagaaatcctactgggaagtataggcagatctctccctcatataacggatg
23412
NM_012071
SEQ ID


D3
containing 3


tttcttggcgcttggaatatcagataaagaccaatcaacttcataggatgtacagacct


NO: 11






gcatattggtgacctaagtgtacagaacactgattccccatcctatccagagattagtt






ttagttgcagcatggaacaattacaggacttggtggggaaacttaaagatgcttcgaa






aagcctggaaagagcaactcagttgtaacttggggaagttaacgatccgcccgagt






gcagaggaaaaccagaaacgccttgccttcagctgaaccaccgtttgtgcgagctg






gatgtccttttcagtagaaaagaattttccttttgaatttataccattcatcaattttgacactt






taaaaacgtgtgaaagggttaagagggaaagatactgcccaagtatttgaatcgttta






gtagtaactgtccatttatcctat





CUL2
cullin 2/cullin 2
203078_at

tataatacttcagtaaggcctttaaaaaatccacagtgatattattactcctaacaaaaa
8453
NM_003591
SEQ ID






caataattacttagtatcatctaatatgtggttcatatttaaatttgttgttttgagatgggtctt


NO: 12






acaattggtttattcaattgcattttttctaactcgtgtctcaagtgttttaaaaatctactgna






cttataatgacttatataatgtatttctcattttacctttcttccaaaagaggaaataatggc






aaaccatataatattgtacattcactgtcaaaaagcaaacccttgttttgataacttgt





DAPK1
death-associated
203139_at
+
cctcctccagggtgattttatgatcagtgttgttgctctaggaagacatttttccgtttgctttt
1612
NM_004938
SEQ ID



protein kinase 1/


gttccaatgtcaatgtgaacgtccacatgaaacctacacactgtcatgcttcatcattcc


NO: 13



death-associated


ctctcatctcaggtagaaggttgacacagttgtagggttacagagacctatgtaagaat



protein kinase 1


tcagaagacccctgactcatcatttgtggcagtcccttataattggtgcatagcagatgg






tttccacatttagatcctggtttcataacttcctgtacttgaagtctaaaagcagaaaata






aaggaagcaagttttcttccatgattttaaattgtgatcgagttttaaattgataggaggg






aacatgtcctaattcttctgtcctgagaa





DNAJC
“DnaJ (Hsp40)
208499_s

aggagaggatttgccactgcttttctaaggacgagaagcctgttgaagctattagggttt
5611
NM_006260
SEQ ID


3
homolog,


gttctgaagttttacagatggaacctgacaatgtgaatgccctgaaagatcgagctga


NO: 14



subfamily C,


ggcctatttgatagaggaaatgtatgatgaagctattcaggattatgaaactgctcagg



member 3”


aacacaatgaaaatgatcagcagattcgagaaggtctagagaaagcacaaagatt






attgaaacagtcgcagaaacgagattattataaaatcttgggagtaaaaagaaatgc






caaaaagcaagaaattattaaagcataccgaaaattagcactgcagtggcaccca






gatgataacttccagaatgaagaagaaaagaaaaaagctgagaaaaagttcattgatat






agcagctgctaaagaagtcctctctgatccagaaatgagaaagaagtttgacgacg






gagaagatcctttggatgcagagagccagcaaggaggcggcggcaaccctttcca






cagaagctggaactcatggcaagggttcaatcccttcagctcaggcggaccatttag






a





DPYSL
dihydropyrimidinase-
201431_s

tgagggccacgggcttgggtagtggaaagggtgtttgggaaattgttaaatcagttac
1809
NM_001387
SEQ ID


3
like 3/
_at

ccgtagtagagctatttcttgtacttctaagtttctagaagtggaaggattgtagtcatcct


NO: 15



dihydropyrimidinase-


gaaaatgggtttacttcaaaatccctagccttgttcttcagactctatactgagagt



like 3


gtcatgtttccacaaagggctgacacctgagcctggattttcactcatccctgagaagc






cctttccagtagggtgggcaattcccaacttccttgccacaagcttcccaggctttctcc






cctggaaaactccagcttgagtcccagatacactcatgggctgccctgggcagccag






cattcatttaagttccctctttgaaaactgggtgggtgttcagttctgtgtctggtgggt






atggacagacagtaatctcctgtgatctgtgctagctgtgaggcagctctggaacgtg






a





DUSP4
dual specificity
204015_s

ggctcccagcaagggtaggacgggccgcatgcgggcagaaagttgggactgagc
1845
NM_001394/
SEQ ID



phosphatase 4/
_at

agctgggagcaggcgaccgagctccttccccatcatttctccttggccaacgacgag

NM_057158
NO: 16



dual specificity


gccagccagaatggcaataaggactccgaatacataataaaagcaaacagaaca



phosphatase 4


ctccaacttagagcaataacggctgccgcagcagccagggaagaccttggtttggttt






atgtgtcagtttcacttttccgatagaaatttcttacctcatttttttaagcagtaaggcttga






agtgatgaaacccacagatcctagcaaatggcccaaccagctttactaaaggggg






aggaagggagggcaaagggatgagaagacaagtttcccagaagtgcctggttctg





EIF3S4
“eukaryotic
208887_at

gatacgctggggccatgcagaaggagctggccgagcagctgggcctgtctactgg
8666
NM_003755
SEQ ID



translation


cgagaaggagaagctgccgggagagctagagccggtgcaggccacgcagaac


NO: 17



initiation factor 3,


aagacagggaagtatgtgccgccgagcctgcgcgacggggccagccgccgcgg



subunit 4 delta,


ggagtccatgcagcccaaccgcagagccgacgacaacgccaccatccgtgtcac



44 kDa/


caactgtcagaggacacgcgtgagaccgacctgcaggagctcttccggcctttcgg



eukaryotic


ctccatctcccgcatctacctggctaaggacaagaccactggccaatccaagggctt



translation


gccttcatcagcttccaccgccgcgaggatgctgcgcgtgccatttgccggggtgtccg



initiation factor 3


gctttggctacgaccacctcatcctcaacgtcgagtgggccaagccgtccaccaact



subunit 4 delta,


aagccagctgccactgtgtactcggtccgggacccttggcgacagaagacagcc



44 kDa”







EIF5A
eukaryotic
213757_at

atgtgtcggggagagagcccgcagggaagggtaaagcccannggggcagggcc
1984
NM_001970
SEQ ID



translation


ctcccagatgcctgaggagggggcaggtcccctcccctctcctccccat


NO: 18



initiation factor 5A


ctaaaggggtttggggagagacacaggcaggcgagggggctggcccagtctgtt






ggggtggtgctcagggtaaagggctatnggcaacaggggaccagaccagggatg






agtggggagggcacaaggaccatttgccagaatccaccg





FADS2
fatty acid
202218_s

ctgttgctccaggatgcattctgataggagggggcggcgggctgggccttgtgaca
9415
NM_004265
SEQ ID



desaturase 2/
_at

atctgcctttcaccacatggccttgcctcggtggccctgactgtcagggagggccagg


NO: 19



fatty acid


gaggcagagcgggagggagtctcaggaggaggcttgccctgaggggctggggag



desaturase 2


ggggtacctcatgaggaccagggtggagcttgagaagaggaggaggtggggctt






ggaggtgcttggtagctgaggggacgggcaagtgagaggggagggagggaagtc






ctgggaggatcctgagctgctgttgcagtctaacccactaatcagttcttagancaggg






gaagggcaggcaccaacaactcagaatgggggctttcggggagggcgcctagtcc






ccccagctctaagcagccaggagggacctgcatctaagcatctgggttgccatggc






aatggcatgccccccagctactgtatgcccccgacccccgcagaggcagaatgaa






cccatagggagctgatcgtaat





FLJ124
hypothetical
218051_s

gggaccacctctatagtgatctggcggatctcatgctgcggcacggctggcgcacag
64943
NM_022908
SEQ ID


42
protein FLJ12442
_at

gcgccatcatccccgagctggagcgtgagatccgcatcatcaacacggagcagtac


NO: 20






atgcactgctgacgtggcagcaggcgctcacggggctgctggagcgcatgcaga






cctatcaggacgcggagtcgaggcaggtgcggctgcctggatgaaagagcggca






ggagctgaggtgcatcaccaaggccctgttcatgcgcagttcggcagcatcttccg






caccttccacaaccccacctacttctcaaggcgcctcgtgcgcttctctgacctctacat






ggcctccctcagctgcctgctcaactaccgcgtggacttcaccttctacccacgccgta






cgccgctgcagcacgaggcaccccctctggatggaccagctcttgcaccggctgcatg






aagacccccttccttggtgacatggcccacatccgctgagggcacctttattgtctggg






ac





FLJ220
hypothetical
213878_at
+
tattcaaacggagcctcccattccaagaaactggaaacccctagtttatgttaaaagg
79912
NM_024854
SEQ ID


28
protein FLJ22028


ccagtctaaattcttcacttacatctttacagaaaactatattttctctcttccataccag


NO: 21






aaatctaatcagaaactgacttttctcatgttcaactggacctaggggaatatgacag






aaaagcatccataggctttaatatactttttaaaatatataaaactgaaaattaatagc






catttaccctgaaagagttctgcgggactttgtcacttgcatagaatagcatgtgcctc






attgttcagaagattagctttaggtcctattttcaaatacgaaatggtagcataagctgta






aaactgtagtcttctctgcagaaaataaaggccaacaataagaaagcttttgaagga






atcacggaaaacaaatttataaaagaaataactatatgcgcagtaattcttaacacatt






gac





FNTB
“famesyltransferase,
204764_at

gcaagtcgcgtgattctaccacacctgctactgcctgagcggcctgtccatagccca
2342
NM_002028
SEQ ID



CAAX box,


gcacttcggcagcggagcctttgcatgattggcctgggtgtgcccgaaaacgct


NO: 22



beta”


ctgcagcccactcacccagtgtacaacattggaccagacaaggtgatccaggccac






tacatactttctacagaagccagcccaggttttgaggagctaaggatgagacatcg






gcagagcctgcaaccgactagaggacctgggtcccggcagctctttgctcacccatc






tccccagtcagacaaggtttatacgtttcaatacatactgcattctgtgctacacaagcc






ttagcctcagtggagctgtggttctcttggtactttcttgaaacaaaccaatggtg






ggtttggagaacacagtggctggttttaaaattctttccacacctgtcaa





GPRC5
“G protein-
203632_s

tgatgcacctagcagggcttcaggggttcccactaggatgcagagatgacctctcgc
51704
NM_016235
SEQ ID


B
coupled receptor,
_at

tgcctcacaagcagtgacacctcgggtttccgttgctatggtgaaaattcctggatg


NO: 23



family C, group 5,


gaatggatcacatgagggtttcttgttgcttttggagggtgtgggggatattttgttttggtttt



member B/G


tctgcaggttccatgaaaacagcccttttccaagcccatttctgtcatggtttccatct



protein-coupled


gtcctgagcaagtcattcctttgttatttagcatttcgaacatcggccattcaaagccc



receptor, family


ccatgttctctgcactgtttggccagcataacctctagcatcgattcaaagcagagtttta



C, group 5,


acctgacggcatggaatgtataaatgagggtgggtccttctgcagatactctaatcact



member B”


acattgcttttctataaaactacccataagcctttaacctttaaagaaaaatgaaaaag






gttagtgtttgggggccgggggaggactgaccgcttcataagccagtacgtctgagct






gagta





GSPT2
G1 to S phase
205541_s

aagcaattttcttgatgcctctgcaagatactgtgaggagaattgacagcaaaagttca
23708
NM_018094
SEQ ID



transition 2
_at

ccacctactctattacgcccattgattgacttttcttcatattttgcaaagagaaatttca


NO: 24






cagcaaaaattcatgttttgtcagctttctcatgttgagatctgttatgtcactgatgaattta






ccctcaagtttccttcctctgtaccactctgcttccttggacaatatcagtaatagctttgta






agtgatgtggacgtaattgcctacagtaatgaaaaattaatgtactttaatttttcatttct






ttaggatatttagaccacccttgcacgcaaaccagagtcagtgtttgtgtg





H2AFY
“H2A histone
218445_at

cagggatcggaggacgacccgagtcccaagagtggggttttgctttttaaaaggaga
55506
NM_018649
SEQ ID


2
family, member


gaggagggtgatggcaggggagtggagggtggccgggcaggtcctgccggcgc


NO: 25



Y2/H2A histone


agggagccctctgcccttcacactctcctccaaaagagcctccatctgtaaggaagc



family, member


aggtctccgcgaggggtttctttccatgtgttttcctcctgttgttaaaagaacttttttaaaa



Y2


aaacagactcgttagatttatagcattgacttttacacattcacacaagaaaaa






aatcccaaaattcttaaatcttctgttcctcctttttccaagggaagagggcaaaaag






tggcctgggctctgttggtgtgcgtgttccgtggcggagagaagaaaatgggaaaga






catctcactggtgcttttctcttttgttttagtgccccccgcccccatccctataatatctgta






ac





HMGA
high mobility
208025_s

gaagcaattgctcatgttggccaaacatggtgcaccgagtgatttccatctctggtaaa
8091
NM_003483
SEQ ID


2
group AT-hook 2/
_at

gttacacttttatttcctgtatgttgtacatcaaaacacactactacttaagtcccagt


NO: 26



high mobility


atacctcatttttcatactgaaaaaaaaagcttgtggccaatggaacagtaagaacat



group AT-hook 2/


cataaaatttttatatatatagtttatttttgtgggagataaattttataggactgttctttgctgt



high mobility


tgttggtcgcagctaaataagactggacatttaacttttctaccatttctgcaagttaggta






tgtttgccaggagaaaagtatcaagacgtttaactgcagttgactttctcccctgttccttg






agtgtcttctaactttattctttgttctttatgtagaattgctgtctatgattgtactttgaatcgct






tgactgaaaatatttctctagtgtattatcactgtctgttctgcacaataaacataaca






gcctctgtgatccc





IER2
immediate early
202081_at

gcgtttccaacctcggagaattccaggcactcccctccgccgcctccgctgacatacttgta
9592
NM_004907
SEQ ID



response 2/


taagcggtcatcgttgcgtcatggggcaggcgtggggagcttcctgtcgccttggctgg


NO: 27



immediate early


gtgtgggcctggaggaaggtcctggggcgtgcactcgcctgggcagtggggagga



response 2


gagtggcctgagttacttcacccccgcgtgctgctggttaatgtcccgcgtctctgcacc






ttcgggtgggagcggggactgatctactttcacattctcaagtttttctcatctgcattaga






ggtccccagtaggttcccaggttccagcgtgcccctccctcagacacacggacaca






atcagccgagaagttcctggtctgaatcacgagaatgtggaggggtggggggtgtca






gtggaaaggcataaggctgagctgagaccagttgctggtgaaactgggccaatctg






gggaggggaacatccttgccagggagtttctgagggtctgctttgtttacctttcgtgcg






gggattctttttaactccgtctacctggcgttttgttaga





KIAA01
Vestigial-like
214004_s

ccacctgtgaccccgtggtggaggagcatttccgcaggagcctgggcaagaattac
9686
NM_014567
SEQ ID


21

_at

aaggagcccgagccggcacccaactccgtgtccatcacgggctccgtggacgacc


NO :28






actttgccaaagctctgggtgacacgggctccagatcaaagcggccaaggacgga






gcatccagcagccctgagtccgcctctcgcangggccagcccgccagcccctctgc






ccacatggtcagccacagcactccccctctgtggtctcctgaagggagcgcctcctc






caacaacacgtggatctgcatggtttgcctgagctttgaacagtca





KIAA09
KIAA0931 protein
213407_at
+
attagtctcaagcattcagtgatgtcttcagcatcactataggactgtctagtgtcactt
23035

