METHOD OF PREDICTING WHETHER A KIDNEY TRANSPLANT RECIPIENT IS AT RISK OF HAVING ALLOGRAFT LOSS

Information

  • Patent Application
  • 20220293274
  • Publication Number
    20220293274
  • Date Filed
    March 23, 2020
    4 years ago
  • Date Published
    September 15, 2022
    a year ago
  • CPC
    • G16H50/30
    • G16H50/20
    • G16H20/40
  • International Classifications
    • G16H50/30
    • G16H50/20
    • G16H20/40
Abstract
Organ transplantation is currently recognised as the treatment of choice for patients with end-stage renal disease (ESRD), which is an underestimated but increasing burden worldwide. Despite the pressing need for improving patients risk stratification raised by transplant societies as well as regulatory agencies, no risk-stratification system exists that adequately predicts transplant patients' individual risk of allograft loss. This currently represents a limitation for improving patient management, as well as for defining early surrogate end points for clinical trials and development of pharmaceutical agents. The inventors now report the development and validation of an integrative risk prediction score to predict kidney allograft survival of individual patients (NCT03474003). The iBox risk prediction score is the first integrative system validated in several independent populations from Europe & North America as well as across 3 clinical trials (NCT01079143, EudraCT2007-003213-13, NCT01873157) covering distinct clinical scenarios. In particular, the advantages brought by the iBox risk prediction score are i) improved discrimination performance by combining traditional prognostic factors with mechanistically informed parameters, ii) outperformance when compared with currently existing scoring systems, iii) generalisability when assessed in geographically distinct cohorts from Europe and North America, iv) transportability at different times of evaluation post-transplant, v) performance in a variety of clinical scenarios including clinical trials and vi) readily accessible to clinicians and patients by an online tool for patient risk calculation. Thus, the present invention relates to a method of predicting whether a kidney transplant recipient is at risk of having allograft loss by implementing the iBox risk prediction score.
Description
FIELD OF THE INVENTION:

The present invention relates to a method of predicting whether a kidney transplant recipient is at risk of having allograft loss.


BACKGROUND OF THE INVENTION:

End-stage renal disease is estimated to affect 7.4 million persons worldwide.(1, 2) According to data from the World Health Organisation, more than 1,500,000 live with transplanted kidneys, and 80,000 new kidneys are transplanted each year.(3) Despite the considerable advances in short-term outcomes, kidney transplant recipients continue to suffer from late allograft failure, and little improvement has been made over the past 15 years.(4, 5) While the failure of a kidney allograft represents nowadays an important cause of end stage renal disease, it contrasts with the absence of available robust and widely validated prognostication systems for the risk of allograft failure in individual patients.(6) Accurately predicting which patients are at a high risk of allograft loss would help to stratify patients into clinically meaningful risk groups, which may help guide patient monitoring. Moreover, regulatory agencies and medical societies have highlighted the need for an early and robust surrogate endpoint in transplantation that adequately predicts long-term allograft failure.(7) An enhanced ability to predict allograft outcomes would not only inform daily clinical care, patient counselling and therapeutic decisions but also facilitate the performance of clinical trials, which generally lack statistical power because of the low event rates during the first year after transplantation.(8)


Taken individually, parameters such as estimated glomerular filtration rate (eGFR),(9, 10) proteinuria,(11) histology,(12) or human leukocyte antigen (HLA) antibody profiles,(13) fail to provide sufficient predictive accuracy. Previous efforts at developing prognostic systems in nephrology based on various combinations of parameters have been hampered by small sample sizes, the absence of proper validation, limited phenotypic details from registries, the absence of systematic immune response monitoring, and the failure to include key prognostic factors that affect allograft outcome (e.g., donor-derived factors, polyoma virus-associated nephropathy, disease recurrence).(14-16) Finally, no scoring system has been evaluated in large cohorts from different countries with different transplant practices, allocation systems and practice patterns, thereby limiting their exportability, which is an important consideration for health authorities to accept a scoring system as a surrogate endpoint.(17)


SUMMARY OF THE INVENTION:

As defined by the claims, the present invention relates to a method of predicting whether a kidney transplant recipient is at risk of having allograft loss.


DETAILED DESCRIPTION OF THE INVENTION:

Organ transplantation is currently recognised as the treatment of choice for patients with end-stage renal disease (ESRD), which is an underestimated but increasing burden worldwide. Indeed, chronic kidney disease (CKD) affects 850 million individuals worldwide (in comparison, diabetes, cancer, and HIV/AIDS affect 422, 42, and 37 million individuals worldwide, respectively). Despite the progress made in immunosuppressive regimens, thousands of allografts are failing every year, with immediate consequences for the patients in terms of mortality, morbidity and cost for the society. Recently, it has been shown that the loss of a kidney allograft represents nowadays an important cause of ESRD. Therefore, the possibility to identify accurately patients who are the most likely to lose their renal allograft carries major clinical implications.


Despite the pressing need for improving patients risk stratification raised by transplant societies (e.g., the European Society of Organ Transplantation, the American Society for Transplantation and the American Society of Transplant Surgeons), regulatory agencies (e.g., the European Medicine Agency and the U.S. Food & Drug Administration), no risk-stratification system exists that adequately predicts transplant patients' individual risk of allograft loss. This currently represents a limitation for improving patient management, as well as for defining early surrogate end points for clinical trials and development of pharmaceutical agents.


The inventors now report the development and validation of an integrative risk prediction score to predict kidney allograft survival of individual patients (NCT03474003). The iBox risk prediction score is the first integrative system validated in several independent populations from Europe & North America as well as across 3 clinical trials (NCT01079143, EudraCT2007-003213-13, NCT01873157) covering distinct clinical scenarios. In particular, the advantages brought by the iBox risk prediction score are i) improved discrimination performance by combining traditional prognostic factors with mechanistically informed parameters, ii) outperformance when compared with currently existing scoring systems, iii) generalisability when assessed in geographically distinct cohorts from Europe and North America, iv) transportability at different times of evaluation post-transplant, v) performance in a variety of clinical scenarios including clinical trials and vi) readily accessible to clinicians and patients by an online tool for patient risk calculation.


The first object of the present invention relates to a method, preferably an in vitro method, of predicting whether a kidney transplant recipient is at risk of having allograft loss comprising the steps of:


a) assessing for said recipient a plurality of parameters, said parameters being:

    • i) time of posttransplant risk evaluation;
    • ii) allograft functional parameters comprising or consisting of estimated glomerular filtration rate and proteinuria;
    • iii) allograft histological parameters comprising or consisting of interstitial fibrosis and tubular atrophy (IFTA), microcirculation inflammation (combination of glomerulitis and peritubular capillaritis), interstitial inflammation and tubulitis, and transplant glomerulopathy; and
    • iv) recipient immunological profile comprising or consisting of the presence and level of the immunodominant circulating anti-HLA donor-specific antibodies;


b) implementing an algorithm on data comprising or consisting of the parameters assessed at step a) as to obtain an algorithm output, the implementing step being computer-implemented; and


c) determining the risk of allograft loss, in particular at any time after transplantation, from the algorithm output obtained at step b).


As used herein, the term “recipient” refers to any subject, in particular a human subject, that receives an organ and/or tissue transplant or graft obtained from a donor. The term “donor” as used herein refers to the subject that provides the organ and/or tissue transplant or graft to be transplanted into the recipient. As used herein, the term “kidney transplant recipient” refers to an individual that has undergone kidney transplantation.


As used herein, the term “allograft loss” refers to loss of function in a transplanted organ. In kidney transplant recipients, graft loss often means return to dialysis.


As used herein, the term “risk” in the context of the present invention, relates to the probability that an event will occur over a specific time period, as in the conversion to allograft loss, and can mean a subject's “absolute” risk or “relative” risk. Absolute risk can be measured with reference to either actual observation post-measurement for the relevant time cohort, or with reference to index values developed from statistically valid historical cohorts that have been followed for the relevant time period. Relative risk refers to the ratio of absolute risks of a subject compared either to the absolute risks of low risk cohorts or an average population risk, which can vary by how clinical risk factors are assessed. Odds ratios, the proportion of positive events to negative events for a given test result, are also commonly used (odds are according to the formula p/(l−p) where p is the probability of event and (l−p) is the probability of no event) to no conversion. Accordingly, the expression “predicting whether a kidney transplant recipient is at risk of having allograft loss” in the context of the present invention encompasses making a prediction of the probability, odds, or likelihood that allograft loss may occur. The methods of the present invention may be used to make continuous or categorical measurements of the risk of conversion to allograft loss. -The method of the present invention is particularly suitable to predict the risk of allograft loss at 3, 5, and 7 years from the date of prediction.


As used herein, the term “parameter” refers to any characteristic tested when carrying out the method according to the invention. As used herein, the term “parameter value” refers to a value (a number for instance) associated to a parameter.


As used herein, the term “time from transplant to risk evaluation” or “time of posttransplant risk evaluation” refers to the time that is comprised between the 1 month posttransplantation and the day of the risk evaluation. Typically, the time from transplant risk evaluation is comprised between 1 month and 120 months.


According to the present invention, allograft functional parameters comprise or consist of estimated or measured glomerular filtration rate and proteinuria.


As used herein, the term “glomerular filtration rate” or “GFR” refers to the volume of fluid filtered from the renal (kidney) glomerular capillaries into the Bowman's capsule per unit time. GFR is used to assess renal function in a subject. As used herein, the term “estimated GFR” or “eGFR” refers to an estimate of the Glomerular Filtration Rate or GFR, calculated using the Modification of Diet in Renal Disease (MDRD) equation developed by the Modification of Diet in Renal Disease Study Group described in Levey A S, Bosch J P, Lewis J B, Greene T, Rogers N, Roth D, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group” Ann. Intern. Med. 130 (6): 461-70 (1999), the contents of which are herein incorporation by reference. It also refers to measured GFR clearance using exogenous filtration markers that are eliminated exclusively by glomerular filtration, including inulin, iohexol, iothalamate, technetium 99 m diethylenetriamine pentaacetic acid (99mTc-DTPA) and chromium 51-ethylenediamine tetra-acetic acid (51Cr-EDTA). Typically, the unit of measurement for GFR (measure or estimated) is mL/min/1,73 m2. Typically, the eGFR is comprised between 0 and 120 mL/min/1,73 m2.


As used herein, the term “proteinuria” refers to a condition in which excess protein is present in the urine of a subject. In human subjects, proteinuria is often diagnosed by urinalysis. Clinically, different approaches are used to measure proteinuria, including:

    • a ratio for urinary protein/creatinine (g/g of creatinine) and said ratio is typically comprised between 0 and 12;
    • a 24 h-collection of proteinuria;
    • a ratio for urinary albuminuria/creatinine (mg/g of creatinine) and said ratio is typically comprised between 0 and 12;
    • a 24 h-collection of albuminuria;
    • a semi quantitative measurement of albuminuria on a dipstick.


According to the present invention, allograft histological parameters comprise or consist of interstitial fibrosis and tubular atrophy (IFTA), glomerulitis and peritubular capillaritis, interstitial inflammation and tubulitis, and transplant glomerulopathy but also intimal arteritis, C4d, vascular fibrous intimal thickening, mesangial matrix expansion, arteriolar hyalinosis, hyaline arteriolar thickening, total inflammation, inflammation in the area of IFTA, tubulitis in the atrophic tubules.


According to the present invention, the allograft histological parameters are assessed according to the Banff Classification that is an international consensus classification for the reporting of biopsies from solid organ transplants. Banff Lesion Scores indeed assess the presence and the degree of histopathological changes in the different compartments of renal transplant biopsies, focusing primarily but not exclusively on the diagnostic features seen in rejection.


In particular, one of the allograft histological parameter is the interstitial fibrosis/tubular atrophy (IFTA) that is evaluated by Banff Lesion Score IFTA. This score evaluates the extent of inflammation in scarred cortex. The score is assessed as follows:

    • IFTA0—No inflammation or less than 10% of scarred cortical parenchyma.
    • IFTA1—Inflammation in 10% to 25% of scarred cortical parenchyma.
    • IFTA2—Inflammation in 26% to 50% of scarred cortical parenchyma.
    • IFTA3—Inflammation in >50% of scarred cortical parenchyma.


Another allograft histological parameter is microcirculation inflammation (corresponding to the combination glomerulitis and peritubular capillaritis) that results from the addition of Banff Lesion Score g (score for glomerulitis)+Banff Lesion Score ptc (score for peritubular capillaritis).


Banff Lesion Score g evaluates the degree of inflammation within glomeruli. Glomerulitis is a form of microvascular inflammation and is a feature of activity and antibody interaction with tissue in antibody-mediated rejection. The score is assessed as follows:

    • g0—No glomerulitis.
    • g1—Segmental or global glomerulitis in less than 25% of glomeruli.
    • g2—Segmental or global glomerulitis in 25 to 75% of glomeruli.
    • g3—Segmental or global glomerulitis in more than 75% of glomeruli.


Banff Lesion Score ptc evaluates the degree of inflammation within peritubular capillaries (PTCs). Together with glomerulitis, peritubular capillaritis constitutes microvascular inflammation as a feature of active antibody-mediated rejection or chronic active antibody-mediated rejection. The score is assessed as follows:

    • ptc0—Maximum number of leukocytes <3.
    • ptc1—At least 1 leukocyte cell in ≥10% of cortical PTCs with 3-4 leukocytes in most severely involved PTC.
    • ptc2—At least 1 leukocyte in ≥10% of cortical PTC with 5-10 leukocytes in most severely involved PTC.
    • ptc3—At least 1 leukocyte in ≥10% of cortical PTC with >10 leukocytes in most severely involved PTC.


Another allograft histological parameter is the interstitial inflammation and tubulitis that results from the addition of Banff Lesion Score i (score for interstitial inflammation)+Banff Lesion Score t (score for tubulitis).


Banff Lesion Score i evaluates the degree of inflammation in nonscarred areas of cortex (“interstitial Inflammation”), which is often a marker of acute T cell—mediated rejection. The score is assessed as follows:

    • i0—No inflammation or in less than 10% of unscarred cortical parenchyma.
    • i1—Inflammation in 10 to 25% of unscarred cortical parenchyma.
    • i2—Inflammation in 26 to 50% of unscarred cortical parenchyma.
    • i3—Inflammation in more than 50% of unscarred cortical parenchyma.


Banff Lesion Score t evaluates the degree of inflammation within the epithelium of the cortical tubules (“tubulitis”). The presence of mononuclear cells in the basolateral aspect of the renal tubule epithelium is one of the defining lesion of acute T cell-mediated rejection in kidney transplants. The score is assessed as follows:

    • t0—No mononuclear cells in tubules or single focus of tubulitis only.
    • t1—Foci with 1 to 4 mononuclear cells/tubular cross section (or 10 tubular cells).
    • t2—Foci with 5 to 10 mononuclear cells/tubular cross section (or 10 tubular cells).
    • t3—Foci with >10 mononuclear cells/tubular cross section or the presence of ≥2 areas of tubular basement membrane destruction accompanied by i2/i3 inflammation and t2 elsewhere.


