The present invention generally relates to a method of preparing a composite article and, more specifically, to a method of preparing a composite article from an organic composition and to a composite article comprising an organic polymer matrix and nanoparticles dispersed in the organic polymer matrix.
Nanoparticles are known in the art and can be prepared via various processes. For example, nanoparticles are often defined as particles having at least one dimension of less than 100 nanometers and are produced either from a bulk material, which is initially larger than a nanoparticle, or from particles smaller than the nanoparticles, such as ions and/or atoms. Nanoparticles are particularly unique in that they may have significantly different properties than the bulk material or the smaller particles from which the nanoparticles are derived. For example, a bulk material that acts as an insulator or semiconductor can be, when in nanoparticle form, electrically conductive.
One method of producing nanoparticles starting with the bulk material is attrition. In this method, the bulk material is disposed in a mill, thereby reducing the bulk material to nanoparticles and other larger particles. The nanoparticles can be separated from the other larger particles via air classification.
Nanoparticles have also been produced by laser ablation utilizing a pulsed laser. In laser ablation, bulk metals are placed in aqueous and/or organic solvents and the bulk metals are exposed to the pulsed laser (e.g. copper vapor or neodymium-doped yttrium aluminum garnet). The nanoparticles are ablated from the bulk metal by laser irradiation and subsequently form a suspension in the aqueous and/or organic solvents. However, the pulsed laser is expensive and, additionally, the nanoparticles produced from laser ablation are typically limited to metal nanoparticles.
The present invention provides a method of preparing a composite article. The method comprises combining an organic compound and nanoparticles produced via a plasma process to form an organic composition. The method further comprises forming the composite article from the organic composition. The composite article comprises an organic polymer matrix with the nanoparticles dispersed in the organic polymer matrix.
The present invention also provides a composite article formed in accordance with the method.
Finally, the present invention provides a composite article. The composite article comprises an organic polymer matrix. The composite article further comprises nanoparticles dispersed in the organic polymer matrix, the nanoparticles being produced via a plasma process.
Other advantages and aspects of this invention may be described in the following detailed description when considered in connection with the accompanying drawings wherein:
The present invention provides a method of preparing a composite article and the composite article formed thereby. The present invention additionally provides a composite article that need not be formed by the method. The composite article of the invention has excellent physical properties and is suitable for use in numerous different applications and end uses.
The method comprises combining an organic compound and nanoparticles produced via a plasma process to form an organic composition. The method further comprises forming the composite article from the organic composition. The composite article comprises an organic polymer matrix with the nanoparticles dispersed in the organic polymer matrix.
The organic compound generally has a carbon-based backbone or chain. The organic compound is distinguished from silicones, which predominately comprise siloxane bonds (Si—O—Si), although carbon-carbon bonds may also be present in silicones formed via hydrosilylation. As such, the organic compound is generally free from siloxane bonds, alternatively free from silicon atoms. However, the organic compound may comprise one or more heteroatoms (e.g., O, S, N, etc.). Similarly, the organic compound may be substituted or unsubstituted. By “substituted,” it is meant that the organic compound may include at least one non-carbon based substituent or a carbon-based substituent substituted with atoms other than hydrogen. For example, the organic compound may substituted with a halogen atom, such as a fluorine atom, or a partially or perfluorinated substituent, such a trifluoromethyl group. The organic compound may be aliphatic, aromatic, alicyclic, cyclic, etc. or may comprise combinations thereof in various moieties of the organic compound. The organic polymer matrix formed from the organic compound may be a thermoset organic polymer matrix or a thermoplastic organic polymer matrix.
Combining the organic compound and the nanoparticles may be carried out in any manner. Further, the organic composition may optionally comprise a solvent. The solvent may be present with the organic compound and/or the nanoparticles at the time of preparing the organic composition. For example, the nanoparticles may be collected in a solvent at the time of their production, and subsequently combined with the organic compound to form the organic composition, either neat or along with the solvent. If utilized, the solvent may be any solvent capable of solubilizing or dispersing the organic compound and/or the nanoparticles. Specific examples of such solvents include conventional hydrocarbon solvents, which may be aliphatic or aromatic (e.g. toluene). Alternatively, as described below, the nanoparticles may be captured in the organic compound such that the organic composition is formed in situ along with the nanoparticles. Depending on a viscosity of the organic composition, combining the organic compound and the nanoparticles may further comprise mixing the organic compound and the nanoparticles. For example, the organic compound and the nanoparticles may be blended, such as by hand, by mechanical mixing, by sonication, etc. When the organic composition is sufficiently viscous, the organic composition may be compounded so as to blend the nanoparticles and the organic compound prior to or during forming the composite article.
In certain embodiments, the organic compound comprises an uncured organic compound. By “uncured,” it is meant that the uncured organic compound includes at least one functional group capable of reacting or polymerizing. The at least one functional group may be any functional group capable of reacting or polymerizing. In these embodiments, the uncured organic compound may be monomeric, oligomeric, polymeric, resinous, or combinations thereof. Most typically, when the organic compound comprises the uncured organic compound, the uncured organic compound is monomeric.