SEQ ID


31



tttacttccttcgggtggaggctttccgactcccaatcatgaaggcaagttaatctttcca


NO: 29






gttagtgacttttgccccatagttggggtaancacttcctagattgagaaaaagcagct






acagcaatcctgctctgtttgcctcatttggtgatcagtcagtcacacataagttccttgt






attctaaatttcatgcacttctcccagatgctatagggttttctctcactgttgccaatggat






gtcatccagacagtgggctcatatcttacggttttgtgc





KLHL7
kelch-like 7
220239_at

agttgatcagagccttccagagtgtggtatgcttttcactgtgtgatgatccttagtggca
55975
NM_018846
SEQ ID



(Drosophila)


catgaatgaacgtccagatgtttgtgcagtagcccacccttatctgcaggatacgttcc


NO: 30






aagacccccagtgaatgcctgaaactgcagatagtactgaatcctatatatactgtgtt






ttttatgatacatacatgcctatgatgaagt





LAMC2
“laminin, gamma
202267_at

aagagaatgttcctactcacacttcagctgggtcacatccatccctccattcatccttcc
3918
NM_005562/
SEQ ID



2/laminin,


atccatctttccatccattacctccatccatccttccaacatatatttattgagtacctactgt

NM_018891
NO: 31



gamma 2”


gtgccaggggctggtgggacagtggtgacatagtctctgccctcatagagttgattgtc






tagtgaggaagacaagcatttttaaaaaataaatttaaacttacaaactttgtttgtcac






aagtggtgtttattgcaataaccgcttggtttgcaacctctttgctcaacagaacatatgtt






gcaagaccctcccatgggggcacttgagttttggcaaggctgacagagctctgggttg






tgcacatttctttgcattccagctgtcactctgtgcctttctacaactgattgcaacagact






gttgagttatgataacaccagtgggaattgctggaggaaccagaggcacttccacctt






ggctgggaagactatggtgctgccttgc





MLLT3
“myeloidllymphoid
204918_s
+
aaggcattccacaggatcatcatttaaaaaaaaagaattctggtcctgttttctaaaaa
4300
NM_004529
SEQ ID



or mixed-
_at

aaaaaaactgttgtagaaattcttaatttggatctatttattagtcagagtttcagctttcttc


NO: 32



lineage leukemia


agctgccagtgtgttactcatttatcctaaaaatctggaatcagagatttttgtttgttca



(trithorax


catatgattctcttagacacttttatatttgaaaaaattaaaatctttctttggggaaaaatt



homolog,


cttggttattctgccataacagattatgtattaacttgtagattcagtggttcaatacctgttt




Drosophila);



aggcttgctaatatttccagaaggatttcttgtattggtgaaagacggttggggatggg



translocated to, 3/


gggatttttttgttcttgttgtacccttgttttgaaactagaaatctgtcctgtggcatgcaaa



myeloid/lymphoid


agaaagcaaattatttttaaaagaaaaaaaccaaagtacttttggtgtcattattccatc



or mixed-lineage


ttctcca



leukemia



(trithorax



homolog,




Drosophila);




translocated to



3”





MNAT1
menage a trois 1
203565_s

ccagccactgcagatagagacatatggaccacatgttcctgagcttgagatgctagg
4331
NM_002431
SEQ ID



(CAK assembly
_at

aagacttgggtatttaaaccatgtcagagctgcctcaccacaggaccttgctggaggc


NO: 33



factor)/menage


tatacttcttctcttgcttgtcacagagcactacaggatgcattcagtgggcttttctggca



a trois 1 (CAK


gcccagttaaccatttataagatttggaccttggagctgaaccagggagctagcaaa



assembly factor)


agtaaagcagacttataaaattatagctatgtgcagctgcacaacacagtccttccact






agcagctgtgttaa





MT1E
metallothionein
212859_x
+
caccgcgcagagctcagggggtggtgcgcccggcccttctgcggcgcacagccca
4493
NM_175617
SEQ ID



1E (functional)
_at

gcccaggaacgcgggcggtgcggactcagcgggccgggtgcaggcgcggagct


NO: 34






gggcctctgcgcccggcccganctccgtctataaanagagcagccagttgcagggc






tcnantctgctttccaactgcctgactgcttgttcgtctcactggtgtgagctccagcatcc






cctttgctcgaaatggaccccaactgctcttgcgccactggntggctcctgcacgtgcg






ccggctcctgcaagtgcaaagagtgcaaatgcacctcctgcaagaagagctgctgtt






cctgctnccccgtggnctgtgccaagtgtgcccagggctgcgtctgcaaaggggcat






cggagaagtgcagctgctgtgcctgatgtgggaacagctcttctcccagatgtaaata






gaacaacctgcacaacctggnatttttttaaaaatacaacactgagccatttgctgcatt






tc





NES
nestin
218678_at

gcagcaccttaacttacgatctcttgacatacggtttctggctgagaggcctggcccg
10763
NM_006617
SEQ ID






ctaaggtgaaaaggggtgtggcaaaggagcctactccaagaatggaggctgtagg


NO: 35






aatataacctcccaccctgcaaagggaatctcttgcctgctccatctcataggctaagt






cagctgaatcccgatagtactaggtccccttccctccgcatcccgtcagctggaaaag






gcctgtggcccagaggcttctccaaagggagggtgacatgctggcttttgtgcccaag






ctcaccagccctgcgccacctcactgcagtagtgcaccatctcactgcagtagcacg






ccctcctgggccgtctggcctgtggctaatggaggtgacggcactcccatgtgctgact






ccccccatccctgccacgctgtggccctgcctggctagtccctgcctgaataaag





NPAS2
neuronal PAS
213462_at

gctacagattcacactttctggcctaaaccctaatgggatgaggcttttcaccccaggc
4862
NM_002518/
SEQ ID



domain protein 2


catgctggtggtgattttttagcccctaaataaaacactggactatttcctgtttacttcatt

NM_032235
NO: 36






gattgcaactacaaaggtggactcaaagcaaagcacaatcatgccagccaacattc






cagaattctgctgagaactccaagtctgtgaggggagaggttttacaagccagacag






gcctgggggactgcagtccccaaggagaccctgccacatgctggccctttgagtga






gaatgctgcatctttctacatatcttcatgagaatactgagaattggattnccttttcaaaa






tgcactttgctttttttgtatgttttgttatgttgagatgtttctaaagaaaagattttatgtaatta






taagatgaagcgtagtgaattgtacagctgttgtaataatgacctatttctatataaaata






aaattgtatggcttatgtgtaaattattttgtatctgagataccagttccttttccc





OSGE
O-
209450_at

aaaggggatggacgtctcattctcagggatcctgtctttcattgaggatgtagcccatc
55644
NM_017807
SEQ ID


P
sialoglycoprotein


ggatgctggccacaggcgagtgtactcctgaggatctgtgtttctccctgcaggaaact


NO: 37



endopeptidase


gtgtttgcaatgctggtagagatcacagagcgagccatggcacattgtggctcccag






gaggccctcattgtgggaggagtggggtgtaatgtgaggctacaggagatgatggc






aacaatgtgccaggaacgtggagcccggctttttgctacagatgagagattctgtattg






acaatggagcgatgatagcccaggctggctgggagatgtttcgggctggacacagg






accccactcagtgattctggg





PCDH
“protocadherin
209079_x

cagaaagtctcagcccaggatggggcttcttcaacagggcccctgccctcctgaagc
5098
NM_002588/
SEQ ID


GC3
gamma subfamily


ctcagtccttcaccttgccaggtgccgtttctcttccgtgaaggccactgcccaggtccc

NM_032402/
NO: 38



C, 3”


cagtgcgccccctagtggccatagcctggttaaagttccccagtgcctcctttgtgcata

NM_032403






gaccttcttctcccacccccttctgcccctgggtccccggccatccagcggggctgcca






gagaaccccagacctgcccttacagtagtgtagcgccccctccctctttcggctggtgt






agaatagccagagtgtagtgcggtgtgcttttacgtgatggcgggtgggcagcgggc






ggcgggctccgcgcagccgtctgtccttgatctgcccgcggcggcccgtgttgtgtttg






tgcgtccacgcgctaaggcgaccccctcccccgtactgacttctcctataagcgctt






ctcttcgcatagcacgtagctcccaccccacctcttcctgtgtctcacgcaagtttta





PCDH
“protocadherin
211066_x

ggatggggcttcttcaacagggcccctgccccctgaagcctcagtccttcaccttgcc
5098
NM002588/
SEQ ID


GC3
gamma subfamily
_at

aggtgcgtttctcttccgtgaaggccactgcccaggtccccagtgcgccccctagtg

NM_032402/
NO: 39



C, 3/


gccatagcctggttaaagttcccagtgcctccttgtgcatagaccttcttctcccacccc

NM_032403



protocadhetin


cttctgcccctgggtccccggccatccagcggggctgccagagaaccccagacctg



gamma subfamily


cccttacagtagtgtagcgccccctccctctttcggctggtgtagaatagccagtagtgt



C, 3”


agtgcggtgtgcttttacgtgatggcgggtgggcagcgggcggcgggctccgcgca






gccgtctgtccttgatctgcccgcggcggcccgtgttgtgttttgtgctgtgtccacgcgct






aaggcgaccccctcccccgtactgacttctcctataagcgcttctcttcgcatagtcacg






tagctcccaccccaccctcttcctgtgtctcacgcaagttttatactctaatatttatatggc






tttttttcttcgacaa





PCDH
“protocadherin
215836_s

gccagctttgggctgagctaacaggaccaatggattaaactggcatttcagtccaag
5098
NM_002588/
SEQ ID


GC3
gamma subfamily
_at

gaagctcgaagcaggtttaggaccaggtccccttgagaggtcagaggggcctctgt

NM_032402/
NO: 40



C, 3/


gggtgctgggtactccagaggtgccactggtggaagggtcagcggagccccagtgc

NM_032403



protocadherin


ctccttgtgcatagaccttcttctcccacccccttctgcccctgggtccccggccatccag



gamma subfamily


cggggctgccagagaaccccagacctgcccttacagtagtgtagcgccccctccctc



C, 3”


tttcggctggtgtagaatagccagtagtgtagtgcggtgtgcttttacgtgatggcgggt






gggcagcgggcggcgggctccgcgcagccgtctgtccttgatctgcccgcggcggc






ccgtgttgtgttttgtgctgtgtccacgcgctaaggcgaccccctcccccgtactgacttc






tcctataagcgcttctcttcgcatagtcacgtagctcccaccccaccctcttcctgtgtctc






acgcaagtttta





PDUM
PDZ and LIM
203370_s

tgcacgccctgaagatgacctggcacgtgcactgctttacctgtgctgcctgcaagac
9260
NM005451/
SEQ ID


7
domain 7
_at

gcccatccggaacagggccttctacatggaggagggcgtgccctattgcgagcgag

NM_203352/
NO: 41



(enigma)/PDZ


actatgagaagatgtttggcacgaaatgccatggctgtgacttcaagatcgacgctgg

NM_203353/



and LIM domain


ggaccgcttcctggaggccctgggcttcagctggcatgacacctgcttcgtctgtgcga

NM_213636



7 (enigma)


tatgtcagatcaacctggaaggaaagaccttctactccaagaaggacaggcctctct






gcaagagccatgccttctctcatgtgtgagccccttctgcccacagctgccgcggtgg






cccctagcctgaggggcctggagtcgtggccctgcatttctgggtagggctggcaat





PEX3
peroxisomal
203972_s

tggatccaaacctttattatgccattatatgatgccagatgaagaaactccattagcagt
8504
NM_003630
SEQ ID



biogenesis factor


gcaggcctgtggactttctcctcgagacattaccactattaaacttctcaatgaaactag


NO: 42



3


agacatgttggaaagcccagattttagtacagttttgaatacctgtttaaaccgaggtttt






agtagacttctagacaatatggctgagttctttcgacctactgaacaggacctgcaaca






tggtaactctatgaatagtctttccagtgtcagcctgcctttagctaagataattccaata






gtaaacggacagatcattcagtttgcagtgaaaacctagtcattttgttcaggatctg






ttgacaatggagcaagtgaaagactttgctgctaatgtgtatgaagcttttagtacccct






cagcaactggagaaat





PIN1
protein (peptidyl-
202927_at

agccatttgaagacgcctcgtttgcgctgcggacgggggagatgagcgggcccgtgt
5300
NM_006221
SEQ ID



prolyl cis/trans


tcacggattccggcatccacatcatcctccgcactgagtgagggtggggagcccag


NO: 43



isomerase)


gcctggcctcggggcagggcagggcggctaggccggccagctcccccttgcccgc



NIMA-interacting


cagccagtggccgaaccccccactccctgccaccgtcacacagtatttattgttccca



1/protein


caatggctgggagggggcccAtccagattgggggccctggggtccccactccctgtc



(peptidyl-prolyl


catccccagttggggctgcgaccgccagattctcccttaaggaattgacttcagcagg



cis/trans


ggtgggaggctcccagacccagggcagtgtggtgggaggggtgttccaaagagaa



isomerase)


ggcctggtcagcagagccgccccgtgtccccccaggtgctggaggcagactcgag



NIMA-interacting


ggccgaattgtttctagttaggccacgctcctctgttcagtcgcaaaggtgaacactcat



1


gcggcagcc





PHKCA
“protein kinase C,
213093_at

gattaaacgactgtgtctttgtcacctctgcttaactttaggagtatccattcctgtgattgt
5578
NM_002737
SEQ ID



alpha”


agactttgttgatattcttcctggaagaatatcattcttttcttgaagggttggtttactaga


NO: 44






atattcaaaatcaatcatgaaggcagttactattttgagtctaaaggttttctaaaaatta






acctcacatcccttctgttagggtctttcagaatatcttttataaacagaagcatttgaagt






cattgcttttgctacatgatttgtgtgtgtgaaggacataccacgtttaaatcattaattgaa






aaacatcatataagccccaactttgtttggaggaagagacggaggttgaggtttttcctt






ctgtataagcacctactgacaaaatgtagaggccattcaaccgtcaaacaccatttgg






ttatatcgcagaggagacggatgtgtaaattactgcattgctttttttttcagtttgtataacc






tctaatctcgtttgcatgatacgctttgttagaa





RIOK3
RIO kinase 3
202129_s

tgaatgtacgcttgtccatgctgacctcagtgagtataacatgctgtggcatgctggaa
8780
NM_003831/
SEQ ID



(yeast)
_at

aggtctggttgatcgatgtcagtcagtcagtagaacctacccaccctcacggcctgga

NM_145906
NO: 45






gttcttgttccgggactgcaggaatgtctcgcagtttttccagaaaggaggagtcaagg






aagcccttagtgaacgagaactcttcaatgctgtttcaggcttaaacatcacagcagat






aatgaagctgattttttagctgagatagaagctttggagaaaatgaatgaagatcacgt






tcagaagaatggaaggaaagctgcttcatttttgaaagatgatggagacccaccact






actatatgatgaatagcactaatacccactgcttcagtgttaacacagcagtgattgtc






agctgccaatagcaaatgaagttatgggtgacttgaaataccaaaacctgaggagtg






ggcaatggtgcttctgtg





SERPI
“serine (or
209723_at
+
ttcgccacattggcttgtgttggtcttgaactcctggcctcaagcaatccgcctacctcag
5272
NM_004155
SEQ ID


NB9
cysteine)


cctcccaaagtgctaggattacaggcataagccactgagcccagccctagttcagta


NO: 46



proteinase


tcttttatgtaaattataaacatctgcaacattatgtatcatatgcagatacttattgcatttct



inhibitor, clade B


tttatagtggtgaaagtgttctatgcatttattggctcttgaatttcctcatctatgaattgtca



(ovalbumin),


ttcacacacctacttttctgcttcgtttttacatatgtctttgcctattaaagatattatccctct



member 9/


gttttatattttctctcattcttgtattgccttttaa



serine (or





cysteine)





proteinase





inhibitor, clade B





(ovalbumin),





member 9”