Another allograft histological parameter is the transplant glomerulopathy (cg) that is evaluated by Banff cg Score. The score is based on the presence and extent of glomerular basement membrane (GBM) double contours or multilamination in the most severely affected glomerulus. The score is assessed as follows:

    • cg0—No GBM double contours by light microscopy (LM) or electronic microscopy (EM).
    • cg 1a—No GBM double contours by LM but GBM double contours (incomplete or circumferential) in at least 3 glomerular capillaries by EM, with associated endothelial swelling and/or subendothelial electron-lucent widening.
    • cg1b—Double contours of the GBM in 1-25% of capillary loops in the most affected nonsclerotic glomerulus by LM; EM confirmation is recommended if EM is available.
    • cg2—Double contours affecting 26 to 50% of peripheral capillary loops in the most affected—glomerulus.
    • cg3—Double contours affecting more than 50% of peripheral capillary loops in the most affected—glomerulus.


In a particular embodiment, said allograft histological parameters further include inflammation in areas of IFTA (i-IFTA), C4d staining (C4d), vascular fibrosis intimal thickening (cv), arteriolar hyalinosis (ah), mesangial matrix expansion (mm), tubulitis in atrophic tubules (tIFTA).


C4d staining (C4d) is evaluated by Banff C4d score. The score is based on the extent of staining for C4d on endothelial cells of PTCs and medullary vasa recta by IF on snap frozen sections of fresh tissue or IHC on formalin-fixated and paraffin-embedded tissue. The score is assessed as follows:

    • C4d0—No staining of PTC and medullary vasa recta (0%).
    • C4d1—Minimal C4d staining (>0 but <10% of PTC and medullary vasa recta).
    • C4d2—Focal C4d staining (10-50% of PTC and medullary vasa recta).
    • C4d3—Diffuse C4d staining (>50% of PTC and medullary vasa recta).


Vascular fibrosis intimal thickening (cv) is evaluated by Banff cv score. It reflects the extent of arterial intimal thickening in the most severely affected artery. The score is assessed as follows:

    • cv0—No chronic vascular change.
    • cv1—Vascular narrowing of up to 25% luminal area by fibrointimal thickening.
    • cv2—Vascular narrowing of 26 to 50% luminal area by fibrointimal thickening.
    • cv3—Vascular narrowing of more than 50% luminal area by fibrointimal thickening.


Mesangial matrix expansion (mm) is evaluated by Banff mm score. It evaluates the percentage of glomeruli with “moderate mesangial matrix expansion” in relation to all nonsclerosed glomeruli. The score is assessed as follows:

    • mm0—No more than mild mesangial matrix increase in any glomerulus.
    • mm1—At least moderate mesangial matrix increase in up to 25% of nonsclerotic glomeruli.
    • mm2—At least moderate mesangial matrix increase in 26% to 50% of nonsclerotic glomeruli.
    • mm3—At least moderate mesangial matrix increase in >50% of nonsclerotic glomeruli.


Arteriolar hyalinosis (ah) is evaluated by Banff ah score. It evaluates the extent of arteriolar hyalinosis. The score is assessed as follows:

    • ah0—No PAS positive hyaline arteriolar thickening.
    • ah1—Mild to moderate PAS positive hyaline arteriolar thickening in at least 1 arteriole.
    • ah2—Moderate to severe PAS positive hyaline arteriolar thickening in more than 1 arteriole.
    • ah3—Severe PAS positive hyaline arteriolar thickening in many arterioles.


Inflammation in areas of IFTA (i-IFTA) is evaluated by Banff i-IFTA score. It evaluates the extent of inflammation in scarred cortex. The score is assessed as follows:

    • i-IFTA0—No inflammation or less than 10% of scarred cortical parenchyma.
    • i-IFTA1—Inflammation in 10% to 25% of scarred cortical parenchyma.
    • i-IFTA2—Inflammation in 26% to 50% of scarred cortical parenchyma.
    • i-IFTA3—Inflammation in >50% of scarred cortical parenchyma.


Tubulitis in atrophic tubules (t-IFTA) is evaluated by Banff t-IFTA score. It evaluates tubulitis in atrophic tubules. The score is assessed as follows:

    • t-IFTA1—no mononuclear leukocytes in atrophic tubules.
    • t-IFTA1—foci with 1 to 4 leukocytes per atrophic tubular cross section.
    • t-IFTA2—foci with 5 to 10 leukocytes per atrophic tubular cross-section.
    • t-IFTA3—foci with >10 leukocytes per atrophic tubules with a collapsed scaffold of tubular basement membrane.


According to the present invention, the allograft histological parameters can also be assessed according to the Banff Classification with diagnosis labels:

    • Antibody-mediated rejection
    • T-Cell mediated rejection
    • BK virus nephropathy
    • Calcineurin-inhibitor toxicity (this diagnosis is not part of the Banff classification per se).


A further parameter assessed in the method of the invention is the recipient immunological profile that comprises or consists of the presence and level of the immunodominant circulating anti-HLA donor-specific antibodies (DSA). As used herein, the term “anti-HLA DSA” has its general meaning in the art and refers to the donor-specific anti-HLA antibodies present in the subject. There are several sensitive tests known by the skilled man to determine the level of de novo donor-specific anti-HLA antibodies. For instance, an example of a test to determine the level of de novo donor-specific anti-HLA antibodies comprises: screening of antibodies to HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ and HLA-DR gene products using Luminex® solid-phase assay (one lambda Labscreen assay) on serum samples. Typically, the level if expressed as mean-fluorescence intensity (“MFI”) is comprised between 0 and 10 000.


In a particular embodiment, no additional parameter is assessed and/or used in the algorithm, in the prediction method of the invention.


As used herein, the term “algorithm” is any mathematical equation, algorithmic, analytical or programmed process, or statistical technique that takes one or more continuous parameters and calculates an output value, sometimes referred to as an “index” or “index value.” Non-limiting examples of algorithms include sums, ratios, and regression operators, such as coefficients or exponents, biomarker value transformations and normalizations (including, without limitation, those normalization schemes based on clinical parameters, such as gender, age, or ethnicity), rules and guidelines, statistical classification models, and neural networks trained on historical populations. Of particular use in combining parameters are linear and non-linear equations and statistical classification analyses to determine the relationship between levels of said parameters and the risk of allograft loss. Of particular interest are structural and syntactic statistical classification algorithms, and methods of risk index construction, utilizing pattern recognition features, including established techniques such as cross-correlation, Principal Components Analysis (PCA), factor rotation, Logistic Regression (LogReg), Linear Discriminant Analysis (LDA), Eigengene Linear Discriminant Analysis (ELDA), Support Vector Machines (SVM), Random Forest (RF), Recursive Partitioning Tree (RPART), as well as other related decision tree classification techniques, Shrunken Centroids (SC), StepAIC, Kth-Nearest Neighbor, Boosting, Decision Trees, Neural Networks, Bayesian Networks, Support Vector Machines, and Hidden Markov Models, among others. Other techniques may be used in survival and time to event hazard analysis, including Cox, Weibull, Kaplan-Meier and Greenwood models well known to those of skill in the art.


In some embodiments, the method of the present invention comprises the use of a machine learning algorithm. The machine learning algorithm may comprise a supervised learning algorithm. Examples of supervised learning algorithms may include Average One-Dependence Estimators (AODE), Artificial neural network (e.g., Backpropagation), Bayesian statistics (e.g., Naive Bayes classifier, Bayesian network, Bayesian knowledge base), Case-based reasoning, Decision trees, Inductive logic programming, Gaussian process regression, Group method of data handling (GMDH), Learning Automata, Learning Vector Quantization, Minimum message length (decision trees, decision graphs, etc.), Lazy learning, Instance-based learning Nearest Neighbor Algorithm, Analogical modeling, Probably approximately correct learning (PAC) learning, Ripple down rules, a knowledge acquisition methodology, Symbolic machine learning algorithms, Subsymbolic machine learning algorithms, Support vector machines, Random Forests, Ensembles of classifiers, Bootstrap aggregating (bagging), and Boosting. Supervised learning may comprise ordinal classification such as regression analysis and Information fuzzy networks (IFN). Alternatively, supervised learning methods may comprise statistical classification, such as AODE, Linear classifiers (e.g., Fisher's linear discriminant, Logistic regression, Naive Bayes classifier, Perceptron, and Support vector machine), quadratic classifiers, k-nearest neighbor, Boosting, Decision trees (e.g., C4.5, Random forests), Bayesian networks, and Hidden Markov models. The machine learning algorithms may also comprise an unsupervised learning algorithm. Examples of unsupervised learning algorithms may include artificial neural network, Data clustering, Expectation-maximization algorithm, Self-organizing map, Radial basis function network, Vector Quantization, Generative topographic map, Information bottleneck method, and IBSEAD. Unsupervised learning may also comprise association rule learning algorithms such as Apriori algorithm, Eclat algorithm and FP-growth algorithm. Hierarchical clustering, such as Single-linkage clustering and Conceptual clustering, may also be used. Alternatively, unsupervised learning may comprise partitional clustering such as K-means algorithm and Fuzzy clustering. In some instances, the machine learning algorithms comprise a reinforcement learning algorithm Examples of reinforcement learning algorithms include, but are not limited to, temporal difference learning, Q-learning and Learning Automata. Alternatively, the machine learning algorithm may comprise Data Pre-processing.


In a particular embodiment, the algorithm is a classifier.


In some embodiments, the output obtained by the algorithm at step b) is a score. As used herein, the term “score” refers to a piece of information, usually a number that conveys the result of the subject on a test. A risk scoring system separates a patient population into different risk groups; herein the process of risk stratification typically classifies the patients into very high-risk, high-risk, intermediate-risk and low-risk groups.


In some embodiments, the score corresponds to the score depicted in EXAMPLE 2. In particular embodiments, the score is determined using the algorithm which consists in applying the following formula:






Score
=



eGFR
×
α

+

log



(
proteinuria
)

×
β

+

IFTA


2


(



0




1



)

×
χ

+

IFTA


3


(



0




1



)

×

χ



+

microvascular


inflammation



(

g
+
ptc

)


3

-

4


(



0




1



)

×
δ

+


microvascular


inflammation



(

g
+
ptc

)


5

-

6


(



0




1



)

×

δ



+

anti
-
HLA


DSA


MFI


MFI


500

-

3000


(



0




1



)

×
ε

+


anti
-
HLA


DSA


MFI


MFI


3000

-

6000


(



0




1



)

×

ε



+

anti
-
HLA


DSA


MFI


MFI


>


6000


(



0




1



)

×

ε



+

transplant



glomerulopathy
(



0




1



)

×
ζ

+

interstitial


inflammation


and


tubulitis



(

i
+
t

)


3

-

6


(



0




1



)

×
μ

+

time


of


posttransplant


risk


evaluation


in


months
×
φ







Wherein:





    • eGFR is the estimated eGFR assessed in mL/min/1.73m2,

    • proteinuria is the ratio for urinary protein/creatinine (g/g of creatinine),

    • IFTA2 is a Banff Lesion score i-IFTA equal to 2,

    • IFTA 3 is a Banff Lesion score i-IFTA equal to 3,

    • Microvascular inflammation (g+ptc) 3-4 is a sum of Banff Lesion score g and Banff Lesion score ptc equal to 3 or 4,

    • Microvascular inflammation (g+ptc) 5-6 is a sum of Banff Lesion score g and Banff Lesion score ptc equal to 5 or 6,

    • Anti-HLA DSA MFI MFI 500-3000 is a level, in MFI, of antibodies to HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ and HLA-DR gene products comprised between 500 and 3000,

    • Anti-HLA DSA MFI MFI 3000-6000 is a level, in MFI, of antibodies to HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ and HLA-DR gene products comprised between 3000 and 6000,

    • Anti-HLA DSA MFI MFI >6000 is a level, in MFI, of antibodies to HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ and HLA-DR gene products superior to 6000,

    • Transplant glomerulopathy is a Banff cg score different from 0,

    • interstitial inflammation and tubulitis (i+t) 3-6 is a sum of Banff Lesion score i and Banff Lesion score t equal to 5 or 6, and

    • α, β, χ, δ, ε, ζ, μ and φ are Cox-model beta coefficients for the corresponding parameters.





More generally, the score is a weighted sum of one or several of a function applied to a specific assessed parameter. The function is linear or logarithmic in the previous case.


In the current case, the weight are the Cox-model beta coefficients but any model providing with weight for the assessed parameters can be used.


Notably, the assessed parameters can be learned by an artificial intelligence technique.


In a preferred embodiment, the algorithm comprises using a survival and time to event hazard model, such as the Cox model, wherein the relationship (in the sense of the Cox model) between predictors and allograft loss is approximated as either linear or polynomial.


For predictors with a polynomial relationship with the allograft loss, a fractional polynomial method was applied to obtain a relationship. In the present case, these predictors are the continuous predictors.


The quality of such regression is challenged by using several techniques, such as bootstrapping or testing (for instance Mann-Whitney test or Fisher's test).


In particular embodiments, the score classifies the recipients into at least four distinct classes of risk of allograft loss, notably very high score, high risk, intermediate risk and low risk group.


In some embodiments, the algorithm is implemented on a computer using well-known computer processors, memory units, storage devices, computer software, and other components. Typically, the computer contains a processor, which controls the overall operation of the computer by executing computer program instructions which define such operation. The computer program instructions may be stored in a storage device (e.g., magnetic disk) and loaded into memory when execution of the computer program instructions is desired. The computer also includes other input/output devices that enable user interaction with the computer (e.g., display, keyboard, mouse, speakers, buttons, etc.). One skilled in the art will recognize that an implementation of an actual computer could contain other components as well.


In some embodiments, the algorithm is implemented using computers operating in a client-server relationship. Typically, in such a system, the client computers are located remotely from the server computer and interact via a network. The client-server relationship may be defined and controlled by computer programs running on the respective client and server computers. In some embodiments, the results may be displayed on the system for display, such as with LEDs or an LCD. Accordingly, in some embodiments, the algorithm can be implemented in a computing system that includes a back-end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front-end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation, or any combination of one or more such back-end, middleware, or front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet. The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


In some embodiments, the algorithm is implemented within a network-based cloud computing system. In such a network-based cloud computing system, a server or another processor that is connected to a network communicates with one or more client computers via a network. A client computer (e.g. a mobile device, such as a phone, tablet, or laptop computer) may communicate with the server via a network browser application residing and operating on the client computer, for example. A client computer may store data on the server and access the data via the network. A client computer may transmit requests for data, or requests for online services, to the server via the network. The server may perform requested services and provide data to the client computer(s). The server may also transmit data adapted to cause a client computer to perform a specified function, e.g., to perform a calculation, to display specified data on a screen, etc. For instance, the physician may register the parameters (i.e. input data) on, which then transmits the data over a long-range communications link, such as a wide area network (WAN) through the Internet to a server with a data analysis module that will implement the algorithm and finally return the output (e.g. score) to the mobile device.