SIX1
sine oculis
205817_at

ccggaggcaaagagaccgggccgcggaggccaaggaaagggagaacaccga
6495
NM_005982
SEQ ID



homeobox


aaacaataactcctcctccaacaagcagaaccaactctctcctctggaagggggca


NO: 47



homolog 1


agccgctcatgtccagctcagaagaggaattctcacctccccaaagtccagaccag



(Drosophila)/


aactcggtccttctgctgcagggcaatatgggccacgccaggagctcaaactattctc



sine oculis


tcccgggcttaacagcctcgcagcccagtcacggcctgcagacccaccagcatcag



homeobox


ctccaagacctgctcggcccctcacctccagtctggtggacttggggtcctaagt



homolog 1


ggggagggactggggcctcgaagggattcctggagcagcaaccactgcagcgact



(Drosophila)


agggacacttgtaaatagaaatcaggaacatttttgcagcttgtttctggagttgtttgcg






cataaaggaatggtggactttcacaaatatctttttaaaaatcaaaaccaacagcgat






ctcaagcttaa





SLCO3
“solute carrier
219229_at

ggctgagcaccagtgagttctttgcctctactctgaccctagacaacctggggaggga
28232
NM_013272
SEQ ID


A1
organic anion


ccctggcccgcaaccagacacataggacaaagtttatctataacctggaagacc


NO: 48



transporter


atgagtgggtgaaaacatggagtccgttttatagtgactaaaggagggctgaactct



family, member


gtattagtaatccaagggtcatttttttcttaaaaaaagaaaaaaaggttccaaaaaaa



3A1/solute


accaaaactcagtacacacacacaggcacagatgcacacacacgcagacagac



carrier organic


acaccgactttgtcctttttctcagcatcagagccagacaggattcagaataaggaga



anion transporter


gaatgacatcgtgcggcagggtcctggaggccactcgcgcggctgggccacagag



family, member


tctactttgaaggcacctcatggttttcaggatgctgacagctgcaagcaacaggcact



3A1”


gccaaattcagggaacagtggtggccagcttggaggatggac





SPINK1
“serine protease
206239_s
+
gagacgtggtaagtgcggtgcagttttcaactgacctctggacgcagaacttcagcca
6690
NM_003122
SEQ ID


1
inhibitor, Kazal


tgaaggtaacaggcatctttcttctcagtgccttggccctgttgagtctatctggtaacact


NO: 49



type 1/serine


ggagctgactccctgggaagagaggccaaatgttacaatgaacttaatggatgcac



protease inhibitor,


caagatatatgaccctgtctgtgggactgatggaaatacttatcccaatgaatgcgtgtt



Kazal type 1”


atgttttgaaggtcggaaacgccagacttctatcctcattcaaaaatctgggccttgctg






agaaccaaggttttgaaatcccatcaggtcaccgc





SPINK
“serine
205185_at
+
agccatcccatgttagagcttctcaagaggaagacagcccagactctttcagttctctg
11005
NM_006846
SEQ ID


5
protease


gatctgagatgtgcaaagactaccgagtattgcccaggataggctatctttgtccaaa


NO: 50



inhibitor, Kazal


ggatttaaagcctgtctgtggtgacgatggccaaacctacaacaatccttgcatgctct



type 5/serine


gtcatgaaaacctgatacgccaaacaaatacacacatccgcagtacagggaagtgt



protease inhibitor,


gaggagagcagcaccccaggaaccaccgcagccagcatgcccccgtctgacga



Kazal type 5”


atgacaggaagattgttgaaagccatgagggaaaaaataaaccccagttctgaatc






acctaccttcaccatctgtatatacaaagaattcttcggagcttgtcttatttgctatagaa






aacaatacagagcttttgggaatggaatcactgattttcagtcttttccatttctttcctccta






gaatctgtgatctgagggtataaagacatttccaccaagtttgagccctcaaaatgtcc






tgattacaatgctgtctgtcc





STC2
stanniocalcin
2203438_at

gtccacattcctgcaagcattgattgagacatttgcacaatctaaaatgtaagcaaagt
8614
NM_003714
SEQ ID






agtcattaaaaatacaccctctacttgggctttatactgcatacaaatttactcatgagcc


NO: 51






ttcctttgaggaaggatgtggatctccaaataaagatttagtgtttattttgagctctgcatc






ttaacaagatgatctgaacacctctcctttgtatcaataaatagccctgttattctgaagt






gagaggaccaagtatagtaaaatgctgacatctaaaactaaataaatagaaaaca






ccaggccagaactatagtcatactcacacaaagggagaaatttaaactcgaaccaa






gcaaaaggcttcacggaaatagcatggaaaaacaatgcttccagtggccacttccta






aggaggaacaaccccgtctgatctcagaattggcaccacgtgagcttgctaagtgat






aatatctgtttctactacggatttaggcaacaggacctgtacattgtcacattgcat





TAZ
transcriptional co-
202132_at

tgggggacttatttgttggggatcttaaataagattccttttgatctaccggaatatacatg
25937
NM_015472
SEQ ID



activator with


tacagagacattggatcatgttggaaagaaggcaagtgaaaaggtcagagatgaa


NO: 52



PDZ-binding


gtagcgaagttatggaatatcgtggaaaggatactagttgtgaaatggaaagagaca



motif (TAZ)


agttatagtaccccaaaagcaaaacaagcaggagatgcaagagatgccccaaaa






ggacaaagcaacaattttctgttgccacctttataccggaagactctgttgtagaagaa






aagaaggctttggtgcaccttatgtgggaggaggaggggcagggcatgctgatgct






gagcgtacaggcagacaagagcgtagcctgctgttgcctccatcactatgaaatgac






ttattttacctgaaggacccatggtttatgttcctctaattcctttcactctccctaagccctct






gagagagatg





TCEA2
“transcription
203919_at

gcctgtcggctcagatcgaggaatgcatcttccgggacgttggaaacacagacatga
6919
NM_003195/
SEQ ID



elongation factor


agtataagaaccgtgtacggagtcgtatctccaacctgaaggatgccaagaaccctg

NM_198723
NO: 53



A (SII), 2/


acctgcggcggaatgtgctgtgtggggccataacaccccagcagatcgctgtgatga



transcription


cctcagaggagatggccagtgatgagctgaaggagatccgtaaggccatgaccaa



elongation factor


ggaggccatccgagagcaccagatggcccgcactggcggcacgcagacagacct



A (SII), 2”


gttcacctgcggcaagtgcaggaaaaagaactgcacctacacacaggtgcagaoc






cgcagctctgatgagcccatgaccacctttgttgtctgcaacgagtgtggaaaccgct






ggaagttctgctgacccctcgtgtagatgtgctgcagccttgggccctccccggccca






cgtcctccgttgacacagcttctctggagaccctagaaggcggcatgtcc.





TNNC1
“troponin C, slow/
209904_at
+
tggatgacatctacaaggctgcggtagagcagctgacagaagagcagaaaaatga
7134
NM_003280
SEQ ID



troponin C,


gttcaaggcagccttcgacatcttcgtgctgggcgctgaggatggctgcatcagcacc


NO: 54



slow”


aaggagctgggcaaggtgatgaggatgctgggccagaaccccacccctgaggag






ctgcaggagatgatcgatgaggtggacgaggacggcagcggcacggtggactttg






atgagttcctggtcatgatggttcggtgcatgaaggacgacagcaaagggaaatctg






aggagctgtctgacctcttccgcatgtttgacaaaaatgctgatggctacatcgacctg






gatgagctgaagataatgctgcaggctacaggcgagaccatcacggaggacgac






atcgaggagctcatgaaggacggagacaagaacaacgacggccgcatcgactat






gatgagt





TRPM2
“transient
205708_s

acccttggccatcaggcgaggggctgggcctgtgcagctgggcccttggccagagt
7226
NM_00100118
SEQ ID



receptor potential
_at

ccactcccttcctggctgtgtcaccccgagcagctcatccaccatggaggtcattggcc

8/
NO: 55



cation channel,


tgaggcaagttccccggagagtcgggntcccctgtggccccctcaggcctatgtctgt

NM_003307



subfamily M,


gaggaaggggccctgccactctccccaagagggcctccatgtttcgaggtgcctcaa



member 2”


catggagccttgcctggcctgggctaggggcactgtctgaactcctgactgtcaggat








aaactccgtgggggtacaggagcccagacaaagcccaggcctgtcaagagacgc






agagggcccctgccagggttggccccagggaccctgggacgaggctgcagaagc






tctccctccctactccctgggagccacgtgctggccatgtggccagggacggcatga






gcaggaggcggggacgtgggggccttctggtttggtgtcaacagc





VAMP4
vesicle-
213480_at

gaagccacaaagatgccacatgttagtatatcagtgagaggtgactccacagtgctc
8674
NM_003762/
SEQ ID



associated


tctggagaagcaatatgagtgactgaagagtggggccttttgcttttgcctggatatag

NM_201994
NO: 56



membrane


gggtgctcttctactgtaattgggtgtggaaaaactctggctttatggtattccattaggttc



protein 4


ttttcattaaagtagtcttaaaatcaaagtatccaatattttaaagccacaaagtagatt






acataattagcagagattttagtcagtaaaatgttagaaatcaaactataagaaaattc






aagtttattttgtgcttgggtatatgtcattattttaaattccacactcccttatttaatca






ctttggtaagtgcctttgatgttttgaaatgtatagtgggagatgagcaaatgtaaatgtc






atgtgccctgttccctagcttctcaattcctcataaccatttttaccagtgttgcaaagttta






gacctttgtgttaatatcagaagtgtatttgtagcccctccatagtgaacaatga





ZNF31
zinc finger protein
200868_s

gccgaagaagctgtggggtgtgtcgcagcgctctggcacctggcgtccgagc
55905
NM_018683
SEQ ID


3
313
_at

cgtggagctcgagcggcagatcgagagcaagagacttcttgccatggctgccgta


NO: 57






agaatttcttcctgtccaagatccggtcccacgtggctacttgttccaaataccagaatt






acatcatggaaggtgtgaaggccaccattaaggatgcatctcttcagccaaggaatg






tcccaaaccgttacacctttccttgtccttactgtcctgagaagaactttgatcaggaag






gacttgtggaacactgcaaattattccatagcacggataccaaatctgtggtttgtccg






atatgtgcctcgatgccctggggagaccccaactaccgcagcgccaacttcagaga






gcacatccagcgccggcaccggttttcttatgacacttttgtggattatgatgttgatgaa






gaggacatgatgaatcaggtgttgcagcgctccatcatcgaccagtgagcagagtcc






gtgcttgctatc

















TABLE 2







as described in priority application US60/619027 ified on 18/10/2004.



















+ up In


RefSeq




Gene


sensi-

Locus
Transcript
SEQ ID


Symbol
Gene Title
Affymetrix ID
tive
Sequence
Link
ID
NO.





AGXT2L1
alanine-glyoxylate
221008_s_at
+
gctgaaagaagcccacatagaactgcttagggacagcaccactgactccaaa
64850
NM_031279
SEQ ID




aminotransferase


gaaaatcccagcagaaagagaaatggaatgtgcacggatacacattcactgct


NO: 58



2-like 1/alanine-


cagtaagaggctcaagacatgactgatttgcattttaaagcaagatgcgatgtcc



glyoxylate


agagttacagagaatgagtagatgtgtctcatcggttaatagctctattatacctct



aminotransferase 2-like 1/


aaaggtggaattgtcagtttagattcataaatgaaaaggtaaatgagtaatcaga



alanine-glyoxylate


ataaaccaagtgataatcaaaccatgtcaagattattagttcagactctagcctgtt



aminotransferase 2-like 1


aattttcttagttgatttctgaagctacctgatttattctattaaattgtaagcttgcaaa






ctcaaaataaattggcagatttacctctcatgttttaatgtgtcaaattagagagca






aagtataacaggtgccttcacttttgagactt





AKAP12
A kinase (PRKA) anchor
210517_s_at

gtgccatagtgcaggcttggggagctttaagcctcagttatataacccacgaaaa
9590
NM_005100/
SEQ ID



protein (gravin) 12A


acagagcctcctagatgtaacattcctgatcaaggtacaattctttaaaattcacta

NM_144497
NO: 59



kinase (PRKA) anchor


atgattgaggtccatatttagtggtactctgaaattggtcactttcctattacacgga



protein (gravin) 12


gtgtgctaaaactaaaaagcattttgaaacatacagaatgttctattgtcattggga






aatttttctttctaacccagtggaggttagaaagaagttatattctggtagcaaatta






actttacatcctttttcctacttgttatggttgtttggaccgataagtgtgcttaatcctga






ggcaaagtagtgaatatgttttatatgttatgaagaaaagaattgttgtaagtttttga






ttctactcttatatgctggactgcattcacacatggcatgaaataagtcaggttctta






caaatggtattttgatagatactggattgtgtttgtgccatatttgtgccatt





ANXA6
annexin A6/annexin A6
200982_s_at

gggatgcatttgtggccattgttcaaagtgtcaagaacaagcctctcttctttgccg
309
NM_001155/
SEQ ID






acaaacttacaaatccatgaagggtgctggcacagatgagaagactctgacc

NM_004033
NO: 60






aggatcatggtatcccgcagtgagattgacctgctcaacatccggagggaattc






attgagaaatatgacaagtctctccaccaagccattgagggtgacacctccgga






gacttcctgaaggccttgctggctctctgtggtggtgaggactagggccacagctt






tggcgggcacttctgccaagaaatggttatcagcaccagccgccatggccaag






cctgattgttccagctccagagactaaggaaggggcaggggtggggggaggg






gttgggttgggctcttatcttcatggagcttaggaaacgctcccactcccacgggc






catcgagggccagcacggctgagcggtgaaaaaccgtagccatagatcctgt






cc





AREG
amphiregulin
205239_at
+
atttcaaaatttctgcattcacggagaatgcaaatatatagagcacctggaagca
374
NM_001657
SEQ ID



(schwannoma-derived


gtaacatgcaaatgtcagcaagaatatttcggtgaacggtgtggggaaaagtcc


NO: 61



growth factor)/


atgaaaactcacagcatgattgacagtagtttatcaaaaattgcattagcagcca



amphiregulin


tagctgcctttatgtctgctgtgatcctcacagctgttgctgttattacagtccagctta



(schwannoma-derived


gaagacaatacgtcaggaaatatgaaggagaagctgaggaacgaaagaaa



growth factor)


cttcgacaagagaatggaaatgtacatgctatagcataactgaagataaaatta






caggatatcacattggagtcactgccaagtcatagccataaatgatgagtcggtc






ctctttccagtggatcataagacaatggaccctttttgttatgatggttttaaactttca






attgtcactttttatgctatttctgtata





BCAT1
“branched chain
214452_at
+
gacaacagccctggaggggaacagagtgagagagatgtttngctctggtaca
586
NM_005504
SEQ ID



aminotransferase 1,


gcctggttgtttgcccagtttctgatatactgtacaaaggcgagacaatacacatt


NO: 62



cytosolic/branched chain


ccaactatggagaatggtcctaagctggcaagccgcatcttgagcaaattaact



aminotransferase 1,


gatatccagtatggaagagaagagagcgactggacaattgtgctatcctgaatg



cytosolic”


gaaaatagaggatacaatggaaaatagaggataccaactgtatgctactggga






cagactgttgcatttgaattgtgatagatttctttggctacctgtgcataatgtagtttgt






agtatcaatgtgttacaagagtgattgtttcttcatgccagagaaaatgaattgcaa






tcatcaaatggtgtttcataacttggtagtagtaacttaccttaccttaccnanaaaa






atattaatgtaagccatataacatgggattttcctcaannannnnannnnnncct






tttgtacttcactcagatacta





BCL3
B-cell CLL/lymphoma 3/
204908_s_at
+
gggcagatcttggactcatgaggaggggcccccctgcccagaggggtcaacc
602
NM_005178
SEQ ID



B-cell CLL/lymphoma 3


cttctggaaactgtgaagatctgacttcgcccccccccccccccatcttcgggac


NO: 63






caggatttgcacagaagcacatgcacctacccatacaccccctcttctgagcgtc






cctgttcccccatctcgctccctcccaggactctgaccccagcattctcaggcacc






agtccctgtccggaatgccacccacatcttccatttccatgtcccctcccagagct






ggtggacccagggaacagccactcccctccactctctaccagataactgagga






ggggagaggtgggccgtaacgggcacggatcacgatgtaaattatt





BST2
bone marrow stromal cell
201641_at
+
agcttcaggacgcgtctgcagaggtggagcgactgagaagagaaaaccagg
684
NM_004335
SEQ ID



antigen 2/bone marrow


tcttaagcgtgagaatcgcggacaagaagtactaccccagctcccaggactcc


NO: 64



stromal cell antigen 2


agctccgctgcggcgccccagctgctgattgtgctgctgggcctcagcgctctgct






gcagtgagatcccaggaagctggcacatcttggaaggtccgtcctgctcggcttt






tcgcttgaacattcccttgatctcatcagttctgagcgggtcatggggcaacacgg






ttagcggggagagcacggggtagccggagaagggcctctggagcaggtctg






gaggggccatggggcagtcctgggtgtggggacacagtcgggttgacccagg






gctgtctccctccagagcctccctccggataatgagtcccccctcttgtctcccac






cctgagattgggcatggggtgcggtgtggggggcatgtgctgcctgttgttatggg






ttttttttgcggggggggttgcttttttctggggtctttgagctccaaa





C9orf16
chromosome 9 open
204480_s_at
+
catgctggaccagatcaactcctgtctggaccacctggaggagaagaatgacc
79095
NM_024112
SEQ ID



reading frame 16


acctccacgcccgcctccaggagctgctggagtccaaccggcagacacgcct


NO: 65






ggagttccagcagcagctcggggaggcccccagtgatgccagcccctaggct






ccaagagcccccaaccgggacccaaccctgcctccctgggctaggctctggc






ctgggcactcaccccctggcttagacaccttctcaagggctggccttcagggacc






cctggtgggtctgcctgcctgggccacccttcctgcctgggcctccccttggccta






cctgggccagcccccaccacctggcatgccctcctggggccaagagtgggcct






gcaacccacccacttgcctgcccacccaactcctgggcgctccccactctgccc






aggccttgagtgtccacattaaatg





CAPZA2
“capping protein (actin
201237_at

cacttaccagtgagcatatatattttaaaatactttctttggatattgtaattcttaactg
830
NM_006136
SEQ ID



filament) muscle Z-line,


gttgtaaattagaaaagctgggattacatatggtgtgcggttacagtctaaattttttc


NO: 66



alpha 2”


atcctcctatgcatcataagcatgtttgtaatattttcaaaaatagttctactgatgcta






caggaatttcaagcctgtggtgaatgttagtatttaccatagggagtgaagtggag






ttatggtttcaaatagagtattgctgattatacttgagtggaatcctttcctcacgt






actcccacagacgtctgggcctggaaa





CCND1
cyclin D1 (PRAD1:
208711_s_at

ggcggaggagaacaaacagatcatccgcaaacacgcgcagaccttcgttgcc
595
NM_001758/
SEQ ID



parathyroid adenomatosis


ctctgtgccacagatgtgaagttcatttccaatccgccctccatggtggcagcggg

NM_053056
NO: 67



1)


gagcgtggtggccgcagtgcaaggcctgaacctgaggagccccaacaacttc






ctgtcctactaccgcclcacacgcttcctctccagagtgatcaagtgtgacccgga






ctgcctccgggcctgccaggagcagatcgaagccctgctggagtcaagcctgc






gccaggcccagcagaacatggaccccaaggccgccgaggaggaggaaga






ggaggaggaggaggtggacctggcttgcacacccaccgacgtgcgggacgt






ggacatctgagggcgccaggcaggcgggcgccaccgccacccgcagcgag






ggcggagccggccccaggtgctcccctgacagtccctcctctccggagcattttg






ataccagaagggaaagcttcattctccttgtttgttggttgttttttcctttgctctttcccc






cttccatctctgacttaagcaaaa





CCND1
cyclin D1 (PRAD1:
208712_at

gttttgggtatgtttaatctgttatgtactagtgttctgtttgttttgttttgttaattacacc
595
NM_001758/
SEQ ID



parathyroid adenomatosis


ataatgctaatttaaagagactcccaaatctccaatgaagccagctcacagtgctgt

NM_053056
NO: 68



1)/ cyclin D1 (PRAD1:


gtgccccggtcatctagcaagctgccgaaccaaaagaatttgcaccccgctgc



parathyroid adenomatosis


gggcccacgtggttggggccctgccctggcagggtcatcctgtgctcggaggcc



1)


atctcgggcacaggcccaccccgccccacccctccagaacacggctcacgctt






acctcaaccatcctggctgcggcgtctgtctgaaccacgcgggggccttgaggg






acgctttgtctgtcgtgatggggcaagggcacaagtcctggatgttgtgtgtatcg






agaggccaaaggctggtggcaagtgcacggggcacagcggagtctgtcctgt






gacgcgcaagtctgagggtctgggcggcg





CDH1
“cadhenn 1, type 1, E-
201130_s_at

aattcctgccattctggggattcttggaggaattcttgctttgctaattctgattctgctg
999
NM_004360
SEQ ID



cadherin (epithelial)”


ctcttgctgtttcttcggaggagagcggtggtcaaagagcccttactgcccccaga


NO: 69






ggatgacacccgggacaacgtttattactatgatgaagaaggaggcggagaa






gaggaccaggactttgacttgagccagctgcacaggggcctggacgctcggcc






tgaagtgactcgtaacgacgttgcaccaaccctcatgagtgtcccccggtatcttc






cccgccctgccaatcccgatgaaattggaaattttattgatgaaaatctgaaagc






ggctgatactgacccacagccccgccttatgattctctgctcgtgtttgactatga






aggaagcggttccgaagctgcagtctgagctccctgaactcctcagagtcaga






caaagaccaggactatgactacttgaacgaatggggcaatccgttcaagaagc






tggctgacatgtacggaggcg





CDKN2A
“cyclin-dependent kinase
207039_at
+
cttttcactgtgttggagttttctggagtgagcactcacgccctaagcgcacattcat
1029
NM_000077/
SEQ ID



inhibitor 2A (melanoma,


gtgggcatttcttgcgagcctcgcagcctccggaagctgtcgacttcatgacaag

NM_058195/
NO: 70



p16, inhibits CDK4)/


cattttgtgaactagggaagctcaggggggttactggcttctcttgagtcacactgc

NM_058197



cyclin-dependent kinase


tagcaaatggca



inhibitor 2A (melanoma,



p16, inhibits_CDK4)”





CDKN2A
“cyclin-dependent kinase
209644_x_at
+
tgaggagccagcgtctagggcagcagccgcttcctagaagaccaggtcatgat
1029
NM_000077/
SEQ ID



inhibitor 2A (melanoma,


gatgggcagcgcccgagtggcggagctgctgctgctccacggcgcggagccc

NM_058195/
NO: 71



p16, inhibits CDK4)”


aactgcgccgaccgccactctcacctgacccgtgcacgacgctgcccggg

NM_058197






agggcttcctggacacgctggtggtgctgcaccgggccggggcgcggctggac






gtgcgcgatgcctggggccgtctgcccgtggacctggctgaggagctgggccat






cgcgatgtcgcacggtacctgcgcgcggctgcggggggcaccagaggcagta






accatgcccgcatagatgccacggaaggtccctcagacatccccgattgaaag






aaccagagaggctctgagaaacctcgggaaacttagatcatcagtcaccgaa






ggtcctacagggccacaactgcccccgccacaacccaccccgctttcgtagtttt






catttagaaaatagagcttttaaaaatgtcctgccttttaacgtagatatatgccttcc






ccc





CEACAM
carcinoembryonic
206199_at
+
atattagttaccctgggcatctaaaacctttaaatgtttgcatgcagccat
1087
NM_006890
SEQ ID


7
antigen-related cell


tcgtcaaatgtcaaatattctctctttggctggaatgacaaaaactcaaataaatgt


NO: 72



adhesion molecule 7


atgattaggaggacatcataacctatgaatgatggaagtccaaaatgatggtaa






ctgacagtagtgttaatgccttatgtttagtcaaactctcatttaggtgacagcctggt






gactccagaatggagccagtcatgctaaatgccatatactcacactgaaacatg






aggaagcaggtagatcccagaacagacaaaactitcctaaaaacatgagagt






ccaggcgtctgagtcagcacagtaagaaagtcctttctgctttaactcttagaaa






aaagtaatatgaagtattctgaaattaaccaatcagtttatttaaatcaatttatttat






attcttctgttcctggattcccattttacaaaacccactgttctactgttgtattgcccag






t





CHORDC
“cysteine and histidine-
218566_s_at

ggatttgtgttcttacagtacttgaaaatatttaaggaagagatgaagctctgcagtt
26973
NM_012124
SEQ ID


1
rich domain (CHORD)-


ttttctatgtgggatgattacttttttaaggaggattaattctgaggtagtatagtaact


NO: 73



containing, zinc binding


aaaggggaatatatgaattgtttaacaaattagaatttgtttacaactacttgaatttt



protein 1/cysteine and


taaattatgtcaaaacttacattacttgccaagcagtatgatgttataggaaacata



histidine-rich domain


aataagattacagaggtatcaatttggttaaaattcaccattttataagactaagca



(CHORD)-containing, zinc


ataatcttaacaacctctttcctgaatatttaaatgtgtttgtatggtgttatgactaatt



binding protein 1”


gttactgatttagagactaagccctcttaaaacctttagttaaatataaaaagaaat






tatatatatcttgcctccctgatggaaaactatataaaattgtagacttaaaaggttt






gtggaaatacattaggatatcagaaaactaaatatatggagttgctttatgactatt





CLU
“clusterin (complement
208791_at
+
ggctgcctgcggatgaaggaccatgtgacaagtgccgggagatcttgtctgtg
1191
NM_001831/
SEQ ID



lysis inhibitor, SP-40,


gactgttccaccaacaacccctcccaggctaagctgcggcgggagctcgacg

NM_203339
NO: 74



40, sulfated glycoprotein


aatccctccaggtcgctgagaggttgaccaggaaatataacgagctgctaaagt



2, testosterone-repressed


cctaccagtggaagatgctcaacacctcctccttgctggagcagctgaacgagc



prostate message 2,


agtttaactgggtgtcccggctggcaaacctcacgcaaggcgaagaccagtac



apolipoprotein J)”


tatctgcgggtcaccacggtggcttcccacactlctgactcggacgttccttccggt






gtcactgaggtggtcgtgaagctctttgactctgatcccatcactgtgacggtccct






gtagaagtctccaggaagaacccta





CLU
“clusterin (complement
208792_s_at
+
agcagctgaacgagcagtttaactgggtgtcccggctggcaaacctcacgcaa
1191
NM_001831/
SEQ ID



lysis inhibitor, SP-40,


ggcgaagaccagtactatctgcgggtcaccacggtggcttcccacacttctgact

NM_203339
NO: 75



40, sulfated glycoprotein


cggacgttccccggtgtcactgaggtggtcgtgaagctctttgactctgatcccat



2, testosterone-repressed


cactgtgacggtccctgtagaagtctccaggaagaaccctaaatttatggagac



prostate message 2,


cgtggcggagaaagcgctgcaggaataccgcaaaaagcaccgggaggagt



apolipoprotein J)/


gagatgtggatgttgc



clusterin (complement



lysis inhibitor, SP-40,



40, sulfated glycoprotein



2, testosterone-repressed



prostate message 2,



apolipoprotein J)”





COL4A1
“collagen, type IV, alpha
211980_at

gaaagactgtgctgtcctttaacataggtttttaaagactaggatattgaatgtgaa
1282
NM_001845
SEQ ID



1”


acatccgttttcattgttcacttctaaaccaaaaattatgtgttgccaaaaccaaac


NO: 76






ccaggttcatgaatatggtgtctattatagtgaaacatgtactttgagcttattgttttta






ttctgtattaaatattttcagggttttaaacactaatcacaaactgaatgacttgactt






caaaagcaacaaccttaaaggccgtcatttcattagtatlcctcattctgcatcctg






gcttgaaaaacagctctgttgaatcacagtatcagtattttcacacgtaagcacatt






cgggccatttccgtggtttctcatgagctgtgttcacagacctcagcagggcatcg






catggaccgcaggagggcagattcggaccact





COL4A1
“collagen, type IV, alpha
211981_at

tcggctactcttttgtgatgcacaccagcgctggtgcagaaggctctggccaagc
1282
NM_001845
SEQ ID



1”


cctggcgtcccccggctcctgcctggaggagtttagaagtgcgccattcatcgag


NO: 77






tgtcacggccgtgggacctgcaattactacgcaaacgcttacagcttttggctcgc






caccatagagaggagcgagatgttcaagaagcctacgccgtccaccttgaag






gcaggggagctgcgcacgcacgtcagccgctgccaagtctgtatgagaagaa






cataatgaagcctgaccagctaatgtcacaacatggtgctacttcttcttctttttgtt






aacagcaacgaaccctagaaatatatcctgtgtacctcactgtccaatatgaaa






accgtaaagtgccttataggaatttgcgtaactaacacaccctgc





CTSB
cathepsin B
200838_at

tccccctgtagactagtgccgtgggagtacctgctgcccagctgctgtggccccct
1508
NM_001908/
SEQ ID






ccgtgatccatccatctccagggagcaagacagagacgcaggatggaaagc

NM_147780/
NO: 78






ggagttcctaacaggatgaaagttcccccatcagncccccagtacctccaagc

NM_147781/






aagtagctttccacatttgtcacagaaatcagag

NM_147782/








NM_147783





CTSB
cathepsin B/cathepsin B
200839_s_at

tggtgttgggagccctttggagaacgccagtctccaggtccccctgcatctatcga
1508
NM_001908/
SEQ ID






gtttgcaatgcacaacctctctgatcttgtgctcagcatgattctttaatagaagtttt

NM_147780/
NO: 79






atttttcgtgcactctgctaatcatgtgggtgagccagtggaacagcgggagcctg

NM_147781/






tgctggtttgcagattgcctcctaatgacgcggctcaaaaggaaaccaagtggtc

NM_147782/






aggagttgtttctgacccactgatctctactaccacaaggaaaatagtttaggaga

NM_147783






aaccagcttttactgttt





DAB2
“disabled homolog 2,
201278_at

ggaaacgttcccagttcattttcagtcctgttgtgagcacagttctgaagggtttatta
1601
NM_001343
SEQ ID



mitogen-responsive


ttgtcaaaataagttttgttttgttttgtttatgttgggtttttaatgttgtctcttgacccttaa


NO: 80



phosphoprotein


tgctcaggttcttgtgggagttaatcagccacatccaangttaccttgagggggaa



(Drosophila)”


gaagagggtgatgctcagaagctaaacaagacaggggccacatgaccctcta






ttgattagcccaagtagaaagtcctgtggttttatgtttaatggtaatagttgatcat






atatggcataattttctatcagcttcctactcagtcactataaacacagacttgaaat






agtactttaaatgtccaaatacctaaatgtgctaaactggaggtaactatttctagg






tagtgaatttttgaaagtcatgatcagccacacaactgttttgtacatact





DAB2
“disabled homolog 2,
201280_s_at

aatccttattgttcagagttgtttgggggttctgtttcagagcataaaacctaaaggtt
1601
NM_001343
SEQ ID



mitogen-responsive


atagtagaacaaggcaccttcttaaaagaaatcttgcttcagaccatcagttaca


NO: 81



phosphoprotein


gagaatttcctaaagtaaaattgaagcaactacaacttctccttagacactttgga



(Drosophila)”


atctaaccacttaaggacctttttaaagagatagcttctcttctttctgaagatcaattt






ctccaaggccaagattgtccttttctcccatttcttgctagctattgcaaatgaggg






aagaacattattcatctctcctcccctttttctgattcttttttcagtcagttttgctcctg






ggttcaagtagtattaccaccctttcacaagcaacagactc





DIAPH2
diaphanous homolog 2
205726_at
+
gctcactacactattcattgcacacaaatgaatttttcactttttaagatgcattcttgg
1730
NM_006729/
SEQ ID