In some embodiments, the output results can be incorporated in a Clinical Decision Support (CDS) system. These output results can be integrated into an Electronic Medical Record (EMR) system.


In other words, the interaction between a computer program product and the system enables to carry out the method of the invention. The method of the invention is thus a computer-implemented method.


This means that the method is, at least partly computer-implemented.


In particular, each step can be computer-implemented provided some steps are achieved by receiving data.


The system is a desktop computer. In variant, the system is a rack-mounted computer, a laptop computer, a tablet computer, a Personal Digital Assistant (PDA) or a smartphone.


In specific embodiments, the computer is adapted to operate in real-time and/or is an embedded system, notably in a vehicle such as a plane.


In the present case, the system comprises a calculator, a user interface and a communication device.


The calculator is electronic circuitry adapted to manipulate and/or transform data represented by electronic or physical quantities in registers of the system X and/or memories in other similar data corresponding to physical data in the memories of the registers or other kinds of displaying devices, transmitting devices or memory devices.


As specific examples, the calculator comprises a monocore or multicore processor (such as a central processing unit (CPU), a graphics processing unit (GPU), a microcontroller and a Digital Signal Processor (DSP)), a programmable logic circuitry (such as an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), a Programmable Logic Device (PLD) and programmable logic arrays (PLA)), a state machine, gated logic and discrete hardware components.


The calculator comprises a data-processing unit which is adapted to process data, notably by carrying out calculations, memories adapted to store data and a reader adapted to read a computer readable medium.


The user interface comprises an input device and an output device.


The input device is a device enabling the user of the system to input information or command to the system.


In the present case, the input device is a keyboard. Alternatively, the input device is a pointing device (such as a mouse, a touch pad and a digitizing tablet), a voice-recognition device, an eye tracker or a haptic device (motion gestures analysis).


The output device is a graphical user interface, that is a display unit adapted to provide information to the user of the system.


In the present case, the output device is a display screen for visual presentation of output. In other embodiments, the output device is a printer, an augmented and/or virtual display unit, a speaker or another sound generating device for audible presentation of output, a unit producing vibrations and/or odors or a unit adapted to produce electrical signal.


In a specific embodiment, the input device and the output device are the same component forming man-machine interfaces, such as an interactive screen.


The communication device enables unidirectional or bidirectional communication between the components of the system. For instance, the communication device is a bus communication system or a input/output interfaces.


The presence of the communication device enables that, in some embodiments, the components of the calculator be remote one from another.


The computer program product comprises a computer readable medium.


The computer readable medium is a tangible device that can be read by the reader of the calculator.


Notably, the computer readable medium is not a transitory signal per se, such as radio waves or other freely propagating electromagnetic waves, such as light pulses or electronic signals.


Such computer readable storage medium is, for instance, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device or any combination thereof.


As a non-exhaustive list of more specific examples, the computer readable storage medium is a mechanically encoded device such a punchcards or raised structures in a groove, a diskette, a hard disk, a read-only memory (ROM), a random access memory (RAM), an erasable programmable read-only memory (EROM), electrically erasable and programmable read only memory (EEPROM), a magnetic-optical disk, a static random access memory (SRAM), a compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a flash memory, a solid state drive disk (SSD) or a PC card such as a Personal Computer Memory Card International Association (PCMCIA).


A computer program is stored in the computer readable storage medium. The computer program comprises one or more stored sequence of program instructions.


Such program instructions when run by the data-processing unit, cause the execution of steps of the method of the invention.


For instance, the form of the program instructions is a source code form, a computer executable form or any intermediate forms between a source code and a computer executable form, such as the form resulting from the conversion of the source code via an interpreter, an assembler, a compiler, a linker or a locator. In variant, program instructions are a microcode, firmware instructions, state-setting data, configuration data for integrated circuitry (for instance VHDL) or an object code


Program instructions are written in any combination of one or more languages, such as an object oriented programming language (FORTRAN, C++, JAVA, HTML), procedural programming language (language C for instance).


Alternatively, the program instructions are downloaded from an external source through a network as it is notably the case for applications. In such case, the computer program product comprises a computer-readable data carrier having stored thereon the program instructions or a data carrier signal having encoded thereon the program instructions.


In each case, the computer program product comprises instructions which are loadable into the data-processing unit and adapted to cause execution of the method of the invention when run by the data-processing unit. According to the embodiments, the execution is entirely or partially achieved either on the system, that is a single computer, or in a distributed system among several computers (notably via cloud computing).


According to embodiment, the above-described method is implemented in many ways, notably using hardware, software or a combination thereof. In particular, each step is implemented by a module adapted to achieve the step or computer instructions adapted to cause the execution of the step by interaction with the system or a specific apparatus comprising the system.


It should also be noted that two steps in succession may, in fact, be executed substantially concurrently or in a reverse order depending on the considered embodiments.


The method as disclosed herein is useful for identifying patients with a high risk of allograft loss. In particular, the method of the present invention is particularly suitable for selecting a therapeutic regimen or determining if a certain therapeutic regimen is more appropriate for a patient identified as having a high risk of allograft loss. Typically, this regimen treatment consists of triple therapy regimen comprising a corticosteroid plus a calcineurin inhibitor (e.g. Ciclosporin, Tacrolimus) and an anti-proliferative agent (e.g. Azathioprine, Mycophenolic acid) may be used. mTOR inhibitors (e.g. Sirolimus, Everolimus) also may be used. Anti-CD25 antibodies may be used such as basiliximab. Reducing the level and the production of the DSA and/or protecting the allograft may be achieved using any suitable medical means known to those skilled in the art. In some embodiments, such reduction and protection comprise a therapeutic intervention with the subject such as administration of antithymomcy globulin (ATG), administration of B cell depleting antibodies, administration of proteasome inhibitor (bortezomib), intravenous administration of immunoglobulins, plasmapheresis, administration of anti-C5 antibodies (e.g. eculizumab) and splenectomy. Typical B cell depleting antibodies include but are not limited to anti-CD20 monoclonal antibodies [e.g. Rituximab (Roche), Ibritumomab tiuxetan (Bayer Schering), Tositumomab (GlaxoSmithKline), AME-133v (Applied Molecular Evolution), Ocrelizumab (Roche), Ofatumumab (HuMax-CD20, Gemnab), TRU-015 (Trubion) and IMMU-106 (Immunomedics)1, an anti-CD22 antibody [e.g. Epratuzumab, Leonard et al., Clinical Cancer Research (Z004) 10: 53Z7-5334], anti-CD79a antibodies, anti-CD27 antibodies, or anti-CD19 antibodies (e.g. U.S. Pat. No. 7,109,304), anti-BAFF-R antibodies (e.g. Belimumab, GlaxoSmithKline), anti-APRIL antibodies (e.g. anti-human APRIL antibody, ProSci inc.), and anti-IL-6 antibodies [e.g. previously described by De Benedetti et al., J Immunol (2001) 166: 4334-4340 and by Suzuki et al., Europ J of Immunol (1992) 22 (8) 1989-1993, fully incorporated herein by reference]. AMR can also require blood exchanges (Mg, plasmatic exchanges) to remove antibodies present in the recipient circulating compartment and targeting the graft. Reciprocally, where the recipient is predicted a low risk of allograft loss, the immunosuppressive therapy can be reduced in order to diminish the potential for drug toxicity.


In some embodiments, the method of the present invention may be used to identify patients in need of frequent follow-up by a physician or clinician to monitor the therapeutic regimen. In some embodiments, a patient can be monitored using the method as disclosed herein, and if on a first (i.e. initial) testing the patient is identified as having a high risk of allograft rejection, the patient can be administered an appropriate therapeutic regiment, and on a second testing (i.e. follow-up testing), the patient is identified as having low risk of allograft loss, the patient can be administered with a therapeutic regiment at a maintenance dose.


Thus, the method of the present invention is particularly suitable for discriminating responder from non-responder. As used herein the term “responder” in the context of the present disclosure refers to a subject that will achieve a response, i.e. the risk of allograft loss does show a reduction. A non-responder subject includes subjects for whom the risk of allograft loss does not show any reduction or improvement after the treatment.


Accordingly, the present invention further concerns a method for discriminating a responder recipient from a non-responder recipient to a given treatment regimen, said method comprising the steps of:


(i) implementing the prediction method of the invention on a recipient treated with said given treatment regimen,


(ii) if the recipient is predicted as having a high-risk of allograft loss, identifying the recipient as a non-responder recipient to said treatment regimen, or if the recipient is predicted as having a low risk of allograft loss, identifying the recipient as a responder recipient to said treatment regimen.


In some embodiments, screening patients for identifying patients having a high risk of allograft loss using the prediction method as disclosed herein is also useful to identify patients most suitable or amenable to be enrolled in clinical trial for assessing a therapy for management of allograft, which will permit more effective subgroup analyses and follow-up studies. Furthermore, the prediction method as disclosed herein can be suitable for monitoring patients enrolled in a clinical trial to provide a quantitative measure for the therapeutic efficacy of the therapy which is subject to the clinical trial.


The present invention thus also concerns a method of monitoring recipients enrolled in a clinical trial concerning a given therapy, said method comprising the step of implementing the prediction method of the invention, thereby providing a quantitative measure for the therapeutic efficacy of the therapy which is subject to the clinical trial.


Accordingly, the output of the algorithm (e.g. the score) can represent a suitable surrogate marker for use in a clinical trial for assessing the efficiency of a particular therapy.


Therefore, in a particular embodiment of the prediction method of the invention, the output of the algorithm (e.g. the score) constitutes a surrogate marker for use in a clinical trial for assessing the efficiency of a particular therapy.


The invention will be further illustrated by the following figures and examples. However, these examples and figures should not be interpreted in any way as limiting the scope of the present invention.





FIGURE


FIG. 1A: Kaplan-Meier curves of allograft survival rates in the development cohort according to the iBox risk prediction score strata*



FIG. 1B: iBox risk prediction score-based probability of individual kidney allograft survival (derivation cohort). The histogram applies to the distribution of the iBox risk score according to five groups: grey bars, iBox risk score strata 1; green bars, IBox risk score strata 2; blue bars, iBox risk score strata 3; purple bars, iBox risk score strata 4, and red bars, iBox risk score strata 5. The risk curves indicate the 3-year (black), 5-year (blue) and 7-year (red) allograft survival rate predictions.



FIG. 1C: Calibration plots at 3, 5 and 7 years for the iBox risk prediction score in the derivation cohort. The vertical axis is the observed proportion of grafts surviving at the time of interest. The average predicted probability (predicted survival; x-axis) was plotted against the Kaplan-Meier estimate (observed overall survival; y-axis). The black line represents the observed events; the grey line represents the perfectly calibrated model; and the blue line represents the optimism-corrected iBox model.



FIG. 2: Calibration plots at 3, 5 and 7 years of the iBox risk scores for the derivation cohort and the validation cohorts. 3-year (A, B, C), 5-year (D, E, F) and 7-year (G, H, I) predictions. Data are from the development cohort (A, D, G), the European validation cohort (B, E, H) and the North-American cohort (C, F, I). The iBox risk score probabilities were stratified in equally sized subgroups. For each group, the average predicted probability (iBox risk score—predicted survival; x-axis) was plotted against the Kaplan-Meier estimate (observed overall survival; y-axis). The 95% CIs of the Kaplan-Meier estimates are indicated with vertical lines. Dashed line indicates the reference line, indicating where an ideal score would be.



FIG. 3: Density of risk evaluation time points after transplantation



FIG. 4: Cumulative incidence of graft loss adjusted for competing death for the five iBox risk strata.



FIG. 5: iBox practical application for clinicians: Ready-to-use interface for clinicians.



FIG. 6: Distribution and density of the iBox risk scores among the centres.



FIG. 7: The iBox prediction in Clinical trials and related observed events. Calibration plot at 3, 5 and 7 years.



FIG. 8: Prognostic nomogram to predict the probability of individual kidney allograft survival using the functional factors eGFR, proteinuria, the time from transplant to iBox risk evaluation (years) and immunodominant circulating anti-HLA DSA MFI.





EXAMPLE 1: ALLOGRAFT LOSS RISK PREDICTION SCORE IN KIDNEY TRANSPLANT RECIPIENTS: AN INTERNATIONAL DERIVATION AND VALIDATION STUDY
Methods

Study Design and Participants


Derivation cohort. The derivation cohort consisted of 4,000 consecutive patients over 18 years of age who were prospectively enrolled at the time of kidney transplantation from a living or deceased donor at Necker Hospital (n=1,473), Saint-Louis Hospital (n=928), Foch Hospital (n=714), and Toulouse Hospital (n=885) between Jan. 1, 2005, and Jan. 1, 2014, in France. The clinical data were collected from each centre and entered into the Paris Transplant Group database (French data protection authority (CNIL) registration number: 363505). All data were anonymised and prospectively entered at the time of transplantation, at the time of posttransplant allograft biopsies and at each transplant anniversary using a standardised protocol to ensure harmonisation across study centres. Data from the derivation cohort were submitted for an annual audit to ensure data quality (See EXAMPLE 2 for detailed data collection procedures). Data were retrieved from the database on March 2018. The institutional review boards of the Paris Transplant Group participating centres approved the study. All patients provided written informed consent at the time of transplantation.


Validation cohorts. External validation was conducted on 3,557 kidney transplant recipients from a living or a deceased donor over 18 years of age and representing all eligible patients for posttransplant risk evaluation (i.e., undergoing allograft biopsy as part of the standard of care of each centre with adequate biopsy according to the Banff criteria) from six centres: 2,129 recipients recruited in Europe and 1,428 recipients recruited in North America between 2002 and 2014. The European centres included Hopital Hotel Dieu, Nantes, France (n=632), Hospices Civils, Lyon, France (n=608), and the University Hospitals, Leuven, Belgium (n=889). The US centres included the Johns Hopkins Medical Institute, Baltimore, Md. (n=580), the Mayo Clinic, Rochester, Minn. (n=556), and the Virginia Commonwealth University School of Medicine, Richmond, Va. (n=292). Data sets from the validation centres were prospectively collected as part of routine clinical practice and entered in the centres' databases in compliance with local and national regulatory requirements and sent anonymised to the Paris Transplant Group.