(Drosophila)/diaphanous


tgctcaaaccagatcgaagtttgtctctnaaagctattgtctgcacaggctgctgc

NM_007309
NO: 82



homolog 2 (Drosophila)


atgctctgttgttaaatggatggacaggctattctaaattttggttgatacttttgctact






atgggcaattaacttgaaaaaaataatcgatcccaactctgtgctctgatgtacct






cttctgccccttttatgacacctttgaccaaatgccttctatggttcacagtgcaggc






acaaaactactgatacagaaggttctttacaagcttattttacataccgtgaat






ccctcacctaaagggagaggtgaaagcaaagactgctttgaatgggtattgag






ggagattgtgtccataccaagccaccctgaagaagtatttcacttgcagtagaac






tgtggatttgtctgtcatttcaccttggaataaacacctatctctaagcaggacca






a





EMP1
epithelial membrane
201324_at

caccaaattacctaggctgaggttagagagattggccagcaaaaactgtggga
2012
NM_001423
SEQ ID



protein 1/epitheilal


agatgaactttgtcattatgatttcattatcacatgattatagaaggctgtcttagtgc


NO: 83



membrane protein 1


aaaaaacatacttacatttcagacatatccaaagggaatactcacattttgttaag






aaagttgaactatgactggagtaaaccatgtattcccttatcttttactttttttctgtgac






atttatgtctcatgtaatttgcattactctggtggattgttctagtactgtattgggcttctt






cgttaat





EMP1
epithelial membrane
201325_s_at

ttatcgccctgagaagatctaccccagggagaatctgagacatcttgcctacttttc
2012
NM_001423
SEQ ID



protein 1


tttattagctttctcctcatccatttcttttatacctttcctttttggggagttgttatgccatg


NO: 84






atttttggtatttatgtaaaaggattattactaattctatttctctatgtttanctagttaag






gaaatgttgagggcaagccaccaaattacctag





EMP1
epithetial membrane
213895_at

aaggggtatctttctgtgagcaataaggactggataaagactgcatatccttg
2012
NM_001423
SEQ ID



protein 1


tgtcnnnnncagcancnatacaataaggagggttttaatgtgaagcaggcaat


NO: 85






ctnccagccccttctggtcttggatgaaatagttgcacagagtattgcaccaana






atacacaatggaggctgaaaagttcaacatattttaagtcaattaatcaaattgca






ttgattcttgatgctttcttagaggcctacatgatttcttagattgctctgataaactatc






ataaggggtccacntcccctcatttagctcccccagggatttcttttcccccatgtca






tacacccagtcctaaatcaacccccaaggctatccttccatcccttctgcagagg






gaacttttgtcagactctgcaacaaactcctagctctatccagagtgtcctctgctg






ctaagattggtatctttctcctcaaaagcctggatggtgaatgggggtgcattagtc






agaattctcc





EREG
epiregulin/epiregulin
205767_at
+
taaaaacctgtatctgacccactttgtaatttttgctccaatatccattctgtagactttt
2069
NM_001432
SEQ ID






gaaaaaaaagtttttaatttgatgcccaatatattctgaccgttaaaaaattcttgttc


NO: 86






atatgggagaagggggagtaatgacttgtacaaacagtatttctggtgtatatttta






atgtttttaaaaagagtaatttcatttaaatatctgttattcaaatttgatgatgttaaat






gtaatataatgtattttctttttattttgcactctgtaattgcactttttaagtttgaagagc






cattttggaaacggtttttattaaagatgctatggaacataaagttgtattgcatgca






atttaaagtaacttatttgactatgaatattatcggattactgaattgtatcaatttgttt






gtgttcaatatcagctttgataattgtgtaccttaag





FGF2
fibroblast growth factor 2
204421_s_at
+
gggatcctatttagccttagtaccactaatcaaaagttcggcatgtagctcatgat
2247
NM_002006
SEQ ID



(basic)


ctatgctgtttctatgtcgtggaagcaccggatgggggtagtgagcaaatctgccc


NO: 87






tgctcagcagtcaccatagcagctgactgaaaatcagcactgcctgagtagtttt






gatcagtttaacttgaatcactaactgactgaaaattgaatgggcaaataagtgct






tttgtctccagagtatgcgggagacccttccacctcaagatggatatttcttcccca






aggatttcaagatgaattgaaatttttaatcaagatagtgtgctttattctgttg





FGF2
fibroblast growth factor 2
204422_s_at
+
atatcttcttcaggctctgacaggcctcctggaaacttccacatatttttcaactgca
2247
NM_002006
SEQ ID



(basic)/fibroblast growth


gtataaagtcagaaaataaagttaacataactttcactaacacacacatatgtag


NO: 88



factor 2 (basic)


atttcacaaaatccacctataattggtcaaagtggttgagaatatattttttagtaatt






gcatgcaaaatttttctagcttccatcctttctccctcgtttcttctttttttgggggagctg






gtaactgatgaaatcttttcccaccttttctcttcaggaaatataagtggttttgtttggt






taacgtgatacattctgtatgaatgaaacattggagggaaacatctactgaatttct






gtaatttaaaatattttgctgctagttaactatgaacagatagaagaatcttacagat






gctgctataaataagtagaaaatataaatttcatcactaaaatatgctattttaaaat






ctatttcctatattgtatttctaatcagatgtattactcttattatttctat





FLJ22662
hypothetical protein
218454_at
+
gtggctatccacttagttcagaagctgggcttggacactcttatgatttagctcc
79887
NM_024829
SEQ ID



FLJ22662


acgagccaaaattttccggcgtgaccaagggaaagtgactgatacggcatcca


NO: 89






tgaaatatatcatgcgatacaacaattataagaaggatccttacagtagaggtga






cccctgtaataccatctgctgccgtgaggacctgaactcacctaacccaagtcct






ggaggttgttatgacacaaaggtggcagatatctacctagcatctcagtacacat






cctatgccataagtggtcccacagtacaaggtggcctccctgtttttcgctgggac






cgtttcaacaaaactctacatcagggcatgccagaggtctacaactttgattttatt






accatgaaaccaattttgaaacttgatataaaatgaaggagggagatgacgga






ctagaagactgtaaataagataccaaaggcactattttagctatgtttttcccatca






gaat





GADD45
“growth arrest and DNA-
207574_s_at

ccccatcacggagggtccagactgtccactcgggggtggagtgagactgactg
4816
NM_015675
SEQ ID


B
damage-inducible, beta/


caagccccaccctccttgagactggagctgagcgtctgcatacgagagacttgg


NO: 90



growth arrest and DNA-


ttgaaacttggttggtccttgtctgcaccctcgacaagaccacactttgggacttgg



damage-inducible, beta”


gagctggggctgaagttgctctgtacccatgaactcccagtttgcgaattaataag






agacaatctattttgttacttgcacttgttattcgaaccactgagagcgagatgg





HIF1A
“hypoxia-inducible factor
200989_at

tcatctgatgtttctatagtcactttgccagctcaaaagaaaacaataccctatgta
3091
NM_001530/
SEQ ID



1, alpha subunit (basic


gttgtggaagtttatgctaatattgtgtaactgatattaaacctaaatgttctgcctac

NM_181054
NO: 91



helix-loop-helix


cctgttggtataaagatattttgagcagactgtaaacaagaaaaaaaaaatcatg



transcription factor)/


cattcttagcaaaattgcctagtatgttaatttgctcaaaatacaatgtttgattttatg



hypoxia-inducible factor


cactttgtcgctattaacatcctttttttcatgtagatttcaataattgagtaattttagaa



1, alpha subunit (basic


gcattattttaggaatatatagttgtcacagtaaatatcttgttttttctatgtacattgta



helix-loop-helix


caaatttttcattccttttgctctttgtggttggatctaacactaactgt



transcription factor)”





HOP
homeodomain-only
211597_s_at
+
aagctatgtgtatcttctgtgtaaagcagtggcttcactggaaaaatggtgtggcta
84525
NM_932495/
SEQ ID



protein/homeodomain-


gcatttccctttgagtcatgatgacagatggtgtgaaaaccatctaagtttgcttttg

NM_139211/
NO: 92



only protein


accatcacctcccagtagcaatttgctttcataatccatttagcaatccaggcctct

NM_139212






gttgaaaagataatatgagggagaagggaacacatttccttctgaacttacttcc






ctaagtcactttccttatgtatcatctaatacaatgatggttgagtgaaaatacaga






aggggtgtttgagattcagatttcataaaacacttccttggaatatagctgcattaa






cttggaaagaagcctgttgggccagaagacacga





HOXC10
homeo box C10/homeo
218959_at

gctggtgtgtgtgtcaaaccctcactcacccacgcactcacacacagcattctgtt
3226
NM_017409
SEQ ID



box C10


ctccatgcaaagttaagatcgaatccatccgcttgtaggggaaaaaaaggaaa


NO: 93






aaaattaaccagagagggtctgtaatctcgcagagcacaggcagaatcgttcct






tccttgctgcatttcctccttagactaatagacgttttggaaagttcggctagtgttcgt






gtgtttgtcgtagcacccagagcctccaccaaaccctctccatgtctttacctccca






gtcgctctaagatctgcttgaagtctcgtatttgtactgctttctgcttttctcccacccc






tcctagcacccccacatcccccatctagtaacatctcagaaatttcatccagagg






aacaaaaaaattaaaaatagaacatagcaaagcaaagacagaatgcccccc






cccaaatattgtcctgtccctgtctgggagttgtgttatttaaagatattctgtatgttgt






atcttttgcatgtagcttccttaat





ITGB2
“integrin, beta 2 (antigen
202803_s_at

atctggaaggctctgatccacctgagcgacctccgggagtacaggcgctttgag
3689
NM_000211
SEQ ID



CD18 (p95), lymphocyte


aaggagaagctcaagtcccagtggaacaatgataatccccttttcaagagcgc


NO: 94



function-associated


caccacgacggtcatgaaccccaagtttgctgagagttaggagcacttggtgaa



antigen 1; macrophage


gacaaggccgtcaggacccaccatgtctgccccatcacgcggccgagacatg



antigen 1 (mac-1) beta


gcttggccacagctcttgaggatgtcaccaattaaccagaaatccagttattttcc



subunit)/integrin, beta 2


gccctcaaaatgacagccatggccggccggtgcttctgggggctcgtcggggg



(antigen CD18 (p95),


gacagctccactctgactggcacagtctttgcatggagacttgaggagggcttga



lymphocyte function-


ggttggtgaggttaggtgcgtgtttcctgtgcaagt



associated antigen 1;



macrophage antigen 1



(mac-1) beta subunit)”





KHDRBS
“KH domain containing,
209781_s_at

cagcccggccagttggagttgtagtaccacgagggacgccaactcccagagg
10656
NM_006558
SEQ ID


3
RNA binding, signal


agtcctgtccacccgagggccagtgagtcggggaagaggacttctcactccca


NO: 95



transduction associated 3/


gagcaagaggagtccccccaactgggtacagacctccaccgccacccccga



KH domain containing,


cacaagagacttatggagaatatgactatgatgatggatatggcactgcttatgat



RNA binding, signal


gaacagagttatgattcctatgataacagctatagcaccccagcccaaagtggt



transduction associated


gctgattactatgattacggacatggactcagtgaggagacttatgattcctacgg



3”


gcaagaagagtggactaactcaagacacaaggcaccttcagcgaggacagc






aaagggcgtctacagagaccagccatatggcagatactgattgtactgtctgatg






ttgtgaaatagccaatctccaccagtcctgtatactg





KRT13
keratin 13/keratin 13
207935_s_at
+
gagaacacggtggcagagacggagtgccgctatgccctgcagctgcagcag
3860
NM_002274/
SEQ ID






atccagggactcatcagcagcatcgaggcccagctgagcgagctccgcagtg

NM_153490
NO: 96






agatggagtgccagaaccaagagtacaagatgctgctggacatcaagacacg






tctggagcaggagatcgccacctaccgcagcctgctcgagggccaggacgcc






aagaagcgtcagcccccgtagcacctctgttaccacgacttctagtgcctctgtta






ccaccacctctaatgcctctggtcgccgcacttctgatgtccgtaggccttaaatct






gcctggcgtcccctccctctgtcttcagcacccagaggaggagagagccggca






gttccctgcaggagagaggaggggctgctggacccaaggctcagtccctctgct






ctcaggaccccctgtcctgactctctcctgatggtgggccctctgtgctcttctcttcc






ggtcggatctctctcctctctgacctggatacgctttggtttctcaacttc





LASS6
LAG1 longevity assurance
212446_s_at
+
aactttaacttagagcttcattactttaagaatggaaaacaacctctgagtttgattt
25378
NM_203463
SEQ ID



homolog 6 (S. cerevisiae)


cccaaagtttcataaagcccctaagctcatgattttcatcaactctttgcccacata
2

NO: 97






gtcatttacctccacagccgtttgttgtcatagaaggggtggtggtgtttggatttgat






ttttttcaacttgcagtgagaaataggataggtgacaaaaccttacttgttttcttaag






acaattcagtgcttgagcatctctgtcagaaatggaatgaaatactgttagccaat






tagaattattttatgtattgttattgtgttttgctgatttttatatgaaaatataattattcatt






cttgatctctggaagcaa





LTBP2
latent transforming growth
204682_at

gggagccaaggctttatacgtctaaagaaaatattcagtagctgaatccgccca
4053
NM_000428/
SEQ ID



factor beta binding pro-


gtgatagcctgtgggcaccagcagcaagggctgccatgggatacagcaccca

NM_032035
NO: 98



tein 2/latent transforming


tctacaaagacctctattacataaacactgcttcttacaggaaacaaacctcttctg



growth factor beta binding


ggatctccttttgtgaaaaccagtttgatgtgctaaaagtaaaaagtctattttccag



protein 2


tgtggtcttgttcagaagcagccagatttccaatgttgtttttcccctccactcagaa






acccctgccctttcccttcagaaaacgatggcaggcattcctctgagtttacaagc






agagactcactccaacccaaactagctggg





MAP4K5
mitogen-activated protein
203552_at

acacacacatgcaattttgcttaacaaaagtattttataatacagtttcatacagaa
11183
NM_006575/
SEQ ID



kinase kinase kinase


ttaccttaaaagggagtcttatgttttcaactacagatagttgtaagggatcntaca

NM_198794
NO: 99



kinase 5


gaagatattgatgatagttgaaatattcttagaaggggtgtgtatgtctagctgtgtc






taccatgtgtatgtattcttgacaagcagtataaaatacctgtgatttttctttacatta






gggataatgcataaggaattaatcttcatatatattatcatccctaatgtagcaggg






ggaagtatttaattgcccatgatatgtattttacttatactatgccagagaggaaact






ataaagtaattacacatgtaatcttgggtttttcacatatgtaggtattcattttgagta






ggttgaagaagaaaaaaaatatttaaatgaattgaattcctgatgggatagtatc






aat





MAP4K5
mitogen-activated protein
203553_s_at

gaactctgcatcttcatggtttacagaaattggtgcaggcagccagcagttagatt
11183
NM_006575/
SEQ ID



kinase kinase kinase


ccattcatgtaacacagttggagagagataccgttttagtgtgtttagacaaatttgt

NM_198794
NO: 100



kinase 5


gaaaattgtaaatctacaaggaaaattaaaatcaagtaagaaactggcctctga






gttaagttttgattttcgcattgaatctgtagtatgccttcaagacagtgtgttggctttc






tggaaacatgggatgcagggtaaaagcttcaagtcagatgaggttacccagga






gatttcagatgaaacaagagttttccgcttattaggatcagacagggttgtcgttttg






gaaagtaggccaacagaaaatcctactgcacacagcaatctctacatcttggct






ggaatgaaaatagttactaagcaacagaaactgatctcaaatgacaggaaa






atgaatatactccattgaaagggaaaataaggaaattcaatacaaactgcacta






tgatttgctttaact





MMP2
“matrix metalloproteinase
201069_at

ctcagagccacccctaaagagatcctttgatattttcaacgcagccctgctttggg
4313
NM_004530
SEQ ID



2 (gelatinase A, 72 kDa


ctgccctggtgctgccacacttcaggctcttctcctttcacaaccttctgtggctcac


NO: 101



gelatinase, 72kDa type IV


agaacccttggagccaatggagactgtctcaagagggcactggtggcccgac



collagenase)/matrix


agcctggcacagggcagtgggacagggcatggccaggtggccactccagac



metalloproteinase 2


ccctggcttttcactgctggctgccttagaacctttcttacattagcagtttgctttgtat



(gelatinase A, 72 kDa


gcactttgttttttctttgggtcttgttttttttttccacttagaaattgcatttcctgacaga



gelatinase, 72 kDa type IV


aggactcaggttgtctgaagtcactgcacagtgcatctcagcccacatagtgatg



collagenase)”


gttcccctgttcactctacttagcatgtccctaccgagtctcttctccactggatgga






ggaaaaccaagccgtggcttcccgctcagccctccctgcccctcccttcaaccat






tccccatgggaaat





MYC
v-myc myelocytomatosis
202431_s_at
+
gcaacaaccgaaaatgcaccagccccaggtcctcggacaccgaggagaatg
4609
NM_002467
SEQ ID



viral oncogene homolog


tcaagaggcgaacacacaacgtcttggagcgccagaggaggaacgagctaa


NO: 102



(avian)/(v-myc


aacggagcttttttgccctgcgtgaccagatcccggagttggaaaacaatgaaa



myelocytomatosis viral


aggcccccaaggtagttatccttaaaaaagccacagcatacatcctgtccgtcc



oncogene homolog


aagcagaggagcaaaagctcatttctgaagaggacttgttgcggaaacgacg



(avian)


agaacagttgaaacacaaacttgaacagctacggaactcttgtgcgtaaggaa






aagtaaggaaaacgattccttctaacagaaatgtcctgagcaatcacctatgaa






cttgtttcaaatgcatgatcaaatgcaacctcacaaccttggctgagtc





NRP1
neuropilin 1
210510_s_at

aacatccgcctggtaaccagtcgctctggctgggcacttccacccgcacctcatt
8829
NM_003873
SEQ ID






cctacatcaatgagtggctccaaatagacctgggggaggagaagatcgtgag


NO: 103






gggcatcatcattcagggtgggaagcaccgagagaacaaggtgttcatgagg






aagttcaagatcgggtacagcaacaacggctcggactggaagatgatcatgg






atgacagcaaacgcaaggcgaagtcttttgagggcaacaacaactatgataca






cctgagctgcggacttttccagctctctccacgcgattcatcaggatctaccccga






gagagccactcatggcggactggggctcagaatggagctgctgggctgtgaag






tggaagcccctacagctggaccgaccactcccaacgggaacttggtggatgaa






tgtgatgacgaccaggccaactgccacagtggaaca





NRP1
neuropilin 1
212298_at

gcaaatatcttaccaggcagcctatgaattaacccaaagaagctttggttggttttg
8829
NM_003873
SEQ ID






gtggatttttatcatgccatgttggacatgagattttttagatcttccttcccacattgct


NO: 104






agacgtctcactcaaagacatttgttgggagtcacatttgcatcatagangagac






agtccattcatcttagttaaattggattgagaatgccttttgtttccaggaaaatattg






atcaccatgaaagaagaatagttttttgtccccagagacattcatttagttgatata






atcctaccagaaggaaagcactaagaaacactcgtttgttgtttttaaaggcaac






agacttaaagttgtcctcagccaagg





OLFM1
olfactomedin 1/
205591_at
+
caggtgtatctgcacagtggtcgccccacagcagaccatgtgttcacgggatgc
10439
NM_006334/
SEQ ID



olfactomedin 1


ccgcacaaaacagctgaggcagctactggagaaggtgcagaacatgtctcaa

NM_014279/
NO: 105






tccatagaggtcttggacaggcggacccagagagacttgcagtacgtggagaa

NM_058199






gatggagaaccaaatgaaaggactggagtccaagttcaaacaggtggagga






gagtcataagcaacacctggccaggcagtttaagggctaacttaaaagagttttt






tcaatgctgcagtgactgaagaagcagtccactcccatgtaaccatgaaagag






agccagagagctttttgcaccatgcatttttactattattttccaatacttagcaccatt






tcactaaggaaccttgaatacaaccaggatcctcctttgcatgcgactgtagctgc





OLFM1
olfactomedin 1
213131_at
+
gcgggccacagacgtcggaagaaactcccgtatttgcagctggaactgcagcc
10439
NM_006334/
SEQ ID






cacggcgccccggttttcctccccgccctgtccctctctggtcaaacaacatacta

NM_014279/
NO: 106






aagaggcgaggcaatgactgttggccagttctcaccggggaaaaacccnact

NM_058199






gttaggatggcatgaacatttccttagatcgtggtcagctccgaggaatgtggcn






nccaggctctttgangagccatgggctgcacccnggccgtaggcntagtgtaa






ctcgcatcccattgcagtgccngrncnttgactgtgttgctgtctcttagattaaccgt






gctgaggctccnacatagctccntggacctgtgtcntagtacatactgaagcgat






ggtcagagtgtgtagagtgaagttgctgtgcccacattgtttgaactcgcgtaccc






cgtagatacattgtgcaacgttcttctgttattcccttgaggtggtaacttcgtatgttc






agt





OSMR
oncostatin M receptor/
205729_at
+
ggagacttgagcttgacctaaggatatgcattaaccactctacagactcccactc
9180
NM_003999
SEQ ID



oncostatin M receptor


agtactgtacagggtggctgtggtcctagaagttcagtttttactgaggaaatatttc


NO: 107






cattaacagcaattattatattgaaggctttaataaaggccacaggagacattact






atagcatagattgcaaatgaaatttactgagcgtgttttataaaaaactcacagg






tgtttgaggccaaaacagattttagacttaccttgaacggataagaatctatagttc






actgacacagtaaaattaactctgtgggtgggggcggggggcatagctctaatc






taatatataaaatgtgtgatgaatcaacaagatttccacaattcttctgtcaagctta






ctacagtgaaagaatgggattggcaagtaacttctgacttactgtcagttgtacttc






tgctccatagacatcagtattctgccatcatttttgatgactacctcagaacataaa






aaggaacgtatatcacataattccagtcacagtttttggttcctctt





PCDHAC
“protocadherin alpha
210674_s_at

ctgacctctttgaagttgcagaatgctttgaaattctaatggtatctgaaatatcagc
56134
NM_018899/
SEQ ID


2
subfamily C, 2/


tcatagaaagtaacaaaatttgctgtcaccttaaataagacattttaattttgttataa

NM_031883
NO: 108



protocadherin alpha


tgtacaatttagaagtttgattaattatattatctatttaggcattaatataaaagaggt



subfamily C, 2”


aggagtctgttatttaaaaaaagcattaaatttaaaaaaaaactgtcttgtctactttt






agcttcattctcccatattttgaagggtgtgtaacttcagctctgcaggattgcatgg






ggtaaaacttgttaccaacacatgtgaaccattgctacattgtaggttgtgatcattt






tgccccactgaagcccatgtatctgaccttacgtgccttttgaactaggagaatcg






ggctaatttattaatgatgataattataatgtatctgtacagcactttttacatttgcga






agtgctttccaatccatgttagttactagttattacagctgtaaggataaaacacgtc






atgtggattcattttga





PDGFRA
“platelet-derived growth
203131_at

agaaaatttgccaatctttcctactttctatttttatgatgacaatcaaagccggcctg
5156
NM_006206
SEQ ID



factor receptor, alpha


agaaacactatttgtgactttttaaacgattagtgatgtccttaaaatgtggtctgcc


NO: 109



polypeptide/platelet-


aatctgtacaaaatggtcctatttttgtgaagagggacataagataaaatgatgtt



derived growth factor


atacatcaatatgtatatatgatttctatatagacttggagaatactgccaaaacat



receptor, alpha


ttatgacaagctgtatcactgccttcgtttatatttttttaactgtgataatccccacag



polypeptide”


gcacattaactgttgcacttttgaatgtccaaaatttatattttagaaataataaaaa






gaaagatacttacatgttcccaaacaatggtgtggtgaatgtgtgagaaaaact






aacttgatagggtctaccaatacaaaatgtattacgaatgcccctgttcatgtt





PDZK1
PDZ domain containing 1/
205380_at

gtcaaaccatgactcgcacatggcaaaagaacgggcccacagtacagcctca
5174
NM_002614
SEQ ID



PDZ domain containing


cattcttcttccaattctgaagatacagagatgtgatgaaaacaagtaatagctttg


NO: 110



1


gctgtttatttgatagctgtttctgggtatttaataggaatcctttctcaaggaatgagtt






gtgacctgtttactgtctctttagaagaaaaactccactggaaaccattcaccatgt






gtgaccttctttatcatttgtcttacaggcggctattgcagacggctaatttatgc






ttaacttaggaagagataaggcaagagctagatttttttcatgtgatcttttccaagc






ttcaacttaacttaactacatttctctgtatgatgatgtctcttacttctacaggttccttg






agcac





PEA15
phosphoprotein enriched
200788_s_at

taaattcacatgcagtctcagagactatttagacaaagttcaagttaggagctttta
8682
NM_003768/
SEQ ID



in astrocytes 15/


ggatgtgggagtaaaactttaatgggaggggagggctggctgctggaagaag

NM_013287
NO: 111



phosphoprotein enriched


gaagaagccagactggttagacagtactcttaactcctagcccagcctacgtgc



in astrocytes 15


cctgcccctctggccactgctgcagacacctgccttaacacacacacctctagg






actccacagttttgccttaaaggaccttcccaagtctccctttccctgtctggcttctc






ccttaagaagagagagatacttgtagaattgggtggggggaatgagcatgaac






tgccttccatttgggatatttacattagagtgagagagagaataaggagcctttc






ttatggaagaaatgggagaagagagacagggttcttttcagcagagtctagtag






tttcctgtaaggcaaaataatctaaaaagactaacctgcccacccactccttatat






tgctgtgagattgcccc





PGM1
phosphoglucomutase 1/
201968_s_at

cggacccatccaagtcatctgattgaagagcatgacagaaacaaaatgtattca
5236
NM_002633
SEQ ID



phosphoglucomutase 1


ccaagcattttaggatttgactttttcactaaccagttgacgagcagtgcatttacaa


NO: 112






ggcactgccaaacaagatgcccttgggagctgtgagggaaagaggacctgcg






ggcttagatcaatctcaattccttttcatgccctcctgcattgctgctgcgtgggtattt






gtctccttagccatcaggtacagtttacactacaatgtaagctataggtggagcat






cagcagtgagtgaggccattcttcatccttaggatgtggcaatgaaatgatggtg






caagttcctttctcttttgtgaatctttccccccatttcctgtttacatgtaacccaacaa






aatgcaatttctagtgccttctgtccaatcagttctttcctctgagtgagacgtacttg






gctacagatttctgccttgttttgcgacattgtc





PI3
“protease inhibitor 3,
203691_at

gattggtatggccttagctcttagccaaacaccttcctgacaccatgagggccag
5266
NM_002638
SEQ ID



skin- derived (SKALP)”


cagcttcttgatcgtggtggttcctcatcgctgggacgctggttctagaggcagc


NO: 113






tgtcacgggagttcctgttaaaggtcaagacactgtcaaaggccgtgttccattca






atggacaagatcccgttaaaggacaagtttcagttaaaggtcaagataaagtca






aagcgcaagagccagtcaaaggtccagtctccactaagcctggctcctgcccc






attatcttgatccggtgcgccatgttgaatccccctaaccgctgcttgaaagatact






gactgcccaggaatcaagaagtgcgtgaaggctcttgcgggatggcctgtttcg






ttccccagtgaagggagccgcttccttgct





PLAU
“plasminogen activator,
205479_s_at

cccgaccggtgggcatttgtgaggcccatggttgagaaatgaataatttcccaatt
5328
NM_002658
SEQ ID



urokinase/plasminogen


aggaagtgtaagcagctgaggtctcttgagggagcttagccaatgtgggagca


NO: 114



activator, urokinase”


gcggtttggggagcagagacactaacgacttcagggcagggctctgatattcca






tgaatgtatcaggaaatatatatgtgtgtgtatgtttgcacacttgttgtgtgggctgt






gagtgtaagtgtgagtaagagctggtgtctgattgttaagtctaaatatttccttaaa






ctgtgtggactgtgatgccacacagagtggtctttctggagaggttataggtcactc






ctggggcctcttgggtcccccacgtgacagtgcctgggaatgtacttattctgcag






catgacctgtgaccagcactgtctcagtttcactttcacatagatgcccttcttggc






cagttatcccttccttttagcctagttcatccaatcctcactgggtgggg





PLAU
“plasminogen activator,
211668_s_at

accacaacgacattgcctgctgaagatccgttccaaggagggcaggtgtgcg
5328
NM_002658
SEQ ID



urokinase/plasminogen


cagccatcccggactatacagaccatctgcctgccctcgatgtataacgatcccc


NO: 115



activator, urokinase”


agtttggcacaagctgtgagatcactggctttggaaaagagaattctaccgacta






tctctatccggagcagctaagatgactgttgtgaagctgatttcccaccgggagt






gtcagcagccccactactacggctctgaagtcaccaccaaaatgctgtgtgctg






ctgacccacagtggaaaacagattcctgccagggagactcagggggacccct






cgtctgttccctccaaggccgcatgactttgactggaattgtgagctggggccgtg






gatgtgccctgaaggacaagccaggcgtctacacgagagtctcacactt





PPIF
peptidylprolyl Isomerase F
201489_at

gggttgccatccaagtgaaagtcttttccttgaccaagggggacagtcagttttgc
10105
NM_005729
SEQ ID



(cyclophilin F)/


aaaaggactctaatacctgtttaatattgtcttcctaattgggataatttaattaacaa


NO: 116



peptidylprolyl isomerase F


gattgactagaagtgaaactgcaacactaacttccccgtgctgtggtgtgacctg



(cyclophilin F)


agttggtgacacaggccacagaccccagagcttggcttttgaaacacaactca






gggcttttgtgaaggttcccccgctgagatcmcctcctggttactgtgaagcctgtt






ggtttgctgctgtcgtttttgaggagggcccatgggggtaggagcagttgaacctg






ggaacaaacctcacttgagctgtgcctagacaatgtgaattcctgtgttgctaaca






gaagggcctgtaagctcctgtgctccggagggaagcatttcctggtaggctttg





PPIF
peptidylprolyl isomerase F
201490_s_at

gctgaaggcagatgtcgtcccaaagacagctgagaacttcagagccctgtgca
10105
NM_005729
SEQ ID



(cyclophilin F)


ctggtgagaagggcttcggctacaaaggctccaccttccacagggtgatcccttc


NO: 117






cttcatgtgccaggcgggcgacttcaccaaccacaatggcacaggcgggaagt






ccatctacggaagccgctttcctgacgagaactttacactgaagcacgtggggc






caggtgtcctgtccatggctaatgctggtcctaacaccaacggctcccagttcttc






atctgcaccataaagacagactggttggatggcaagcatgttgtgttcggtcacgt






caaagagggcatggacgtcgtgaagaaaatagaatctttcggctctaagagtg






ggaggacatccaagaagattgtcatcacagactgtggccagttgagctaatctgt






ggccagggtgctggcatggtggcagctgcaaatgtccatgcacccaggtggcc






gcgttgggctgtcagccaaggtgcctgaaacgatacgtgtgcccact





PTGS2
prostaglandin-
204748_at
+
ggttgaatgtttgtccttaggataggcctatgtgctagcccacaaagaatattgtctc
5743
NM_000963
SEQ ID



endoperoxide synthase 2


attagcctgaatgtgccataagactgaccttttaaaatgttttgagggatctgtggat


NO: 118



(prostaglandin G/H


gcttcgttaatttgttcagccacaatttattgagaaaatattctgtgtcaagcactgtg



synthase and


ggttttaatatttttaaatcaaacgctgattacagataatagtatttatataaataattg



cyclooxygenase)/


aaaaaaattttcttttgggaagagggagaaaatgaaataaatatcattaaagata



prostaglandin-


actcaggagaatcttctttacaattttacgtttagaatgtttaaggttaagaaagaaa



endoperoxide synthase 2


tagtcaatatgcttgtataaaacactgttcactgttttttttaaaaaaaaaacttgattt



(prostaglandin G/H


gttattaacattgatctgctgacaaaacctgggaatttgggttgtgtatgcgaatgttt



synthase and


cagtgcctcagacaaat



cyclooxygenase)