In France, the transplantation allocation system followed the rules of the French National Agency for Organ Procurement (Agence de la Biomédecine). Centres outside of France followed the rules of the Eurotransplant allocation system (Leuven),(18) whereas US centres (Johns Hopkins Hospital, Mayo Clinic and Virginia) followed the rules of the US Organ Procurement and Transplantation System.(19)


Additional external validation cohort. Additional external validation was conducted in kidney transplant recipients previously recruited in three registered and published phase II and III clinical trials: a randomised, open-label, multicentre trial that compared a cyclosporine-based immunosuppressive regimen to an everolimus-based regimen in kidney recipients (Certitem, NCT01079143); a randomised, multicentre, double-blind, placebo-controlled trial that investigated the efficacy of rituximab in kidney recipients with acute antibody-mediated rejection (Rituxerah, EudraCT 2007-003213-13); and a randomised, double-blind placebo-controlled single-centre trial that investigated the efficacy of bortezomib in kidney recipients with late antibody-mediated rejection (Borteject, NCT01873157).(20-22) The details of the clinical trials depicting the population characteristics, study design, inclusion criteria and interventions are provided in Table 4.


Candidate Predictors


Posttransplant risk evaluation times. Risk evaluation after transplantation was conducted at the time of allograft biopsy performed for clinical indication or as per protocol, which was performed after transplantation according to the centres' practices. In patients with multiple biopsies, risk evaluation was performed using the date of the first biopsy. The distribution of posttransplant risk evaluation times is provided in FIG. 3.


Patient risk evaluation after transplant comprised demographic characteristics (including recipient comorbidities, age, gender and transplant characteristics), biological parameters (including kidney allograft function, proteinuria, and circulating anti-HLA antibody specificities and levels), and allograft pathology data (including elementary lesion scores and diagnoses), All these factors are commonly and routinely collected in kidney transplant centres worldwide.


See EXAMPLE 2 for the list of all prognostic determinants assessed from the derivation cohort.


Measurements performed at the time of risk evaluation. Kidney allograft function was assessed by the glomerular filtration rate estimated by the Modification of Diet in Renal Disease Study equation (eGFR) and proteinuria level using the protein/creatinine ratio in the derivation and validation cohorts. Circulating donor-specific antibodies against HLA-A, HLA-B, HLA-Cw, HLA-DR, HLA-DQ and HLA-DP were assessed using single-antigen flow bead assays in the derivation cohort (see EXAMPLE 2) and according to local centre practice in the validation cohorts. Kidney allograft pathology data, including elementary lesion scores and diagnoses, were recorded according to the Banff classification in the derivation and validation cohorts (see EXAMPLE 2). All the measurements (eGFR, proteinuria, histopathology and circulating anti-HLA DSA) were performed on the day of risk evaluation.


Outcome


The outcome of interest was allograft loss defined as a patient's definitive return to dialysis or preemptive kidney retransplantation. This outcome was prospectively assessed in the derivation and validation cohorts at each transplant anniversary up to Mar. 31, 2018.


Patient death was considered as a competing event (see EXAMPLE 2).


Missing Data


A total of 59 patients (0.01%) were excluded from the final model due to at least one missing data point.


Statistical Analysis


We followed the TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) statement for reporting multivariable prediction model development and validation.(23)


Continuous variables are described using means and standard deviations (SDs) or median and the interquartile range. We compared means and proportions between groups using Student's t-test, analysis of variance (ANOVA) (Mann-Whitney test for MFI) or the chi-square test (or Fisher's exact test if appropriate). Graft survival was estimated using the Kaplan-Meier method. The duration of follow-up started with the patient risk evaluation (starting point) up to the date of kidney allograft loss, or at the end of the follow-up (Mar. 31, 2018). For patients who died with a functioning allograft, allograft survival was censored at the time of death as a surviving or functional allograft.(24) A competing risk approach was applied to consider the potential competition of patient death with kidney allograft failure (see EXAMPLE 2).(25)


In the derivation cohort, the associations between allograft failure and clinical, histologic, functional, and immunologic factors measured at the patient risk evaluation (see above) were assessed using univariable Cox regression analyses. Hazard proportional assumptions were tested using the log graphic method. The factors identified in these analyses were thereafter included in a final multivariable model.


The internal validity of the final model was confirmed using a bootstrap procedure, which involved generating 1,000 datasets derived from resampling the original dataset and permitting the estimation of the biased corrected 95% CI and the accelerated bootstrap (BCA) HR.(26)


The centre effect was tested in stratified analyses. Potential nonlinear relationships between continuous predictors and graft loss were first investigated using restricted cubic splines and fractional polynomial methods (see EXAMPLE 2).


The accuracy of the prediction model was assessed based on its discrimination ability and calibration performance. The discrimination ability (i.e., the ability to separate patients with different prognoses) of the final model was evaluated using Harrell's concordance index (C-index) (see EXAMPLE 2).(27) One thousand random samples of the population were used to derive the 95% confidence intervals (CIs) for the C-index. Calibration and goodness of fit (the ability to provide unbiased survival predictions in groups of similar patients) were assessed based on a visual examination of the calibration plots and tested with an extension of the Hosmer-Lemeshow test for survival data. Net reclassification improvement for censored survival data was computed using the SurvIDINRI package in R. (28, 29) The external validity of the final model was thereafter evaluated in the external validation cohorts, including discrimination tests and model calibration as mentioned above.


A risk prediction score (“integrative box risk prediction score, iBox”) was calculated for each patient according to the (3-regression coefficients estimated from the final multivariable Cox model and normalised to a range between 0 and 5 (see EXAMPLE 2). To obtain a reasonable spread of risk, we chose to work on five prognostic risk groups. Cox's method was applied to determine optimal nonarbitrary cut-off points to define five risk groups. (30)


All analyses were performed using R (version 3.2.1, R Foundation for Statistical Computing). Values of p<0.05 were considered significant, and all tests were 2-tailed. Details regarding the interpretation of important statistical concepts are given in EXAMPLE 2.


Results

Characteristics of the Derivation and Validation Cohorts


The derivation cohort (n=4,000) and the two validation cohorts (n=3,557) comprised a total of 7,557 participants. The characteristics of the derivation and validation cohorts (overall, European and North American validation cohorts) as well as the transplant procedures, policies and allocation systems are detailed in Table 1 and Tables 5, 6, and 7. The distribution of the time of posttransplant risk evaluation is provided in FIG. 3. The median time from kidney transplantation to posttransplant patient risk evaluation was 0.98 years (IQR: 0.27 to 1.07) in the derivation cohort and 0.99 years (IQR: 0.18 to 1.04) in the validation cohort. After a median follow-up after transplantation of 7.65 years (IQR: 5.20 to 10.30) in the derivation cohort and 6.69 years (IQR: 5.39 to 8.21) in the validation cohorts, 1,067 patients (14.12%) developed the primary outcome of allograft loss, 626 (15.65%) in the derivation cohort and 441 (12.40%) in the external validation cohort.


Prediction of Kidney Allograft Failure in the Derivation Cohort


We first investigated the prognostic factors measured at the time of posttransplant risk evaluation that were associated with long-term kidney allograft failure in a univariable analysis. These factors included recipient demographics, transplant characteristics, allograft functional parameters, immunological parameters, and allograft histopathology (Table 2A). In the multivariable analysis, the following independent predictors of long-term allograft failure were identified: i) time of posttransplant risk evaluation (p=0.005); ii) allograft functional parameters, including estimated glomerular filtration rate (eGFR; p<0.001) and proteinuria (logarithmic transformation, p<0.001); iii) allograft histological parameters, including interstitial fibrosis and tubular atrophy (p=0.031), microcirculation inflammation defined by glomerulitis and peritubular capillaritis (p=0.001), interstitial inflammation and tubulitis (p=0.014) and transplant glomerulopathy (p=0.004); and iv) recipient immunological profile as defined by the presence and level of the immunodominant circulating anti-HLA donor-specific antibodies (p<0.001; Table 2B). To test the centre effect, we stratified the final multivariable model by transplant centres and confirmed that the eight prognostic parameters identified in the primary analysis remained independently associated with allograft survival (Table 8). Using competing risk regression models, we confirmed that the allograft survival analyses performed in the final model were not affected by competition with patient death (see EXAMPLE 2, and FIG. 4 for death competing risk analyses).


The prognostic score, named iBox, was calculated for each patient according to the (3-regression coefficients estimated from the final multivariable Cox model and normalised to a range between 0 and 5 (see EXAMPLE 2). The population was divided into five risk groups with an increasingly higher risk of graft loss corresponding to the following cut-off points: iBox risk strata 1 (n=1,104): <1.805; iBox risk strata 2 (n=1,149): 1.805-2.265; iBox risk strata 3 (n=896): 2.265-2.705; iBox risk strata 4 (n=551): 2.705-3.275; and iBox risk strata 5 (n=241): >3.275. This stratification achieved a clear separation of the Kaplan-Meier curves, defining five subgroups of patients with distinct long-term allograft prognoses, with 7-year post-risk evaluation allograft survival rates of 96% (95% CI: 94 to 97), 91% (95% CI: 89 to 93), 82% (95% CI: 79 to 85), 59% (95% CI: 54 to 65), and 33% (95% CI: 26 to 41) in strata 1, 2, 3, 4 and 5, respectively (FIG. 1A & 1B). Based on this score, we built an online ready-to-use interface for the clinician to provide allograft survival estimates for individual patients (http://www.paristransplantgroup.org). We are also providing in EXAMPLE 4 examples of clinical use of iBox risk prediction scoring in daily practice.


Prediction Model Performance in the Internal and External Validation Cohorts


We first internally validated the final multivariable model via a bootstrapping procedure with 1,000 samples from the original dataset of the derivation cohort (EXAMPLE 2). Using this approach, we confirmed 1) the robustness of the final multivariable model (bias-corrected HRs and 95% CIs, Table 2B); 2) the successful discrimination ability at 3, 5 and 7 years (C-index: 0.83, 95% bootstrap percentile CI=0.81 to 0.86; 0.82, 95% bootstrap percentile CI=0.80 to 0.84; 0.81; 95% bootstrap percentile CI=0.79 to 0.83, respectively) of the model; and 3) the accurate calibration at 3, 5 and 7 years (p=0.85, p=0.65 and p=0.36, respectively) (FIG. 1C).


We then used several independent validation cohorts and confirmed the transportability of the iBox risk score in these geographically distinct cohorts. Overall, we demonstrated good discrimination performance in the external validation cohorts with a C statistic of 0.81 in Europe (95% bootstrap percentile CI=0.78 to 0.84) and 0.80 in the US (95% bootstrap percentile CI=0.76 to 0.84). The calibration plots showed optimal agreement between the iBox risk score-predicted probabilities of allograft survival at 3, 5 and 7 years after risk evaluation and actual kidney allograft survival (FIG. 2). The distribution and density of the iBox risk prediction scores in each centre are shown in FIG. 6.


Performance of the iBox Risk Prediction Score in Therapeutic Randomised Controlled Clinical Trials


We tested the performance of the iBox risk prediction score in 3 registered and published phase II and III clinical trials.(20-22). The details of the clinical trials depicting the population, intervention, clinical scenario and follow-up times are presented in Table 4. We calculated the iBox risk prediction scores of all patients included in the trials and compared those with the actual allograft failures. The iBox risk prediction score applied in the three trials revealed accurate discrimination overall (C-index 0.87; 95% bootstrap percentile CIs=0.82 to 0.92). The calibration plot showed an optimal agreement between the risk prediction score based on predicted allograft loss and the actual observations of kidney allograft loss (FIG. 7).


Sensitivity Analyses


Various sensitivity analyses were performed to test the robustness and generalisability of the iBox risk score in different clinical scenarios and subpopulations.


Added Value of the iBox Integrative Risk Prediction Score Compared to Conventional Allograft Function Monitoring (eGFR/Proteinuria) and Generation of an Abbreviated Functional iBox Score.


We tested the added value of the iBox risk prediction score over the conventional allograft monitoring model based on eGFR and proteinuria assessments. We demonstrated that the iBox risk score was superior in terms of prediction capability than a restricted model including eGFR and proteinuria (C-index=0.73; 95% bootstrap percentile CI=0.71 to 0.75, p-value <0.0001 as compared with the full iBox model). This was further demonstrated by a continuous net reclassification improvement (cNRI) of 0.228 for the iBox model compared to that of the functional model (95% CI, 0.174 to 0.290, p<0.0001). To account for potentially different medico-economic contexts limiting the availability of allograft biopsies, we are providing in this study an abbreviated iBox score based on clinical-functional parameters (FIG. 8).


Added Value of the iBox Risk Prediction Score Compared to Risk Scores Previously Reported in the Literature


We performed a systematic review (see EXAMPLE 3) and compared the iBox risk prediction score to previously published risk scores assessing long-term allograft outcomes and demonstrated that the iBox prediction score outperformed other risk scores (see EXAMPLE 3).


Prediction Model Performance using Histological Diagnoses instead of the Banff International Classification Histological Lesion Grading


When histological diagnoses were included in the multivariable model instead of histological lesions graded according to the international Banff classification, antibody-mediated rejection (AMR) (p<0.001), T-cell mediated rejection (TCMR, p=0.045), primary nephropathy recurrence (p=0.003) and BK virus nephropathy (BKVAN, p=0.050) showed significant and independent associations with allograft failure. In this model, the set of non-histological predictors of allograft failure identified in the primary analyses remained unchanged (hazard ratios are shown for each parameter in Table 10). The discrimination ability of the histological diagnosis-based model revealed a C-index of 0.76 (95% bootstrap percentile CI=0.74 to 0.81).


iBox Performance when Applied at the Time of Clinically Indicated Biopsies vs Protocol Biopsies


We tested and confirmed the performance of the iBox risk prediction score when risk evaluation started at the time of clinically indicated allograft biopsies performed at any time after transplantation (n=1,598, 40%), as well as at the time of 1-year protocol biopsies (n=2,402, 60%; Table 3).


Similarly, the iBox risk score demonstrated accurate discrimination ability for long term allograft loss when risk evaluation started before 1-year post transplant or after 1-year post transplant (average post-transplantation time of 0.89±0.23 years and 2.31±1.66 years respectively; Table 3).


IBox Assessed in other Clinical Scenarios and Subpopulations


Finally, we confirmed the performance of the iBox risk prediction score when applied in different subpopulations and clinical scenarios including i) living and deceased donors, ii) according to recipient's ethnicity, iii) in highly sensitised (high immunological risk) and non-highly sensitised (low immunological risk) recipients, and iv) patient receiving an induction by anti-iL2 receptor or anti-thymocyte globulin (Table 3). When parameters assessed at the time of transplant (such as HLA mismatches), recipient blood pressure at the time of risk assessment (log scale), and calcineurin inhibitor through blood level at the time of risk assessment were forced in the risk prediction score, there was no significant improvement in its prognostic performance (Table 3).


Discussion

The iBox, a risk prediction score combining allograft functional, histological, and immunological parameters together with HLA antibody profiling, showed good performance in predicting the risk of long-term kidney allograft failure. We demonstrated the generalisability of the iBox risk prediction score by showing its external validity in six geographically distinct cohorts recruited in Europe and in the US with distinct allocation systems, patient characteristics and management practices. The iBox risk prediction score also demonstrated its accuracy when measured at different times post-transplantation, which permits to update the score based on new events that patient might encounter in their long-term course. We also demonstrated the added value of the iBox risk prediction score over a conventional allograft monitoring model that includes eGFR and proteinuria assessment and showed that the iBox risk prediction score outperformed other available risk scores applied in kidney transplant patients. Last, we confirmed the predictive accuracy of the risk score in the data issued from three published randomised therapeutic trials covering different clinical scenarios encountered after transplantation, further enhancing its value as a potential surrogate endpoint in transplantation.(20-22) Overall, the predictor variables used in the iBox risk prediction score are easily available after transplantation in most centres worldwide, making it feasible for implementation in routine clinical practice. To account for potential different medico-economic contexts limiting the availability of allograft biopsies, we also provide in this study an abbreviated score based on clinical-functional parameters.


Current prognostic scores implemented in clinical practice in transplant medicine mostly address the prediction of allograft survival at the time of transplantation; thus, their use is limited to allograft allocation because they do not inform posttransplant clinical decision making and patient monitoring.(31) The few attempts of developing posttransplant prognostic scores have failed to provide useful tools for transplant clinicians. According to a systematic review without date restrictions for publications up to Jul. 25, 2018, for allograft survival scoring systems among kidney transplant recipients (see EXAMPLE 3), no study has developed and externally validated a posttransplant prognostic score usable at any time after transplantation. The main limitations to achieve a robust and validated scoring system rely on multiple factors including the insufficient data quality of the previously studied cohorts and the fact that no registry or database system has been primarily designed to address the specific aspect of prognostication. An even more important aspect is external validation in different populations, which prompted us to conduct a large external validation from multiple centres worldwide. Despite some expected loss of discriminative performance, models are typically considered useful for clinical decision making when the C-statistic is greater than 0.70 and strong when the C-statistic exceeds 0.80, suggesting that the iBox risk prediction score could support decision making.(32) Compared to prognostication systems in other fields such as oncology (e.g., locally advanced pancreatic cancer and metastatic colonic cancer), the C-index is typically closer to 0.60 or 0.70.(33) Taken together, these results confirm not only the robustness and validity of the iBox risk prediction score but also its generalisability to other transplant cohorts with different kidney allocation systems, donor and recipient profiles, and distinct patient management and healthcare environments.


In this study, we demonstrated that the iBox risk prediction score outperformed the current gold standard (eGFR and proteinuria) for the monitoring of kidney recipients. In particular, compared to prior attempts at developing a prognostication system, we found that allograft histological lesions such as microcirculation inflammation, interstitial inflammation-tubulitis (reflecting active rejection process) and atrophy-fibrosis, and transplant glomerulopathy (reflecting chronic allograft damage), in addition to measuring allograft functional parameters and recipient antibody profiles, improved the overall discrimination capacity of the model and that a multidimensional risk prediction score performs better than its individual components. This risk prediction score reflects the main patterns of allograft deterioration leading to failure, represented by alloimmune processes and allograft scarring.(34) Two other prognostic scores have attempted to combine several transplant diagnostic dimensions, including allograft function and pathology and alloantibodies; however, these scores were outperformed by the iBox risk prediction score.(16, 35)


Importantly, our results and the parameters included in the final model reinforce the potential of the iBox to be implemented into contemporary clinical practice by using automated approaches within electronic medical record systems (an online available electronic risk calculator is provided at http://www.paristransplantgroup.org and examples are provided in EXAMPLE 4).


In addition, the combination of major drivers of allograft failure in the iBox risk prediction score were allowed to evaluate early the effect of clinical interventions on long-term allograft outcomes. In this study, we tested and validated the iBox risk prediction score in the setting of therapeutic clinical trials covering different clinical scenarios and demonstrated accurate performance overall. We found that the prediction of allograft failure assessed by the iBox score accurately fits with the actual graft failures observed in these trials at 5 years after risk evaluation. Importantly, the accuracy of the iBox risk prediction score was conserved regardless of the therapeutic intervention and population from those trials, with accurate performance in the Certitem (NCT01079143) calcineurin inhibitor minimisation trial (22) and rejection treatment trials (EudraCT 2007-003213-13; NCT01873157).(20, 21) This finding reinforced the potential of the iBox risk prediction score for defining a valid surrogate endpoint. Indeed, in the present study, a well-validated, strong and robust association existed between the surrogate and the true endpoint, and this association was consistent across different treatment settings.


Regarding the limitations of this study, we acknowledge that emerging predictors posttransplant might be missing in our model. Despite the already high performance achieved by the iBox risk prediction score, future studies should evaluate the added value of new non-invasive biomarkers or genetic factors in addition to those presently reported regarding discriminative capability, generalisability and overcoming the need for an invasive procedure (kidney allograft biopsy). Another limitation is that information regarding the drug adherence of single patients was lacking in our dataset. Although nonadherence is a major risk factor for graft failure, it is inherently difficult to capture, especially at a population level.(34) Notwithstanding that the iBox risk prediction score was primarily generated using a large, prospective, unselected cohort, a prospective validation of the iBox in daily clinical practice remains desirable. Finally, despite the validation of the iBox risk prediction score in an interventional setting, future trials are needed to compare whether a strategy based on a systematic risk evaluation vs. an empirical approach might improve clinical management.


Conclusions

We developed and validated the iBox risk prediction score, which accurately predicts allograft failure after kidney transplantation. We demonstrated its generalisability and transportability across centres worldwide and its performance in therapeutic clinical trials. The iBox risk prediction score provides an accurate but simple strategy that can be easily implemented to stratify patients into clinically meaningful risk groups and that can be time-updated after transplant which may help guide patient monitoring in everyday practice and stratify patients in future clinical trials.


EXAMPLE 2: Supplementary Methods

Data Collection Procedures


All data from Paris-Necker, Paris-Saint Louis, Foch and Toulouse hospitals were extracted from the prospective Paris Transplant Group Cohort data cohort (CNIL, Registration number: 363505, validated on the 8 of Jun. 2004). The database networks have been approved by the National French Commission for bioinformatics data and patient liberty and codes were used to ensure strict donor and recipient anonymity and blind access. Informed consent was obtained from the participants at the time of transplantation. The data are computerised in real time and at the time of transplantation, at the time of post-transplant allograft biopsies and at each transplant anniversary and are submitted for an annual audit.


Independent Validation Cohorts


In the European validation cohort, the French data from the Lyon, and Nantes Hospitals for donors and recipients were extracted from the DIVAT clinical prospective cohort (official website: www.divat.fr) and from the French national agency database CRISTAL (official website: https://www.sipg.sante.fr/portail/). The Belgian data and data from the North-American validation cohort were collected as part of routine clinical practice and entered in centres' databases in compliance with local and national regulatory requirements. They were sent anonymised to the Paris Transplant Group.


Prognostic Parameters Prospectively Collected and Assessed in the Derivation Cohort


Baseline Recipient's Characteristics:


1. Recipient's age

2. Recipient's gender


3. Recipient's height


4. Recipient's weight


5. Previous transplantation


6. Delay between dialysis and transplantation


7. Cause of end stage renal disease


8. ABO blood group


9. HLA genotype


10. CMV serology


11. HCV serology


12. HBV serology


13. HIV serology


Baseline Donor's Characteristics:


14. Donor's age

15. Donor's gender


16. Donor's height


17. Donor's weight


18. Type of donor: deceased vs living


19. Cause of donor's death


20. Double transplantation


21. History of hypertension


22. History of diabetes


23. ECD status


24. Serum creatinine


25. ABO blood group


26. HLA genotype


27. CMV serology


28. HCV serology


29. HBV serology


30. HIV serology


Immunological Characteristics at the Time of Transplantation:


31. HLA mismatches A


32. HLA mismatches B


33. HLA mismatches Cw


34. HLA mismatches DQ


35. HLA mismatches DR


36. HLA mismatches DP


37. Anti-HLA DSA at the time of transplantation


38. MFI of the anti-HLA DSA at the time of transplantation


39. cPRA


Transplant Characteristics:


40. Cold ischemia time


41. Delayed graft function


42. Induction treatment with anti-thymocyte globulin


43. Induction treatment with basiliximab


44. Steroid dose


Immunological Data at the Time of Risk Assessment (Luminex SA Assessment A, B, C, DP, DQ, DR)


45. Anti-HLA DSA

46. MFI of immunodominant anti-HLA DSA


Histological Data According to the Banff Classification:


47. g Banff score


48. ptc Banff score


49. t Banff score


50. i Banff score


51. cg Banff score


52. v Banff score


53. mm Banff score


54. ci Banff score


55. ct Banff score


56. IFTA Banff score


57. cv Banff score


58. ah Banff score


59. C4d ptc deposition


60. Recurrence of ESRD

61. Polyomavirus-associated nephropathy


62. ABMR status


63. TCMR status


64. Borderline category


Follow-Up Variables:


65. Episodes of pyelonephritis


66. Immunosuppression treatment


67. Type of treatment: calcineurin inhibitors, mycophenolate mofetil, mTOR inhibitors or belatacept


68. CNI blood through level at M12 and every year


69. Steroid dose at M12 and every year


70. Rejection therapy (e.g., steroid, plasma exchange, intravenous immunoglobulin)


71. CMV prophylaxis


72. BK viral load at M12 and every year


73. CMV viral load at M12 and every year


74. Allograft function at M12 and every year


75. Proteinuria at M12 and every year


76. Patient date and cause of allograft loss


77. Patient date and cause of death


Detection and Characterisation of Donor-specific Anti-HLA Antibodies


All patients were tested for the presence of circulating anti-HLA donor-specific antibodies (DSAs) at the time of patient risk evaluation. The presence of circulating DSAs against HLA-A, HLA-B, HLA-Cw, HLA-DR, HLA-DQ and HLA-DP was retrospectively determined using single-antigen flow bead assays (One Lambda, Inc., Canoga Park, Calif., USA) on a Luminex platform. Beads with a normalised mean fluorescence intensity (MFI), a measure of donor-specific antibody strength, of greater than 500 units were judged as positive as previously described. HLA typing of the transplant recipients and donors was performed using an Innolipa HLA Typing Kit (Innogenetics, Ghent, Belgium). In the validation cohorts, HLA genotyping and HLA antibody profiling were performed according to local centre practice.


Kidney Allograft Phenotypes at Time of Risk Assessment


In the derivation cohort, allograft biopsies were scored and graded from 0 to 3 according to the updated Banff criteria for allograft pathology for the following histological factors: glomerular inflammation (glomerulitis), tubular inflammation (tubulitis), interstitial inflammation, endarteritis, peritubular capillary inflammation (capillaritis), transplant glomerulopathy, interstitial fibrosis, tubular atrophy, arteriolar hyalinosis and arteriosclerosis. Additional diagnoses provided by the biopsy (e.g., the diagnoses of primary disease recurrence, BK virus nephropathy) were recorded. The biopsy sections (4 μm) were stained with periodic acid-Schiff, Masson' s trichrome, and hematoxylin and eosin. C4d staining was performed via immunohistochemical analysis on paraffin sections using polyclonal human anti-C4d antibodies. Also, in the validation cohorts, the Banff criteria for the individual histological lesions were assessed in each biopsy included in the study.


Statistical Analysis Interpretation


Continuous Variables


When used as continuous variables in the Cox model, a potential non-linear relationship between predictors and allograft loss was first investigated using restricted cubic splines modelling. Secondly, a fractional polynomial method was applied to determine the best transformation for continuous variables. For donor age, recipient age, eGFR and HLA mismatches, a linear relationship with outcome was found to be a good approximation. A logarithmic transformation was necessary for proteinuria and time post-transplant.


Discrimination


The aim of discrimination is to distinguish between patients who experience an event and those who do not. The C-index estimates the proportion of all pairwise patient combinations from the sample data whose survival time can be ordered such that the patient with the highest predicted survival is the one who actually survived longer (discrimination). The C-index (0≤C≤1) is the probability of concordance between predicted and observed survival, with C-index=0.5 for random predictions and C-index=1 for a perfectly discriminating model.


Calibration


Calibration refers to the ability to provide unbiased survival predictions in groups of similar patients. It estimates how close the score-estimated risk is to the observed risk. A prediction model is considered “well calibrated” if the difference between predictions and observations in all groups of similar patients is close to 0 (perfect calibration). Any large deviation (p<0.1) indicates a lack of calibration.


Bootstrapping


Bootstrapping is the preferred simulation technique that was first described by Bradley Efron. The original dataset is a random sample of patients being representative of a general population. Bootstrapping means generating a large number of datasets, each of which with the same sample size as the original one, by resampling with replacement (i.e., a previously selected patient may be selected again).


Internal Validation


Internal validation is useful to obtain an honest estimate of the model performance for patients who are similar to those in the development sample and to indicate an upper limit to the expected performance in other settings. The bootstrap approach is the preferred technique to assess internal validity. The internal validity of the final model was confirmed using a bootstrap procedure, which involved generating 1,000 datasets derived from resampling the original dataset and permitted the estimation of the bias-corrected 95% CI and the accelerated bootstrap (BCA) HR.


External Validation


External validation may show different results from internal validation since many aspects may be different between settings, including selection of patients, definitions of variables, and diagnostic or therapeutic procedures. The strength of the evidence for the score validity is usually considered greater with a fully external validation (e.g., other investigators and centres).


Competing Risk by Death Analysis


We estimated cumulative incidence functions from competing risks data and compared the subdistribution for each cause across groups. We then assessed the effects of predictive factors (iBox risk strata) on the subdistribution of graft loss in a competing risks setting with death by fitting the proportional subdistribution hazard regression model described in the Fine and Gray method.