RRM1
ribonucleotide reductase
201476_s_at
+
gaacaagcgtcctggggcatttgctatttacctggagccttggcatttagacatcttt
6240
NM_001033
SEQ ID



M1 polypeptide


gaattccttgatttaaagaagaacacaggaaaggaagagcagcgtgccagag


NO: 119






atcttttctttgctctttggattccggatctcttcatgaaacgagtggagactaatcag






gactggtctttgatgtgtccaaatgagtgtcctggtctggatgaggtttggggagag






gaatttgagaaactatatgcaagttatgagaaacaaggtcgtgtccgcaaagttg






taaaagctcagcagctttggtatgccatcattgagtctcagacggaaacaggca






ccccgtatatgctctacaaagattcctgtaatcgaaagagcaaccagcagaacc






tgggaaccatcaaatgcagcaacctgtgcacagaaatagtggagtacaccag






caaagatgaggttgctgtttgtaatttggcttccctggccctgaatatgtatgt





SEMA3B
“sema domain,
203071_at
+
gcccctggagtcgcggagaaagggccgtaaccggaggacccacgcccctga
7869
NM_004636
SEQ ID



immunoglobutin domain


gcctcgcgctgagcgggggccgcgcagcgcaacgcactggtgaccagactgt


NO: 120



(Ig), short basic domain,


ccccacgccgggaaccaagcaggagacgacaggcgagagaggagccag



secreted, (semaphorin)


acagaccctgaaaagaaggacgggttggggccgggcacattgggggtcacc



3B/sema domain,


ggccgatggagacaccaaccgacaggccctggctgagggcagctgcgcggg



immunoglobulin domain


cttatttattaacaggataacccttgaatgtagcagccccgggagggcggcaca



(Ig), short basic domain,


ggtcgggcgcaggattcagccggagggaagggacggggaagccgagctcc



secreted, (semaphorin)


agagcaacgaccagggccgaggaggtgcctggagtgcccaccctgggaga



3B”


cagaccccacctccttgggtagtgagcagtg





SERPINE
“serine (or cysteine)
202627s_at

ggaactacggggcttacaggagcttttgtgtgcctggtagaaactatttctgttcca
5054
NM_000602
SEQ ID


1
proteinase inhibitor,


gtcacattgccatcactcttgtactgcctgccaccgcggaggaggctggtgacag


NO: 121



clade E (nexin, plasmin-


gccnaaaggccagggaagaaaaccctttcatctcagagtccactgtggcact



ogen activator inhibitor


ggccacccctccccagtacaggggtgctgcaggtggcagagtgaatgtccccc



type 1), member 1”


atcatgtggcccaactctcctggcctggccatctccctccccagaaacagtgtgc






atgggttamtggagtgtaggtgacttgtttactcattgaagcagatttctgcttcctttt






atttttataggaatagaggaagaaangtcagatgcgtgcccagctcttcaccccc






caatctcttggtggggaggggtgtacctaaatatttatcatatccttgcccttgag





SERPINE
“serine (or cysteine)
202628_s_at

aaattgaccatacaatttcatcctccttcaggggatcaaaaggacggagtgggg
5054
NM_000602
SEQ ID


1
proteinase inhibitor,


ggacagagactcagatgaggacagagtggtttccaatgtgttcaatagatttagg


NO: 122



clade E (nexin, plasmin-


agcagaaatgcaaggggctgcatgacctaccaggacagaactttccccaatta



ogen activator inhibitor


cagggtgactcacagccgcattggtgactcacttcaatgtgtcatttccggctgctg



type 1), member 1”


tgtgtgagcagtggacacgtgaggggggggtgggtgagagagacaggcagct






cggattcaactaccttagataatatttctgaaaacctaccagccagagggta





SLC20A1
“solute carrier family 20
201920_at

gtatcaggcttcaattccattatgttttaatgttgtctctgaagatgacttgtgattttttttt
6574
NM_005415
SEQ ID



(phosphate transporter),


cttttttttaaaccatgaagagccgtttgacagagcatgctctgcgttgttggtttcac


NO: 123



member 1/solute carrier


cagcttctgccctcacatgcacagggatttaacaacaaaaatataactacaactt



family 20 (phosphate


cccttgtagtctcttatataagtagagtccttggtactctgccctcctgtcagtagtgg



transporter), member 1”


caggatctattggcatattcgggagcttcttagagggatgaggttctttgaacaca






gtgaaaatttaaattagtaacutmgcaagcagtuattgactgttattgctaagaa






gaagtaagaaagaaaaagcctgttggcaatcttggttatttctttaagatttctggc






agtgtgggatggatgaatgaagtggaatgtgaactttgggcaagttaaatggga






cagccttccatgttcatttgtctacctcttaactga





SPRY1
“sprouty homolog 1,
212558_at

taattttagattcgacaatgtaaatcttcacattggagataatattggttggacc
10252
NM_005841/
SEQ ID



antagonist of FGF


ttgcccatcttcactctagccttcgtatttgtgaaggactcagccaccttccttcttcac

NM_199327
NO: 124



signaling (Drosophila)”


cccatgcttctcaccaaatttttgttgtcattgagggcacttggataactcaagttgat






atttatagctgatcaatctatatgtgtcacagaactatgctgcctaaagtgatcttgg






ctccttaatggtccttttggccccttggatagttaacagctgagtaattctaatctcttc






tgtgttttccttgccttaaccacaaattgtgg





SPRY2
sprouty homolog 2
204011_at

gagatacagaacttggtgacccatgtattgcataagctaaagcaacacagaca
10253
NM_005842
SEQ ID



(Drosophila)/sprouty


ctcctaggcaaagtttttgtttgtgaatagtacttgcaaaacttgtaaattagcagat


NO: 125



homolog 2 (Drosophila)


gacttttttccattgttttctccagagagaatgtgctatatttttgtatatacaataatattt






gcaactgtgaaaaacaagttgtgccatactacatggcacagacacaaaatatta






tactaatatgttgtacattcggaagaatgtgaatcaatcagtatgtttttagattgtatt






ttgccttacagaaagcctttattgtaagactctgamcccmggacttcatgtatattg






tacagttacagtaaaattcaacctttattttctaattttttcaacatattgtttagtgtaaa






gaatatttatttgaagttttattattttataaaaaagaatatttattttaagaggcatctta






caaattttgccccttt





SRPUL
sushi-repeat protein/
205499_at

gcggcatgtgaccatcattgaactggtgggacagccacctcaggaggtggggc
27286
NM_014467
SEQ ID



sushi-repeat protein


gcatccgggagcaacagctgtcagccaacatcatcgaggagctcaggcaattt


NO: 126






cagcgcctcactcgctcctacttcaacatggtgttgattgacaagcagggtattga






ccgagaccgctacatggaacctgtcacccccgaggaaatcttcacattcattgat






gactacctactgagcaatcaggagttgacccagcgtcgggagcaaagggaca






tatgcgagtgaacttgagccagggcatggttaaagtcaagggaaaagctcctct






agttagctgaaactgggacctaataaaaggaggaaatgttttcccacagttctag






ggacaggactctgaggtgggtgagtttgacaaatcctgcagtgtttccaggcatc






cttttaggactgtgtaatagtttccctagaagctaggtagggactgaggacaggc






cttgggcagtgggtt





TCF8
transcription factor 8
208078_s_at
+
agactgggcgaaaggctgtccggagggcagaccaggtgccttgccgcagag
6935
NM_030751
SEQ ID



(represses interleukin 2


aaaacaccaaagtctcctgttcgctcataaagaagtttttgggatgggagagaat


NO: 127



expression)/transcription


ccagaccatcttggggcagccaggcccttgccttcatttttacagaggtagcaca



factor 8 (represses


actgattccaacacaaaaccccttcccctttttaaaatgatttctgttctaatgccata



interleukin 2 expression)/


gatcaaaggcctcagaaaccattgtgtgtttcctctttgaagcaatgacaagcact



transcription factor 8


ttactttcacggtggtttttgttttttcttattgctgtggaacctcttttggaggacgttaaa



(represses interleukin 2


ggcgtgttttacttgtttttttaagagtgtgtgatgtgtgttttgtagatttcttgacagtgc



expression)


tgtaatacagacggcaatgcaatagcctatttaa





TGFA
“transforming growth
205016_at

cctgccctctagttggttctgggctttgatctcttccaacctgcccagtcacagaag
7039
NM_003236
SEQ ID



factor, alpha/


gaggaatgactcaaatgcccaaaaccaagaacacattgcagaagtaagaca


NO: 128



transforming growth


aacatgtatatttttaaatgttctaacataagacctgttctctctagccattgatttacc



factor, alpha”


aggctttctgaaagatctagtggttcacacagagagagagagagtactgaaaa






agcaactcctcttcttagtcttaataatttactaaaatggtcaacttttcattatctttatt






ataataaacctgatgcttttttttagaactccttactctgatgtctgtatatgttgcactg






aaaaggttaatatttaatgtittaatttattttgtgtggtaagttaattttgatttctgtaatg






tgttaatgtgattagcagttattttccttaatatctgaattatacttaaagagtagtgag






caatataagacgcaattgtgtttttcagt





TGFBR2
“transforming growth
208944_at

gtttggatggtggaaggtctcattttattgagatttttaagatacatgcaaaggtttgg
7048
NM_003242
SEQ ID



factor, beta receptor II


aaatagaacctctaggcaccctcctcagtgtgggtgggctgagagttaaagaca


NO: 129



(70/80 kDa)/transforming


gtgtggctgcagtagcatagaggcgcctagaaattccacttgcaccgtagggca



growth factor, beta


tgctgataccatcccaatagctgttgcccattgacctctagtggtgagtttctagaat



receptor II (70/80 kDa)”


actggtccattcatgagatattcaagattcaagagtattctcacttctgggttatcag






cataaactggaatgtagtgtcagaggatactgtggctt





TIEG
TGFB inducible early
202393_s_at

tttgcctgcagtttcttgtgtagatttgaaaattgtataccaatgtgttttctgtagactct
7071
NM_005655
SEQ ID



growth response/TGFB


aagatacactgcactttgtttagaaaaaaaactgaagatgaaatatatattgtaa


NO: 130



inducible early growth


agaagggatattaagaatcttagataacttcttgaaaaagatggcttatgtcatca



response


gtaaagtacctttatgttatgaggatataatgtgtgctttattgaattagaaaattagt






gaccattattcacaggtggacaaatgttgtcctgttaatttataggagttttttgggga






tgtggaggagttgggtagaaaaattattagaacattcacttttgttaacagtatttct






cttttattctgttatatagtggatgatatacacagtggcaaaacaaaagtacattgct






taaaatatatagtgaaaaatgtcactatatcttcccatttaacattgtttttgtatattgg






gtgtagatttctgacatcaaaacttggacccttggaaaacaaaagttttaattaaa






aaaaatccttgtgacttacaatttgcac





TIMP3
“tissue inhibitor of
201147_s_at

gagtcggagatgatgcagcacacacacaattccccagcccagtgatgcttgtgt
7078
NM_000362
SEQ ID



metalloproteinase 3


tgaccagatgttcctgagtctggagcaagcacccaggccagaataacagagct


NO: 131



(Sorsby fundus dystrophy,


ttcttagttggtgaagacttaaacatctgaggtcaggaggcaatttgcctgcc



pseudoinflammatory)”


ttgtacaaaagctcaggtgaaagactgagatgaatgtctttcctctccctgcctccc






accagacttcctcctggaaaacgcutggtagatttggccaggagctttcttttatgt






aaattggataaatacacacaccatacactatccacagatatagccaagtagattt






gggtagaggatactatttccagaatagtgtttagctcacctagggggatatgtttgt






atacacatttgcatatacccacatgggg





TIMP3
“tissue Inhibitor of
201148_s_at

ttgttgtcgttgcttgtttgaagaaaatcatgacattccaagttgacattttttttttcatttt
7078
NM_000362
SEQ ID



metalloproteinase 3


aattaaaatttgaaattctgaacaccgtcagcaccctctcttccctatcatgggtcat


NO: 132



(Sorsby fundus dystrophy,


ctgacccctgtccgtctccttgtccctgcttcatgtttgggggcctttctttaactgcctt



pseudoinflammatory)”


cctggcttagctcagatggcagatgagagtgtagtcaagggcctgggcacagg






agggagagctgcagagtgtcctgcctgccttggctggagggacacctctcctgg






gtgtggagacagcttggttccctttccctagctccctggtgggtgaatgccacctcc






tgagatcctcacctcttggaattaaaattgttggtcactggggaaagcctgagtttg






caaccagttg





TIMP3
“tissue inhibitor of
201149_s_at

aggggctgaactatcggtatcacctgggttgtaactgcaagatcaagtcctgcta
7078
NM_000362
SEQ ID



metalloproteinase 3


ctacctgccttgctttgtgacttccaagaacgagtgtctctggaccgacatgctctc


NO: 133



pseudoinflammatory)/


caatttcggttaccctggctaccagtccaaacactacgcctgcatccggcagaa



tissue inhibitor of


gggcggctactgcagctggtaccgaggatgggcccccccggataaaagcatc



metalloproteinase 3


atcaatgccacagacccctgagcgccagaccctgccccacctcacttccctccc



(Sorsby fundus dystrophy,


ttcccgctgagcttcccttggacactaactcttcccagatgatgacaatgaaattag



pseudoinflammmatory)”


tgcctgttttcttgcaaatttagcacttggaacatttaaagaaaggtctatgctgtcat






atggggtttattgggaactatcctcctggcc





TIMP3
“tissue inhibitor of
201150_s_at

gactttttggaatagccctgtctagggcaaactgtggcccccaggagacactacc
7078
NM_000362
SEQ ID



metalloproteinase 3


cttccatgccccagacctctgtcttgcatgtgacaattgacaatctggactacccc


NO: 134



(Sorsby fundus dystrophy,


aagatggcacccaagtgtttggcttctggctacctaaggttaacatgtcactagag



pseudoinflammatory)”


tatttttatgagagacaaacattataaaaatctgatggcaaaagcaaaacaaaat






ggaaagtaggggaggtggatgtgacaacaacttccaaattggctctttggaggc






gagaggaaggggagaacttggagaatagtttttgctttgggggtagaggsttctt






agattctcccagcatccgcctttccctttagccagtctgctgtcctgaaacccagaa






gtgatggagagaaaccaacaagagatctcgaaccctgtctagaaggaatgtat






ttgttgctaaatttcgtagcactgtttacagttttcctccatgttatttatg





TNFRSF6
“tumor necrosis factor
204781_s_at
+
gagtattactagagcttgccacctctccatttttgccttggtgctcatcttaatggcct
355
NM_000043/
SEQ ID



receptor superfamily,


aatgcacccccaaacatggaaatatcaccaaaaaatacttaatagtccaccaa

NM_152871/
NO: 135



member 6”


aaggcaagactgcccttagaaattctagcctggtttggagatactaactgctctca

NM_152872/






gagaaagtagcttgtgacatgtcatgaacccatgtttgcaatcaaagatgataa

NM_152873/






aatagattcttatttttcccccacccccgaaaatgttcaataatgtcccatgtaaaac

NM_152874/






ctgctacaaatggcagcttatacatagcaatggtaaaatcatcatctggatttagg

NM_152875/






aattgctcttgtcatacccccaagtttctaagatttaagattctccttactactatccta

NM_152876/






cgtttaaatatctttgaaagtttgtattaaatgtgaattttaagaaataatatttatatttc

NM_152877






tgtaaatgtaaactgtgaagatagttataaactgaagcagatacctggaaccac






ctaaagaacttccatttatggaggatttttttgccccttgtgtttggaattat





TNFRSF6
“tumor necrosis factor
215719_x_at
+
accaaggttctcatgaatctccaaccttaaatcctgaaacagtggcaataaattta
355
NM_000043/
SEQ ID



receptor superfamily,


tctgatgttgacttgagtaaatatatcaccactattgctggagtcatgacactaagtc

NM_152871/
NO: 136



member 6”


aagttaaaggctttgttcgaaagaatggtgtcaatgaagccaaaatagatgaga

NM_152872/






tcaagaatgacaatgtccaagacacagcagaacagaaagttcaactgcttcgt

NM_152873/






aattggcatcaacttcatggaaagaaagaagcgtatgacacattgattaaagat

NM_152874/






ctcaaaaaagccaatctttgtactcttgcagagaaaattcagactatcatcctcaa

NM_152875/






ggacattactagtgactcagaaaattcaaacttcagaaatgaaatccaaagctt

NM_152876/






ggtctagagtgaaaaacacaaattcagttctgagtatatgcaattagtgtttgan

NM_152877






aagattcttaatagctggctgtaaatactgcttggttt





TNFSF10
“tumor necrosis factor
202687_s_at
+
gtagcagctcacataactgggaccagaggaagaagcaacacattgtcttctcc
8743
NM_003810
SEQ ID