Construction of the Integrative Score Derived from the Final Multivariable Cox Model







Raw


Prognostic



score

Cox


model



=



Estimated






GFR
×
α

+

Proteinuria



(

log


transformation

)

×
β

+

Interstitial


fibrosis


and


tubular


atrophy


2


(



0




1



)

×
χ

+

Interstitial


fibrosis


and


tubular


atrophy


3


(



0




1



)

×

χ



+

Microvascular


inflammation



(

g
+
ptc

)


3

-

4


(



0




1



)

×
δ

+

Microvascular


inflammation



(

g
+
ptc

)


5

-

6


(



0




1



)

×

δ



+

Anti
-
HLA


DSA


MFI


MFI


500

-

3000


(



0




1



)

×
ε

+

Anti
-
HLA


DSA


MFI


MFI


3000

-

6000


(



0




1



)

×

ε



+

Anti
-
HLA


DSA


MFI


MFI


>


6000


(



0




1



)

×

ε



+


Transplant



glomerulopathy
(



0




1



)

×



+

Interstitial




inflammation


and


tubublitis



(

i
+
t

)


3

-

6


(



0




1



)

×
μ

+

Time


from


transplant


to


Risk


evaluation

-

year
×
ϕ







α, β, χ, δ, ε, ζ, μ and φ: Cox-model beta coefficients for the corresponding parameters

    • Raw Prognostic scoreCox model ∈[min_score−max_score]







Normalized


Prognostic



score

Cox


model



=




(

5
-
0

)

×

(


Raw


Prognostic



score

Cox


model



-
min_score

)



max_score
-
min_score


+
0







    • Normalized Prognostic scoreCox model ∈[0-5]





EXAMPLE 3: Added Value of the ibox Risk Prediction Score Compared to Risk Scores Previously Reported in the Literature

A comprehensive search strategy was conducted through several databases (PubMed, Medline, Embase, Cochrane, and Scopus) without date restrictions for publications up to Jul. 25, 2018 for allograft survival scoring systems among kidney transplant recipients. We used the search terms “kidney transplantation”, “allograft survival” and “prognostic score”. Out of 460 articles identified, 11 were related to long-term allograft survival, 5 were externally validated and only 2 comprised immunological parameters. They are presented in Table 9 and compared with the iBox risk prediction score. The two studies identified: i) were not derived from patient cohorts with systematic monitoring and specific design towards risk stratification; ii) did not integrate a large spectrum of potential prognostic factors, iii) were not validated in multiple large cohorts worldwide with different transplant allocation systems and management practices, iv) were not validated in randomised controlled therapeutic clinical trials (RCTs).


EXAMPLE 4: iBOX Practical Application for Clinicians: Ready-to-use Interface for Clinicians

Real-life patients for whom we used the iBox risk score to predict individual 3, 5 and 7-year-allograft survival. Patients #1 to #3 were from the iBox database reference set. Patient #4 was from the randomized controlled trial: RITUX ERAH Eudra CT 2007-003213-13.


Patient #1 Description


A 64-year-old male with membranoproliferative glomerulonephritis underwent a second preemptive kidney transplantation from an expanded-criteria deceased donor in 2013. The patient was sensitised (cPRA of 50%) without circulating anti-HLA DSA identified at the time of transplantation. Initial immunosuppressive regimen included anti-thymocyte globulin induction with corticosteroids, mycophenolate mofetil and tacrolimus.


Three months after transplantation, eGFR (MDRD) was 52 mL/min/1.73 m2 without proteinuria (0.05 g/g). The evaluation at one-year post-transplantation found an eGFR (MDRD) of 33 mL/min/1.73 m2. No circulating anti-HLA DSA nor proteinuria were detected. The biopsy revealed severe interstitial fibrosis and tubular atrophy was detected (IFTA Banff score=3) as well as a glomerulitis (g score=1). No other lesion was observed (ptc, c4d, cg, i, t scores=0).





iBoxPatient#1time from transplant to risk evaluation*3+βeGFR*33+βProteinuria*log (0.05)+βDSA MFI*0+βg+ptc*1+βi+t*0+βcg*0+βIFTA*3


Patient #1 individual allograft survival probabilities at 3, 5 and 7-years are 94%, 91%, and 86% respectively (see FIG. 5A: iBox report of allograft survival projection).


Patient #2 Description


A 39-year-old male patient with an obstructive uropathy underwent a first living-related donor kidney transplantation in 2012, with a cPRA at 0 at the time of transplantation. The immunosuppressive regimen consisted in basiliximab, corticosteroids, mycophenolate mofetil and tacrolimus.


At 15 months, the patient developed a de novo DSA (anti-DR4, MFI 8,244). At the time of dnDSA identification, the eGFR (MDRD) was 74 mL/min/1.73 m2 with a proteinuria of 1.51 g/g. A biopsy was performed with a g score=3, ptc score=2, C4d score=2, and transplant glomerulopathy score=1. No other lesion was observed (IFTA, i, t scores=0).





iBoxPatient#2time from transplant to risk evaluation*15+βeGFR*74+βProteinuria*log(1.51)+βDSA MFI*3 (e.g. greater than 6,000 of MFI)+βg+ptc*5+βi+t*0+βcg*1+βIFTA*0


The iBox score projects the patient in the strata 3. The 3, 5 and 7-year probabilities of allograft survival are 86%, 78%, and 69% respectively (see FIG. 5B: iBox report of allograft survival projection).


Patient #3 Description


A 45-year-old woman with an end-stage renal disease due to a type 1 diabetes underwent her first kidney transplantation with a standard criteria deceased donor in 2009. She was highly sensitised due to blood transfusions (cPRA=89%) but without detectable circulating anti-HLA DSA Immunosuppressive treatment included an induction therapy with anti-thymocyte globulin and a maintenance immunosuppressive regimen of corticosteroids, MMF and tacrolimus.


At 5 months post-transplant, eGFR (MDRD) was 62 mL/min/1.73 m2, a de novo DSA was detected (anti-DQ8, MFI 1,233) and a proteinuria was identified (0.19 g/g). An allograft biopsy revealed a mild interstitial fibrosis/tubular atrophy (IFTA score=1). The biopsy was free from other pathological lesion (g, ptc, c4d, cg, i, t Banff scores=0).





iBoxPatient#3, 1st scoretime from transplant to risk evaluation*5+βeGFR*62+βProteinuria*log(0.19)+βDSA MFI*1 (e.g. between 500 and 3,000 of MFI)+βg+ptc*0+βi+t*0+βcg*0+βIFTA*1


The patient #3 individual allograft survival probabilities at 3, 5 and 7 years are 97%, 96%, and 94% respectively.


The same patient was then reevaluated 13 months post transplantation with a decreased eGFR at 43 ml/min/1.73 m2. The MFI of the anti-DQ8 dnDSA increased to 7′358. A new biopsy was performed showing a transplant glomerulopathy (cg score of 1). The other parameters were stable otherwise, when compared with the previous biopsy.





iBoxPatient#3, 2nd scoretime from transplant to risk evaluation*13+βeGFR*43+βProteinuria*log(0.22)+βDSA MFI*3 (e.g. greater than 6,000)+βg+ptc*0+βi+t*0+βcg*1+βIFTA*1


The iBox prediction score for patient #2 is updated with 86%, 78%, and 68% individual allograft survival probabilities at 3, 5 and 7-years to respectively (see FIG. 5C:).


Patient #4 Description (Rituxerah Trial Eudra CT 2007-003213-13)


A 56-year-old woman with tubulointerstitial nephropathy underwent a first kidney transplantation in 2011 (standard criteria deceased donor). At Day 0 no circulating anti-HLA DSA was detected and an induction with anti-thymocyte globulin was followed by an immunosuppression with corticosteroids, mycophenolate mofetil and calcineurin inhibitor. After 10 days, GFR was estimated at 48 mL/min/1.73 m2 without proteinuria.


At month 1 post-transplant, the patient presented with a decreased allograft function; eGFR of 25 mL/min/1.73 m2, a circulating de novo DSA (anti-B44, MFI 1,972), and a proteinuria of 2.07 g/g. A biopsy was performed and found an active ABMR (g2, ptc1, c4d3 according to Banff scoring system), with mild tubulitis (t score 1) and arteriolar hyalinosis (ah score 1). She was included in Rituxerah trial Eudra CT 2007-003213-13 in the placebo group (plasma exchange, intravenous immunoglobulin and steroid according to the protocol).


Below is the IBox evaluation at the time of patient inclusion:





IBoxPatient#4, 1st scoretime from transplant to risk evaluation*1+βeGFR*25+βProteinuria*log(2.07)+βDSA MFI*1 (e.g. between 500 and 3000 of MFI)+βg+ptc*3+βi+t*1+βcg*0+βIFTA*0


The patient #4 individual allograft survival probabilities at the time of the therapeutic intervention were 59%, 43%, and 27% at 3, 5 and 7 years, respectively.


Six months after inclusion, the eGFR was of 37 mL/min/1.73 m2, proteinuria was 0.32 g/g of creatininuria and the previously identified anti-HLA DSA was undetectable. The biopsy found an acute borderline T-cell mediated rejection according to the Banff classification (i score 1 and t score 1), arteriosclerosis (cv score 1), mild arteriolar hyalinosis (ah score 1), glomerulitis score of 2 and interstitial fibrosis and tubular atrophy (IFTA score 3).





IBOXPatient#4, 2nd scoretime from transplant to risk evaluation*7+βeGFR*37+βProteinuria*log(0.32)+βDSA MFI*0+βg+ptc*2+βi+t*2+βcg*0+βIFTA*3


The IBox score after therapeutic intervention now projects the patient survival to updated 3, 5 and 7 year-allograft survival probabilities of 85%, 78%, and 68% respectively (see FIG. 5D: iBox report of allograft survival projection).


TABLES:









TABLE 1







Patient characteristics by cohort













European
North American




Derivation cohort
validation cohort
validation cohort















n
(n = 4,000)
n
(n = 2,129)
n
(n = 1,428)
p*











Recipient demographics

















Age (years), mean (SD)
4,000
49.83
(13.70)
2,129
50.58
(13.66)
1,420
50.42
(14.17)
0.0916


Gender male, No. (%)
4,000
2,450
(61.25)
2,129
1,333
(62.61)
1,428
830
(58.12)
0.0250


End-stage renal disease causes
4,000


2,129


1,428


Glomerulonephritis, No. (%)

1,086
(27.15)

584
(27.43)

365
(25.56)


Diabetes, No. (%)

438
(10.95)

316
(14.84)

271
(18.98)


Vascular, No. (%)

296
(7.40)

139
(6.53)

249
(17.44)


Other, No. (%)

2,180
(54.50)

1,090
(51.20)

543
(38.03)
<0.0001







Transplant characteristics

















Donor age (years), mean (SD)
4,000
51.68
(16.33)
2,122
48.24
(15.79)
1,420
41.01
(14.75)
<0.0001


Donor male gender, No. (%)
4,000
2,151
(53.78)
2,124
1,225
(57.67)
1,420
694
(48.87)
<0.0001


Donor hypertension, No. (%)
3,903
1,005
(25.75)
1,876
450
(23.99)
1,287
189
(14.69)
<0.0001


Donor diabetes mellitus, No. (%)
3,861
231
(5.98)
1,713
47
(2.74)
1,276
47
(3.68)
<0.0001


Donor serum creatinine > 1.5 mg/dL, No. (%)
3,962
422
(10.65)
1,936
193
(9.97)
1,075
284
(26.42)
<0.0001







Donor type

















Deceased donor, No. (%)
4,000
3,327
(83.18)
2,129
1,974
(92.72)
1,428
620
(43.42)
<0.0001


Death from cerebrovascular disease, No. (%)
3,327
1,864
(56.03)
1,974
993
(50.30)
618
194
(31.39)
<0.0001


Expanded criteria donor, No. (%)
3,995
1,409
(35.27)
2,010
628
(31.24)
1,425
72
(5.05)
<0.0001


Prior kidney transplant, No. (%)
4,000
605
(15.13)
2,129
322
(15.12)
1,408
235
(16.69)
0.3410


Cold ischemia time (hours), mean (SD)
3,976
16.20
(8.99)
2,093
15.50
(7.30)
1,212
9.51
(11.81)
<0.0001


Delayed graft function, No. (%)
3,897
1,046
(26.84)
2,127
476
(22.38)
1,424
158
(11.10)
<0.0001


HLA-A/B/DR mismatch, mean (SD), number
4,000
3.817
(1.36)
2,083
3.15
(1.39)
1,427
3.54
(1.79)
<0.0001





Abbreviations: ESRD: end-stage renal disease; HLA: human leucocyte antigen.


*p-value is based on a comparison of all cohorts.



Delayed graft function was defined as the use of dialysis in the first postoperative week.














TABLE 2A







Factors assessed at the time of posttransplant risk evaluation associated with kidney allograft failure in the derivation cohort: univariable analysis













Number of
Number of






patients
events*
HR
95% CI
p

















Recipient
Age (per 1-year increment)
4,000
549
1.002
(0.996 to 1.009)
0.4575














characteristics
Gender
Female
1,550
214
1






Male
2,450
335
1.004
(0.845 to 1.191)
0.9675













Transplant
Donor age (per 1-year increment)
4,000
549
1.016
(1.011 to 1.022)
<0.0001














characteristics
Donor gender
Female
1,849
254
1






Male
2,151
295
0.981
(0.830 to 1.161)
0.8257



Donor type
Living
673
51
1





Deceased
3,327
498
2.057
(1.542 to 2.744)
<0.0001



Donor hypertension
No
2,898
340
1





Yes
1,005
195
1.841
(1.543 to 2.195)
<0.0001



Donor diabetes mellitus
No
3,630
491
1





Yes
231
31
1.392
(1.005 to 1.929)
0.0467
















Creatinine
<1.5
mg/dL
3,540
467
1






≥1.5
mg/dL
422
75
1.429
(1.120 to 1.824)
0.0041















Expanded criteria donor
No
2,586
285
1






Yes
1,409
263
1.896
(1.603 to 2.242)
<0.0001



Prior kidney transplant
No
3,395
421
1





Yes
605
128
1.863
(1.528 to 2.270)
<0.0001
















Cold ischemia time
<12
hours
1,120
106
1






12-24
hours
2,099
319
1.614
(1.296 to 2.011)




≥24
hours
757
121
1.731
(1.334 to 2.247)
<0.0001















Thymoglobulin induction
No
1,643
109
1





immunosuppression
Yes
2,104
316
1.252
(1.051 to 1.491)
0.0118














No. of HLA-A/B/DR mismatches
4,000
549
1.034
(0.972 to 1.100)
0.2939















Preexisting anti-HLA donor-specific
No
3,278
425
1





antibody
Yes
722
124
1.510
(1.234 to 1.844)
0.0001













Time of risk evaluation
Time from transplant to evaluation (per 1-year increment)
3,996
549
1.264
(1.205 to 1.325)
<0.0001


Functional
eGFR (mL/min/1.73 m2)
4,000
549
0.940
(0.935 to 0.946)
<0.0001


parameters
Proteinuria at 1 year (log transformation)
4,000
549
1.988
(1.858 to 2.126)
<0.0001














Structural
Interstitial fibrosis/tubular atrophy
0-1
3,099
331
1




histopathology

2
555
116
2.149
(1.739 to 2.655)


parameters

3
321
95
3.356
(2.671 to 4.216)
<0.0001



Arteriosclerosis
0
1,365
137
1





≥1
2,446
386
1.619
(1.332 to 1.967)
<0.0001



Hyalinosis
0
1,567
149
1





≥1
2,360
381
1.739
(1.439 to 2.102)
<0.0001



Interstitial inflammation and tubulitis
0-2
3,610
546
1





≥3
390
93
1.969
(1.575 to 2.460)
<0.0001



Transplant glomerulopathy
0
3,702
449
1




≥1
260
94
3.701
(2.962 to 4.624)
<0.0001



Endarteritis
0
3,794
506
1





≥1
96
27
2.263
(1.537 to 3.333)
<0.0001



C4d graft deposition
No
3,452
416
1





Yes
548
133
2.446
(2.011 to 2.976)
<0.0001



Microcirculation inflammation
0-2
3,616
261
1



(g + ptc)
3-4
308
92
3.069
(2.448 to 3.846)




5-6
76
35
4.986
(3.530 to 7.041)
<0.0001



Polyomavirus associated nephropathy
No
3,902
518
1





Yes
97
31
2.817
(1.960 to 4.047)
<0.0001



Nephropathy recurrence
No
3,868
510
1
-




Yes
130
38
2.551
(1.835 to 3.547)
<0.0001



Antibody-mediated rejection
No
3,398
368
1





Yes
600
181
3.359
(2.810 to 4.015)
<0.0001



T-cell-mediated rejection
No
3,812
503
1





Yes
187
46
1.964
(1.452 to 2.656)
<0.0001


Immunological
Anti-HLA donor-specific antibody
<500
3,312
394
1



parameters
mean fluorescence intensity
≥500-3,000 
483
82
1.663
(1.310 to 2.111)




≥3000-6,000  
82
24
3.108
(2.057 to 4.695)




≥6,000
123
49
4.557
(3.383 to 6.138)
<0.0001





Abbreviations: CI, confidence interval; HR, hazard ratio; HLA, human leukocyte antigen; eGFR, estimated glomerular filtration rate.


*Number of events at 7 years post-iBox risk evaluation.













TABLE 2B







Independent determinants of kidney allograft loss assessed at the time of posttransplant


risk evaluation in the derivation cohort: multivariable analysis













Number of
Number of


Internal validation HR



patients
events*
95% CI
p
95% CI bootstrap BCA
















Time from transplant to evaluation (years)
3,941
538
(1.023 to 1.138)
0.0051
(1.017 to 1.145)


eGFR (mL/min/1.73 m2)
3,941
538
(0.950 to 0.961)
<0.0001
(0.949 to 0.962)


Proteinuria (log)
3,941
538
(1.398 to 1.628)
<0.0001
(1.384 to 1.640)













Interstitial fibrosis/
0/1
3,074
330





tubular atrophy (IFTA)
2
550
115
(0.918 to 1.424)

(0.918 to 1.426)



3
317
93
(1.083 to 1.773)
0.0311
(1.063 to 1.743)


Microcirculation
0-2
3,568
414





inflammation (g + ptc)
3-4
299
90
(1.121 to 1.876)

(1.099 to 1.899)



5-6
74
34
(1.240 to 2.706)
0.0010
(1.207 to 2.799)


Interstitial inflammation
0-2
3,559
447





and tubulitis (i + t)
≥3
382
91
(1.061 to 1.684)
0.0136
(1.031 to 1.712)


Transplant
0
3,684
445


-


glomerulopathy (cg)
≥1
257
93
(1.133 to 1.895)
0.0036
(1.138 to 1.929)


Anti-HLA donor-specific
<500
3,265
387





antibody mean
≥500-3,000
477
80
(0.965 to 1.606)

(0.948 to 1.637)


fluorescence intensity
≥3,000-6,000  
80
23
(1.115 to 2.659)

(0.949 to 2.681)



≥6,000
119
48
(1.472 to 2.860)
0.0001
(1.484 to 2.879)





The final multivariable Cox model was obtained by entering the risk factors from the univariable models that met p ≤ 0.10 as the threshold in a single multivariable proportional hazards model. The final multivariable model was adjusted for the following parameters: expanded criteria donor (ECD), deceased donor, donor diabetes, cold ischemia time, thymoglobulin induction, circulating donor-specific anti-HLA antibody MFI at day 0, circulating donor-specific anti-HLA antibody MFI at the time of biopsy, cv Banff score, ah Banff score, i and t Banff scores, v score, cg Banff score, IFTA Banff score, microcirculation inflammation (g + ptc) score, C4d graft deposition, eGFR, proteinuria and the time of iBox evaluation.


Abbreviations: HR, hazard ratio; CI, confidence interval; BCA, bias-corrected and accelerated bootstrap; HLA, human leukocyte antigen.


*Number of events at 7 years post-iBox risk evaluation.













TABLE 3







iBox risk prediction score performance when assessed


in different clinical scenarios and subpopulations









iBox risk score performance
Risk Model
95% bootstrap


assessed in different clinical
Performance
percentile


scenarios and subpopulations
(C-statistic)
CIs





iBox using eGFR and proteinuria
0.79
(0.77 to 0.81)


monitoring (without histology)


iBox using histology diagnoses*
0.76
(0.74 to 0.81)


instead of Banff lesions grading


iBox in stable patients (protocol biopsy)
0.81
(0.77 to 0.86)


iBox in unstable patients (biopsy for
0.80
(0.78 to 0.82)


cause)


iBox assessed in the first year after
0.77
(0.72 to 0.81)


transplant


iBox assessed after 1-year post
0.84
(0.82 to 0.87)


transplant


iBox in living donors
0.82
(0.75 to 0.88)


iBox in deceased donors
0.80
(0.78 to 0.82)


iBox in highly sensitised recipients †
0.80
(0.76 to 0.84)


iBox in non-highly sensitised recipients
0.81
(0.79 to 0.83)


iBox adding transplant baseline
0.81
(0.79 to 0.83)


characteristics


iBox in patient with anti-IL2 receptor
0.79
(0.76 to 0.82)


induction


iBox in patients with anti-thymocyte
0.83
(0.80 to 0.85)


globulin induction


iBox in African American population**
0.80
(0.74 to 0.85)


iBox in non-African American
0.84
(0.80 to 0.89)


population**


iBox adding recipient blood pressure
0.80
(0.78 to 0.82)


profile post-transplant ††


iBox adding CNI blood through level at
0.81
(0.78 to 0.83)


time of evaluation





*Histological diagnoses defined by the last update of the Banff international classification: antibody-mediated rejection, T-cell mediated rejection, BK virus nephropathy, primary nephropathy recurrence


† Highly sensitised patients defined by a panel of reactive antibodies >90%



Transplant baseline characteristics are donor's age, donor's gender, donor's hypertension, donor's diabetes, recipient's age, recipient's gender, HLA mismatches, retransplantation and anti-HLA DSA at the time of transplantation.



**African American recipient status was retrieved in the US participating centres databases (no data ethnicity allowed in the French development cohort database according to the French law & regulation). African Americans within the US validation cohort represented a total of 390 patients (27.31%)


Non-African Americans within the US validation cohort represented a total of 1,038 patients (72.69%)


†† blood profile is defined by systolic blood pressure measured at the time of risk assessment in log scale













TABLE 4







Details of the Clinical trials depicting the population characteristics, clinical scenarios and interventions





















Time post-transplant
Follow-up
iBox



Trial

Clinical
Target

of iBox risk
time post-
risk score


STUDY
#ID
Design
scenario
population
(n)
score evaluation
transplant
C-Stat


















CERTITEM*
NCT
Prospective,
ISD
Recipients of
194
Median: 0.94
Median:
0.88



01079143
Randomised,
minimisation
renal transplants

years
6.62 years




open-label,

from a living or

IQR (0.92-
IQR (2.82-




multicentre trial

deceased donor

0.98)
7.34)


RITUX
Eudra CT
Prospective,
Treatment of
Recipients of
38
Median: 0.74
Median:
0.77


ERAH
2007-003213-13
Randomised,
ABMR (preexisting
renal transplants

years
6.63 years




multicentre,
DSA)
from a living or

IQR (0.53-
IQR (4.03-




double-blind,

deceased donor

1.10)
7.69)




placebo-

with diagnosis of




controlled trial

acute ABMR.


BORTEJECT
NCT
Prospective,
Treatment of
Recipients of
44
Median: 6.61
Median:
0.94



01873157
Randomised,
ABMR (de novo
renal transplants

years
7.75 years




placebo-
DSA)
from a living or

IQR (4.04-
IQR (5.32-




controlled,

deceased donor

15.41)
16.41)




double-blind,

with post-




single-centre trial

transplant de






novo DSA






detection





*Rostaing, L., et al. “Fibrosis progression according to epithelial-mesenchymal transition profile: a randomised trial of everolimus versus CsA.” American Journal of Transplantation 15.5 (2015): 1303-1312;



Sautenet, B., et al. “One-year results of the effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicentre double-blind randomised placebo-controlled trial.” Transplantation 100.2 (2016): 391-399;




Eskandary, Farsad, et al. “A Randomised Trial of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection.” Journal of the American Society of Nephrology (2017): ASN-2017070818.














TABLE 5







General transplant procedures and policies and allocation systems in the participating centres























Standard induction










therapy Protocols




Deceased/


Paired donor


ATG: Anti-thymocyte




living
Expanded
Dual kidney
exchange
ABO
HLA
Globulin IL2R:


Transplant

donor
criteria
transplantation
national
incompatible
incompatible
interleukin 2


Referral Centres
Allocation system
rate
donor rate
program
program
program
program
receptor





Paris Transplant
ABM: Agence
84%/16%
42%
YES
NO
YES
YES
Induction rate 100%


Group Saint Louis,
Frangaise






(ATG or anti-IL2R)


Necker, and Foch
Biomedecine*


Hospitals, France


Toulouse Hospital,
ABM: Agence
88%/12%
41%
NO
NO
YES
YES
Induction rate 85%


France
Frangaise






(ATG or anti-IL2R)



Biomedecine*


Nantes Hospital,
ABM: Agence
90%/10%
50%
NO
NO
NO
NO
Induction rate 80%


France
Frangaise






(ATG or anti-IL2R)



Biomedecine*


Lyon Hospital,
ABM: Agence
93%/7% 
24%
YES
NO
YES
NO
Induction rate 100%


France
Frangaise






(ATG or anti-IL2R)



Biomedecine*


Leuven Hospital,
EuroTransplant: EU
94%/6% 
30%
NO
NO
YES
NO
Induction rate 40%


Belgium
allocation system






(anti-IL2R)


Johns Hopkins
UNOS
49%/51%
13%
NO
YES
YES
YES
Induction rate 100%


Medical Institute,
United Nations for






(ATG or anti-IL2R)


Baltimore, USA
Organ Sharing


Virginia, USA
UNOS
27%/73%
10%
NO
YES
YES
NO
Induction rate 100%



United Nations for






(ATG or anti-IL2R)



Organ Sharing


Mayo Clinic,
UNOS
22%/78%
4%
NO
YES
YES
YES
Induction rate 100%


Rochester, USA
United Nations for






(ATG or anti-IL2R)



Organ Sharing





*http://sipg.sante.fr/portail/,



http://www.eurotransplant.org/,




http://www.unos.org/














TABLE 6







Baseline characteristics of the European validation centres











Nantes (France)
Lyon (France)
Leuven (Belgium)














n
(n = 632)
n
(n = 608)
n
(n = 889)











Recipient characteristics
















Age (years), mean (SD)
632
50.38
(13.57)
608
46.63
(13.28)
889
53.42
(13.30)


Gender male, No. (%)
632
404
(63.92)
608
386
(63.49)
889
543
(61.08)


ESRD causes
632


608


889















Glomerulonephritis, No. (%)
179
(28.32)

151
(24.84)

254
(28.57)


Diabetes, No. (%)
55
(8.70)

188
(30.92)

73
(8.21)


Vascular, No. (%)
53
(8.39)

49
(8.06)

37
(4.16)


Other, No. (%)
345
(54.59)

220
(36.18)

525
(59.06)







Donor characteristics
















Age (years), mean (SD)
632
53.07
(14.99)
603
44.08
(16.55)
887
47.63
(14.89)


Male gender, No. (%)
631
354
(56.10)
605
395
(65.29)
888
476
(53.60)


Hypertension, No. (%)
620
185
(29.84)
607
101
(16.64)
649
164
(25.27)















Diabetes mellitus, No. (%)
481
36
(7.48)
343
11
(3.21)
889
0
















Creatinine >1.5 mg/dL, No. (%)
631
80
(12.68)
605
95
(15.70)
700
18
(2.57)







Donor type
















Deceased donor, No. (%)
632
576
(91.14)
608
564
(92.76)
889
834
(93.81)


Death from cerebrovascular
576
323
(56.08)
564
257
(45.57)
834
413
(49.52)


disease, No. (%)


Expanded criteria donor, No. (%)
574
248
(43.21)
608
142
(23.36)
828
238
(28.74)







Transplant baseline characteristics
















Prior kidney transplant, No. (%)
632
101
(15.98)
608
94
(15.46)
889
127
(14.29)


Cold ischemia time (hours), mean (SD)
632
18.75
(9.39)
599
13.68
(5.85)
862
14.37
(5.44)


Delayed graft function*, No. (%)
630
213
(33.81)
608
102
(16.78)
889
161
(18.11)


HLA-A/B/DR mismatch, mean (SD), number
632
3.28
(1.36)
608
3.58
(1.35)
843
2.75
(1.34)





Abbreviations: ESRD: end-stage renal disease; HLA: human leucocyte antigen.


*Delayed graft function was defined as the use of dialysis in the first postoperative week













TABLE 7







Baseline characteristics of the North-American validation centres











Johns Hopkins (USA)
Mayo Clinic (USA)
Virginia (USA)














n
(n = 580)
n
(n = 556)
n
(n = 292)











Recipient characteristics
















Age (years), mean (SD)
580
51.01
(14.70)
556
52.19
(13.74)
284
45.74
(12.88)


Gender male, No. (%)
580
321
(55.34)
556
340
(61.15)
292
169
(57.88)


ESRD causes
580


556


292















Glomerulonephritis, No. (%)
147
(25.34)

162
(29.14)

56
(19.18)


Diabetes, No. (%)
116
(20.00)

106
(19.06)

49
(16.78)


Vascular, No. (%)
97
(16.72)

63
(11.33)

89
(30.48)


Other, No. (%)
220
(37.93)

225
(40.47)

98
(33.56)







Donor characteristics
















Age (years), mean (SD)
580
40.11
(14.78)
556
43.29
(13.00)
284
38.39
(17.13)


Male gender, No. (%)
580
279
(48.10)
556
258
(46.40)
284
157
(55.28)


Hypertension, No. (%)
578
73
(12.63)
429
50
(11.66)
280
66
(23.57)


Diabetes mellitus, No. (%)
577
30
(5.20)
419
3
(0.7)
280
14
(5.00)


Creatinine >1.5 mg/dL, No. (%)
281
79
(28.11)
510
148
(29.02)
284
57
(20.07)







Donor type
















Deceased donor, No. (%)
580
283
(48.79)
556
123
(22.12)
292
214
(73.29)


Death from cerebrovascular
283
88
(31.10)
123
36
(29.27)
212
70
(33.02)


disease, No. (%)


Expanded criteria donor, No. (%)
580
38
(6.55)
556
5
(0.90)
289
29
(10.03)







Transplant baseline characteristics
















Prior kidney transplant, No. (%)
580
99
(17.07)
544
78
(14.34)
284
58
(20.42)


Cold ischemia time (hours), mean (SD)
541
10.54
(13.35)
397
4.02
(6.97)
274
15.44
(10.70)


Delayed graft function*, No. (%)
576
35
(6.08)
556
3
(0.54)
292
120
(41.10)


HLA-A/B/DR mismatch, mean (SD), number
579
3.64
(1.73)
556
3.18
(1.86)
292
4.03
(1.61)





Abbreviations: ESRD: end-stage renal disease; HLA: human leucocyte antigen.