(ligand) superfamily,


aaactccaagaatgaaaaggctctgggccgcaaaataaactcctgggaatcat


NO: 137



member 10”


caaggagtgggcattcattcctgagcaacttgcacttgaggaatggtgaactggt






catccatgaaaaagggttttactacatctattcccaaacatactttcgatttcagga






ggaaataaaagaaaacacaaagaacgacaaacaaatggtccaatatatttac






aaatacacaagttatcctgaccctatattgttgatgaaaagtgctagaaatagttgt






tggtctaaagatgcagaatatggactctattccatctatcaagggggaatatttga






gcttaaggaaaatgacagaatttttgtttctgtaacaaatgagcacttgatagacat






ggaccatgaagccagttttttcggggcctttttagttggctaactgacct





TNFSF10
“tumor necrosis factor
202688_at
+
ctctacctcatatcagtttgctagcagaaatctagaagactgtcagcttccaaaca
8743
NM_003810
SEQ ID



(ligand) superfamily,


ttaatgcaatggttaacatcttctgtctttataatctactccttgtaaagactgtagaa


NO: 138



member 10/tumor


gaaagcgcaacaatccatctctcaagtagtgtatcacagtagtagcctccaggtt



necrosis factor (ligand)


tccttaagggacaacatccttaagtcaaaagagagaagaggcaccactaaaa



superfamily, member 10”


gatcgcagtttgcctggtgcagtggc





TUBB4
“tubulin, beta, 4”
213476_x_at

gctcacccagcagatgttcgatgccaagaacatgatggccgcctgcgacccgc
10381
NM_006086
SEQ ID






gccacggccgnctanctgacggtggccaccgtgttccggggccgcatgtccat


NO: 139






gaaggaggtggacgagcagatgctggccatccagagcaagaacagcagcta






cttcgtggagtggatccccaacaacgtgaaggtggccgtgtgtgacatcccgcc






ccgcggcctcaagatgtcctccaccttcatcgggaacagcacggccatccagg






agctgttcaagcgcatctccgagcagttcacggccatgttccggcgcaaggcctt






cctgcactggtacacgggcgagggcatggacgagatggagttcaccgaggcc






gagagcaacatgaacgacctggtgtccgagtacc





TUSC3
tumor suppressor
209227_at

gatgcctaaccaaggactagagctccttcttgagatctaaatctaaagtaaatgtg
7991
NM_006765/
SEQ ID



candidate 3


cattaaagcagtgtgcttcaaaggcatcagacgatgaaagcaacataccacaa

NM_178234
NO: 140






ctaggagttatttctcaaacttaaatgtcctctgggaatccagacttaaaaataag






agcaaacttaacacactatccattttcgagcaaacttaacccactatatccattttg






ctcatgtgttttatgcaaccagctttccatcaaatcctcaatccttgaatccaggtaa






aaggttaattatcctaggattagtgaatgattcaatgaagctttcttgaaaacaaac






ataggagtgtaatgtactattatgtttgtatcctgttttagtttataaagcactttcacat






acattatgg





TUSC3
tumor suppressor
209228_x_at

acccaactactctggtaccattgctttggccctgttagtgtcgcttgttggaggtttgc
7991
NM_006765/
SEQ ID



candidate 3


tttatttgagaaggaacaacttggagttcatctataacaagactggttgggccatg

NM_178234
NO: 141






gtgtctctgtgtatagtctttgctatgacttctggccagatgtggaaccatatccgtgg






acctccatatgctcataagaacccacacaatggacaagtgagctacattcatgg






gagcagccaggctcagtttgtggcagaatcacacattattctggtactgaatgcc






gctatcaccatggggatggttcttctaaatgaagcagcaacttcgaaaggcgatg






ttggaaaaagacggataatttgcctagtgggattgggcctggtggtcttcttcttca






gttttctactttcaatatttcgttccaagtaccacggctatccttatagtgatctggactt






tgagtgagaagatgtgatttggaccatggcacttaaaaactctataacctcagcct






tttaat





TUSC3
tumor suppressor
213423_x_at

ctttgctatgacttctggccagatgtggaaccatatccgtggacctccatatgctcat
7991
NM_006765/
SEQ ID



candidate 3


aagaacccacacaatggacaagtgagctacattcatgggagcagccaggctc

NM_178234
NO: 142






agtttgtggcagaatcacacattattctggtactgaatgccgctatcaccatgggg






atggttcttctaaatgaagcagcaacttcgaaaggcgatgttggaaaaagacgg






ataatttgcctagtgggattgggcctggtggtcttcttcttcagttttctactttcaatattt






cgttccaagtaccacggctatccttatagctttttaattaaatgaagccaagtggga






tttgcataaagtgaatgtttaccatgaagataaactgttcctgactttatactattttga






attcattcatttcattgtgatcagctagcttattcttgtgtac









EXAMPLE 4
RT-PCR Confirmation Studies

In addition, the sequence of the RT-PCR primers used in the confirmatory follow up studies as highlighted in FIGS. 3, 4, 5 and 6 are listed in Table 3. Note that DAPK2 was not identified by Affymetrix analysis, only via follow up of the DAPK gene family by RT-PCR following discovery of predictivity of DAPK1. Hence no Affymetrix ID or Affymetrix ID sequence is provided for DAPK2.










TABLE 3







Sequences relevant to genes followed up by RT-PCR (see FIGS. 3, 4, 5 & 6)



(all sequences written 5′-3′)
















Taqman
Taqman







Forward
Reverse
Taqman


Gene
affy Id
affy probe seq
Primer
Primer
probe
















EMP1
201324_at
CACCAAATTACCTAGGCTGAGGTTAGAGAGATTGGCCAGCAAA
AGCCATCCTG
ACCTTACAAAC
CAAAGCA





AACTGTGGGAAGATGAACTTTGTCATTATGATTTCATTTATCAC
CCCTTCTGA
TCTCTTTCC
AAACATC




ATGATTATAGAAGGCTGTCTTAGTGCAAAAAACATACTACATT


ACATTCC




TCAGACATATCCAAAGGGAATACTCACATTTTTGTTAAGAAGTT


AGTC




GAACTATGACTGGAGTAAACCATGTATTCCCTTATCTTTTACTT




TTTTTCTGTGACATTTATGTCCTCATGTAATTTGCATTACTCTG




GTGGATTGTTCTAGTACTGTATTGGGCTTCTTCGTTAAT





NES
218878_at
GCAGCACTCTTAACTTACGATCTCTTGACATACGGTTTCTGGC
GCCCCTTTCA
AGTGCCGGGG
AGTGCTC




TGAGAGGCCTGGCCCGCTAAGGTGAAAAGGGGTGTGGGCAA
GGAGGAGGA
AGATGGTCTT
TGAAGAC




AGGAGCCTACTCCAAGAATGGAGGCTGTAGGAATATAACCTC


CTCTGG




CCACCCTGCAAAGGAATCTCTTGCCTGCTCCATTCTCATAGG


GC




CTAAGTCAGCTGAATCCCGATAGTACTAGGTCCCCTTCCCTCC




GCATCCCGTCAGCTGGAAAAGGCCTGTGGGCCCAGAGGCTTC




TCCAAAGGGAGGGTGACATGCTGGCTTTTGTGCCCAAGCTCA




CCAGCCCTGCGCCACCTCACTGCAAGTAGTGCACCATCTCAC




TGCAGTAGCACGCCCTCCTGGGCCGTCTGGCCTGTGGCTAAT




GGAGGTGACGGCACTCCCATTGTGCTGACTCCCCCCATCCCT




GCCACGCTGTGGCCCTGCCTGGCTAGTCCCTGCCTGAATAAA




G





DAPK1
203139_at
CCTCCTGCAGGGTGATTTTATGATCAGTGTTGTTGCTCTAGGA
AGGAAACGCT
CTGGAGGAGG
CTTGCTG




AGACATTTTTCCGTTTGCTTTTGTTCCAATGTCAATGGTGAACG
ACCTCTCTGT
ATCCCTTCT
TATGCTG




TCCACATGAAACCTACACACTGTCATGCTTCATCATTCCCTCTC


ATCATCG




ATCTCAGGTAGAAGGTTGACACAGTTGTAAGGGTTACAGAGAC


CC




CTATGTAAGAATTCAGAAGACCCCTGACTCATCATTTGTGGCA




GTCCCTTATAATTGGTGCATAGCCAGATGGTTTCCACATTTAG




ATCCTGGTTTCATAACTTCCTGTACTTGAAGTCTAAAAGCAGAA




AATAAAGGAAGCAAGTTTTTCTTCCATGATTTTAAATTGTGATC




GAGTTTTAAATTGATAGGAGGGAACATGTCCTAATTCTTCTGT




CCTGAGAA





DAPK2
Not
Not applicable
GGGTAGGCAC
AGTGCAGTGG
TACTCCA



applicable

CTGGCATC
CGTGATCTC
GGGGCT







GAGGTGA







CA









EXAMPLE 5
Diagnostic Test for Clinical Studies

The predictive gene lists above have been generated using the preclinical studies described. The following approach is employed to develop a diagnostic test for the clinical setting based on this data.


a) Identify patients which represent the population of individuals whom we would expect to derive benefit from a diagnostic test, and for which pre-treatment tumour samples and outcome of gefitinib treatment are known or will be available. For each sample the expression level for our genes of interest is evaluated, using for example the RNA signal from RT-PCR. QC procedures are applied to identify the set of samples and genes to take forward to step b).


a) Identify a subset of the genes which together are able to distinguish between patients showing different responses to gefitinib. There are a variety of methods which are useful to select the subset of genes and combine their expression values to provide a prediction, possibly a predictive value and a corresponding threshold which distinguishes between different patient groups. An example is stepwise Linear Discrminant Analysis where genes that distinguish well between patient groups are successively added to a linear combination until addition of a further gene does not provide additional predictive power (Mardia et al.). The threshold value of the linear combination is then selected to give the appropriate sensitivity and specificity properties.


d) Tool validation would partly be carried out during development in step 2, for example using cross validation and permutation tests. In addition, the finally developed diagnostic procedure (gene subset and method of combining to generate a prediction and a platform for biological analysis) is tested and validated in its entirety using an independent set of samples not used within tool development in step b).


REFERENCES



  • Bailey et al Lung Cancer (2003) 41 S2, S71

  • Downward et al. (1984) Nature, 307, p 521

  • Fukuoka et al (2003) J. Clin. Oncol., 21, p 2237

  • Kris et al. (2003) JAMA, 290, p 2149

  • Lynch et al (2004) New England Journal of Medicine, 350(21) p 2129

  • Mardia K. V., Kent J. T., Bibby J. M. (1979) “Multivariate Analysis” London, Academic Press Inc. Ltd.

  • Paez et al. (2004) Science, 304 p

  • Salomon et al. (1995) Crit. Rev. Oncol. Haematol, 19, p 183

  • Scheffe, H. (1959) “The Analysis of Variance” New York, Wiley

  • Sporn & Todaro (1980) New England Journal of Medicine 303, p 878

  • Storey (2003) “Statistical Significance for Genome Wide Studies” PNAS, vol 100, issue 16, pp 9440-9445

  • Yarden & Sliwkowski (2001) Nature Reviews Molecular Cell Biology, 2, p 127


Claims
  • 1. A method of selecting a mammal having or suspected of having a tumour for treatment with an erbB receptor drug which comprises testing a biological sample from the mammal for expression of any one of the genes listed in Table 1 or DAPK2, whereby to predict an increased likelihood of response to the erbB receptor drug.
  • 2. A method according to claim 1 comprising testing a biological sample from the mammal for expression of any one of NPAS2, NES, CHST7, DAPK1, ACOX2, GSPT2, TNNC1 or DAPK2.
  • 3. A method according to claim 1 comprising testing a biological sample from the mammal for expression of any one of NPAS2, NES, CHST7 or DAPK1.
  • 4. A method according to claim 1 comprising testing a biological sample from the mammal for expression of at least two of NPAS2, NES, CHST7 or DAPK1.
  • 5. A method according to claim 1 comprising testing a biological sample from the mammal for expression of at least three of NPAS2, NES, CHST7 or DAPK1.
  • 6. A method according to claim 1 comprising testing a biological sample from the mammal for expression of NPAS2, NES, CHST7 and DAPK1.
  • 7. A method according to claim 1 additionally comprising testing a biological sample from the mammal for expression of any gene listed in Table 2 as defined herein.
  • 8. A method according to claim 7 comprising testing a biological sample from the mammal for expression of any one of EMP1, SLC20A1, SPRY2 or PGM1.
  • 9. A method according to claim 7 comprising testing a biological sample from the mammal for expression of EMP1.
  • 10. A method according to claim 1 wherein the tumour is selected from the group consisting of leukaemia, multiple myeloma, lymphoma, bile duct, bone, bladder, brain, CNS, glioblastoma, breast, colorectal, cervical, endometrial, gastric, head, neck, hepatic, lung, muscle, neuronal, oesophageal, ovarian, pancreatic, pleural membrane, peritoneal membrane, prostate, renal, skin, testicular, thyroid, uterine and vulval.
  • 11. A method according to claim 10 wherein the tumour is selected from one of non-small cell lung, pancreatic, head or neck.
  • 12. A method according to claim 1 wherein the erbB receptor drug is selected from any one of gefitinib, erlotinib, PKI-166, EKB-569, HKI-272, lapatinib, canertinib, AEE788, XL647, BMS 5599626, cetuximab, matuzumab, panitumumab, MR1-1, IMC-11F8 or EGFRL11.
  • 13. A method according to claim 12 wherein the erbB receptor drug is gefitinib.
  • 14. A method according to claim 1 wherein the mammal is a human and in which the method comprises testing a biological sample from the human for increased expression of DAPK1 and decreased expression of NPAS2, NES, CHST7 and EMP1 whereby to predict an increased likelihood of response to gefitinib.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB05/02852 7/20/2005 WO 00 1/23/2007
Provisional Applications (2)
Number Date Country
60590357 Jul 2004 US
60619027 Oct 2004 US