*Delayed graft function was defined as the use of dialysis in the first postoperative week













TABLE 8







Independent determinants of kidney allograft loss in the derivation


cohort stratified by centre: multivariable analysis













Number of
Number of






patients
events
HR
95% CI
P
















Time from transplant to evaluation (year)
3,941
538
1.074
(1.017-1.134)
0.0108


eGFR (mL/min/1.73 m2)
3,941
538
0.955
(0.949-0.961)
<0.0001


Proteinuria (log)
3,941
538
1.527
(1.414-1.648)
<0.0001













Interstitial fibrosis/Tubular
0/1
3,074
330
1




atrophy (IFTA)
2
550
115
1.287
(1.029-1.610)



3
317
93
1.712
(1.321-2.220)
0.0002


Microcirculation Inflammation
0-2
3,568
414
1



(g + ptc)
3-4
299
90
1.484
(1.142-1.930)



5-6
74
34
2.017
(1.358-2.997)
0.0003


Interstitial inflammation and
0-2
3,559
447
1



tubulitis (i + t)
≥3
382
91
1.352
(1.071-1.706)
0.0111


Transplant Glomerulopathy (cg)
0
3,684
445
1



≥1
257
93
1.480
(1.140-1.921)
0.0032


Anti-HLA donor-specific
<500
3,265
387
1



antibody mean fluorescence
≥500-3,000
477
80
1.280
(0.986-1.661)


intensity
≥3,000-6,000  
80
23
1.809
(1.167-2.803)



≥6,000
119
48
2.228
(1.591-3.120)
<0.0001
















TABLE 9





iBox risk score comparison of previously published risk scores























Trial









Registration/
Study


External
Time of risk
Follow-up


STUDY
protocol
Design
Population
Number of
Validation
evaluation
time post-





Gonzales
None
Retrospective
n = 556
1
No
Fixed at
Median: not


et al*


(1999-2008)


1 year
applicable








after








transplant


Premaud
None
Retrospective
n = 664
3
Yes
Fixed at
Median: 6.4


et al


(1984-2011)

n = 896
1 year
years







France only
after








transplant +








2 adjustable








variables


iBox
Clinical trial.gov
Prospective
n = 4,000
10
Yes
Time
Median: 7.65


Risk
#NCT03474003
observational
(2000-2014)

n = 3,557
adjusted‡
years


score




Europe

(IQR: 5.20-10.30)


trial




and US






















Allograft






Validation in therapeutic
Candidate
Data set
phenotypes
CSTAT
Individual



STUDY
randomisedtext missing or illegible when filed
Predictors
qualification
at the time
validation in
risktext missing or illegible when filed







Gonzales
No
17
Not
Yes (Banff
0.69§
No



et al*


audited
international







classification)



Premaud
No
12
Not
No
0.71
No



et al


audited



iBox
Yes
33
Annual
Yes (Banff

iBox risk



Risk
3 RCT (NCT01079143,

audit
international

prediction score



score
EudrCT 2007-003213-13


classification)

individual



trial
and NCT01873157)




calculation tools









for clinicians









and patients







*Gonzales M M, Bentall A, Kremers W K, Stegall M D, Borrows R. Predicting Individual Renal Allograft Outcomes Using Risk Models with 1-Year Surveillance Biopsy and Alloantibody Data. J Am Soc Nephrol. 2016; 27(10): 3165-74,




Premaud A, Filloux M, Gatault P, Thierry A, Buehler M, Munteanu E, et al. An adjustable predictive score of graft survival in kidney transplant patients and the levels of risk linked to de novo donor-specific anti-HLA antibodies. PloS one. 2017; 12(7): e0180236,




‡see FIG. 3 for the distribution of iBox time post-transplant risk evaluation, Table 2B for the inclusion of “time of risk evaluation post-transplant” in the final model, and FIG. 5 showing examples of time updated iBox risk evaluation in patients (Patient #3 and #4)




text missing or illegible when filed indicates data missing or illegible when filed














TABLE 10







Independent determinants of kidney allograft loss in the derivation


cohort using histological diagnoses: multivariable analysis













Number of
Number of






patients
events
HR
95% CI
p
















Time from transplant to evaluation (year)
3,997
548
1.097
(1.043-1.153)
0.0003


eGFR (mL/min/1.73 m2)
3,997
548
0.955
(0.949-0.961)
<0.0001


Proteinuria (log)
3,997
548
1.552
(1.443-1.670)
<0.0001













Antibody-mediated rejection
No
3,398
368
1





Yes
599
180
1.811
(1.475-2.223)
<0.0001


T-cell mediated rejection
No
3,810
502
1




Yes
187
46
1.369
(1.007-1.861)
0.0453


Nephropathy Recurrence
No
3,867
510
1




Yes
130
38
1.680
(1.199-2.355)
0.0026


BK virus associated nephropathy
No
3,900
517
1



Yes
97
31
1.450
(1.000-2.107)
0.0500


Anti-HLA donor-specific
 <500
3,309
393
1



antibody mean fluorescence

≥500-3,000

483
82
1.220
(0.946-1.572)


intensity
≥3,000-6,000
82
24
1.527
(0.993-2.348)



≥6,000
123
49
1.985
(1.432-2.753)
0.0003









REFERENCES

Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into the present disclosure.


1. Mills K T, Xu Y, Zhang W, Bundy J D, Chen C S, Kelly T N, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88(5):950-7.


2. Hill N R, Fatoba S T, Oke J L, Hirst J A, O'Callaghan C A, Lasserson D S, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765.


3. Evans R W, Manninen D L, Garrison L P, Jr., Hart L G, Blagg C R, Gutman R A, et al. The quality of life of patients with end-stage renal disease. The New England journal of medicine. 1985;312(9):553-9.


4. Meier-Kriesche H U, Schold J D, Srinivas T R, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2004;4(3):378-83.


5. Coemans M, Susal C, Dohler B, Anglicheau D, Giral M, Bestard O, et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int. 2018.


6. Perl J. Kidney transplant failure: failing kidneys, failing care? Clin J Am Soc Nephrol. 2014;9(7):1153-5.


7. Stegall M D, Morris R E, Alloway R R, Mannon R B. Developing New Immunosuppression for the Next Generation of Transplant Recipients: The Path Forward. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2016;16(4):1094-101.


8. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. The New England journal of medicine. 2016;374(4):333-43.


9. Kaplan B, Schold J, Meier-Kriesche H U. Poor predictive value of serum creatinine for renal allograft loss. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2003;3(12):1560-5.


10. He X, Moore J, Shabir S, Little M A, Cockwell P, Ball S, et al. Comparison of the predictive performance of eGFR formulae for mortality and graft failure in renal transplant recipients. Transplantation. 2009;87(3):384-92.


11. Naesens M, Lerut E, Emonds M P, Herelixka A, Evenepoel P, Claes K, et al. Proteinuria as a Noninvasive Marker for Renal Allograft Histology and Failure: An Observational Cohort Study. J Am Soc Nephrol. 2016;27(1):281-92.


12. Yilmaz S, Tomlanovich S, Mathew T, Taskinen E, Paavonen T, Navarro M, et al. Protocol core needle biopsy and histologic Chronic Allograft Damage Index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J Am Soc Nephrol. 2003;14(3):773-9.


13. Lefaucheur C, Loupy A, Hill G S, Andrade J, Nochy D, Antoine C, et al. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J Am Soc Nephrol. 2010;21(8):1398-406.


14. Moore J, He X, Shabir S, Hanvesakul R, Benavente D, Cockwell P, et al. Development and evaluation of a composite risk score to predict kidney transplant failure. Am J Kidney Dis. 2011;57(5):744-51.


15. Shabir S, Halimi J M, Cherukuri A, Ball S, Ferro C, Lipkin G, et al. Predicting 5-year risk of kidney transplant failure: a prediction instrument using data available at 1 year posttransplantation. Am J Kidney Dis. 2014;63(4):643-51.


16. Gonzales M M, Bentall A, Kremers W K, Stegall M D, Borrows R. Predicting Individual Renal Allograft Outcomes Using Risk Models with 1-Year Surveillance Biopsy and Alloantibody Data. J Am Soc Nephrol. 2016;27(10):3165-74.


17. Schold J D, Kaplan B. The elephant in the room: failings of current clinical endpoints in kidney transplantation. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2010;10(5):1163-6.


18. https://www.eurotransplant.org


19. https://unos.org/


20. Eskandary F, Regele H, Baumann L, Bond G, Kozakowski N, Wahrmann M, et al. A Randomized Trial of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection. J Am Soc Nephrol. 2018;29(2):591-605.


21. Sautenet B, Blancho G, Buchler M, Morelon E, Toupance O, Barrou B, et al. One-year Results of the Effects of Rituximab on Acute Antibody-Mediated Rejection in Renal Transplantation: RITUX ERAH, a Multicenter Double-blind Randomized Placebo-controlled Trial. Transplantation. 2016;100(2):391-9.


22. Rostaing L, Hertig A, Albano L, Anglicheau D, Durrbach A, Vuiblet V, et al. Fibrosis progression according to epithelial-mesenchymal transition profile: a randomized trial of everolimus versus CsA. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2015;15(5):1303-12.


23. Collins G S, Reitsma J B, Altman D G, Moons K G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162(1):55-63.


24. Lamb K E, Lodhi S, Meier-Kriesche H U. Long-term renal allograft survival in the United States: a critical reappraisal. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2011;11(3):450-62.


25. Fine J P, Gray R J. A proportional hazards model for the subdistribution of a competing Risk. J Am Stat Assoc 1999;94:496-509.


26. Efron B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stats. 1979;7(1):1-26.


27. Harrell F E, Jr., Lee K L, Mark D B. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361-87.


28. Pencina M J, D'Agostino R B, Sr., Steyerberg E W. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11-21.


29. Uno H, Tian L, Cai T, Kohane I S, Wei U. A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Stat Med. 2013;32(14):2430-42.


30. Cox D R. Note on Grouping. J Am Stat Assoc. 1957 ;52: 543-547.


31. Rao P S, Schaubel D E, Guidinger M K, Andreoni K A, Wolfe R A, Merion R M, et al. A comprehensive risk quantification score for deceased donor kidneys: the kidney donor risk index. Transplantation. 2009;88(2):231-6.


32. Hosmer D W L S. Applied Logistic Regression. 2nd ed: New York, N.Y.: John Wiley & Sons; 2000.


33. Prasad V, Kim C, Burotto M, Vandross A. The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses. JAMA Intern Med. 2015;175(8):1389-98.


34. Sellares J, de Freitas D G, Mengel M, Reeve J, Einecke G, Sis B, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2012;12(2):388-99.


35. Premaud A, Filloux M, Gatault P, Thierry A, Buchler M, Munteanu E, et al. An adjustable predictive score of graft survival in kidney transplant patients and the levels of risk linked to de novo donor-specific anti-HLA antibodies. PLoS One. 2017;12(7):e0180236.

Claims
  • 1. A method of predicting whether a kidney transplant recipient is at risk of having allograft loss comprising the steps of: a) assessing for said recipient a plurality of parameters, said parameters being: i) time of posttransplant risk evaluation;ii) allograft functional parameters comprising or consisting of estimated glomerular filtration rate and proteinuria;iii) allograft histological parameters comprising or consisting of interstitial fibrosis and tubular atrophy (IFTA), microcirculation inflammation (glomerulitis and peritubular capillaritis), interstitial inflammation and tubulitis, and transplant glomerulopathy; andiv) recipient immunological profile comprising or consisting of the presence and level of the immunodominant circulating anti-HLA donor-specific antibodies;b) implementing an algorithm on data comprising or consisting of the parameters assessed at step a) as to obtain an algorithm output, the implementing step being computer-implemented; andc) determining the risk of allograft loss from the algorithm output obtained at step b).
  • 2. The method of claim 1 wherein the algorithm is a machine learning algorithm.
  • 3. The method of claim 1, wherein the output obtained by the algorithm at step b) is a score.
  • 4. The method of claim 3 wherein the score classifies the recipients into one of at least four distinct classes of risk of allograft loss.
  • 5. The method of claim 1, which further comprises a step for selecting a therapeutic regimen or determining if a certain therapeutic regimen is more appropriate for a recipient identified as having a high risk of allograft loss.
  • 6. The method of claim 1, wherein the transplant recipient is submitted to a particular therapy and said method further comprises the step of discriminating responder from non-responder with respect to said particular therapy, in view of the risk of allograft loss determined at step c).
  • 7. The method of claim 1, wherein the transplant recipient is reenrolled in a clinical trial.
  • 8. A method for monitoring the treatment of a transplant recipient comprising the steps of: i) implementing the method of claim 1, and ii) if on a first testing, the recipient is identified as having a high risk of allograft loss, the recipient can be administered an appropriate therapeutic regimen, and iii) en a second testing, the recipient is identified as having low risk of allograft loss, the recipient can be administered with a therapeutic regimen at a maintenance dose.
  • 9. A method for discriminating a responder recipient from a non-responder recipient to a given treatment regimen, said method comprising the steps of: (i) implementing the method according to claim 1 on a recipient treated with said given treatment regimen, (ii) if the recipient is predicted as having a high-risk of allograft loss, identifying the recipient as a non-responder recipient to said treatment regimen, or if the recipient is predicted as having a low risk of allograft loss, identifying the recipient as a responder recipient to said treatment regimen.
  • 10. A method of monitoring recipients enrolled in a clinical trial concerning a given therapy, said method comprising the step of implementing the method of claim 1, thereby providing a quantitative measure for the therapeutic efficacy of the therapy which is subject to the clinical trial.
  • 11. The method of claim 1 wherein the output of the algorithm constitutes a surrogate marker for use in a clinical trial for assessing the efficiency of a particular therapy.
  • 12. (canceled)
  • 13. A computer-readable storage medium comprising computer program instructions which, when executed by a data-processing unit, cause execution of at least the step of implementing an algorithm of a method according to claim 1.
  • 14. The method of claim 1, which further comprises a step of administration of an appropriate therapeutic regimen if the recipient is identified as having a high risk of allograft loss.
  • 15. The method of claim 7, which further comprises a step if the recipient is identified as a responder with respect to said particular therapy, the recipient can be administered with a maintenance dose.
Priority Claims (1)
Number Date Country Kind
19305348.5 Mar 2019 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2020/058029 3/23/2020 WO