In certain embodiments, the at least one functional group capable of reacting or polymerizing comprises an ethylenically unsaturated group. The ethylenically unsaturated group may comprise a carbon-carbon double bond (C═C) and/or a carbon-carbon triple bond (C≡C). In these embodiments, the ethylenically unsaturated group may be but a portion of the at least one functional group. For example, one specific example of the at least one functional group may be a (meth)acrylate functional group, which includes an ethylenically unsaturated group along with a carbonyl group. In these embodiments, the uncured organic compound comprises a (meth)acrylate compound.
The uncured organic compound may optionally be halogenated. When the uncured organic compound is halogenated, the uncured organic compound may only be partially halogenated, where only one or more carbon-hydrogen bonds are substituted with carbon-halogen bonds, or perhalogenated. Examples of halogen atoms include fluorine, chloride, bromine, iodine, etc., with fluorine being most typical. Typically, when the uncured organic compound is halogenated, the uncured organic compound is partially halogenated.
One specific example of an uncured organic compound suitable for the instant method has the following general formula (1):
where subscripts x and y are each integers independently selected from 0 to 20, alternatively from 1 to 10, although x and y are generally not simultaneously 0. For example, one species of uncured organic compound within the general formula above is heptadecafluorodecyl methacrylate, in which case subscript x is 2 and subscript y is 7. General formula (1) is but one exemplary uncured organic compound. For example, the uncured organic compound may alternatively comprise methyl methacrylate, which is not halogenated. Poly(ethylene glycol) methyl ether methacrylate is another specific example of an uncured organic compound suitable for the method, which is not halogenated and which includes various oxygen heteroatoms.
When the organic compound comprises the uncured organic compound, forming the composite article from the organic composition typically comprises polymerizing the uncured organic compound in the presence of the nanoparticles. Polymerizing the uncured organic compound results in the organic polymer matrix. In these embodiments, the organic polymer matrix is generally formed in situ in the presence of the nanoparticles, with the nanoparticles being dispersed in the organic polymer matrix. The nanoparticles may be physically and/or chemically bound in the organic polymer matrix, as described below.
For example, in certain embodiments, as described below, the nanoparticles are MH-functional nanoparticles, where M being an independently selected Group IV element. As used herein, the group designations of the periodic table are generally from the CAS or old IUPAC nomenclature, although Group IV elements are referred to as Group 14 elements under the modern IUPAC system, as readily understood in the art. In these embodiments, and when the organic compound comprises the uncured organic compound having at least one ethylenically unsaturated group, the MH-functional nanoparticles and the uncured organic compound may react via an addition reaction. For example, in hydrosilylation, i.e., when the MH-functional nanoparticles comprise SiH-functional nanoparticles, the ethylenically unsaturated group of the uncured organic compound undergoes an addition reaction with the SiH-functional nanoparticles. For SiH-functional nanoparticles, this addition reaction is referred to as hydrosilylation; for GeH-functional nanoparticles, this addition reaction is referred to as hydrogermylation; for SnH-functional nanoparticles, this addition reaction is referred to as hydrostannylation. When the MH-functional nanoparticles and the uncured organic compound react, the nanoparticles are chemically bound to the organic polymer matrix formed from the uncured organic compound. In such embodiments, the MH-functional nanoparticles and the uncured organic compound generally react prior to polymerizing the uncured organic compound so as to form the organic polymer matrix.
The manner in which the uncured organic compound is polymerized to produce the organic polymer matrix is contingent on the particular type of uncured organic compound utilized, as readily understood in the art. For example, the uncured organic compound may be polymerized by electromagnetic irradiation (e.g. UV), heat, etc. The uncured organic compound may be polymerized in the presence of absence of a solvent. If utilized, the solvent may comprise any solvent suitable for solubilizing the uncured organic compound, such as organic solvents. For example, heating may be utilized to remove any solvent from the organic composition while simultaneously and/or sequentially polymerizing the uncured organic compound of the organic composition. When the organic composition further comprises the solvent, the method generally further comprises removing the solvent from the organic composition during the step of forming the composite article.
In certain embodiments, the organic composition is free from any solvent. In these embodiments, the organic composition comprises, alternatively consists essentially of, the organic compound, the nanoparticles, and any initiator or catalyst for polymerizing or curing of the uncured organic compound. For example, when the uncured organic compound comprises methyl methacrylate, the initiator may comprise hydrogen peroxide, which facilitates the polymerization of methyl methacrylate. Generally, polymerization of the uncured organic compound in the presence of the nanoparticles and in the absence of solvent provides greater dispersibility of the nanoparticles in the organic polymer matrix formed form the uncured organic polymer.
For example, in one specific embodiment in which the uncured organic compound has the general formula (1) above, and when the nanoparticles comprise SiH-functional nanoparticles, the composite article may be formed by hydrosilylating the uncured organic compound and the SiH-functional nanoparticles to form a hydrosilylated organic compound, and polymerizing the hydrosilylated organic compound. In this embodiment, the hydrosilylated organic compound may be polymerized (or cured) by heating at an elevated temperature for a period of time. For example, the elevated temperature may range from greater than 25 to 300, alternatively from 40 to 240, alternatively from 55 to 180, alternatively from 60 to 120, ° C. The period of time generally depends on the elevated temperature utilized and is generally sufficient for polymerizing or curing of the uncured organic compound.
Alternatively, the nanoparticles may be captured directly in the uncured organic compound, with the uncured organic compound being subsequently polymerized or cured so as to form the organic polymer matrix of the composite article.
If desired, the uncured organic compound may have a functionality or structure different than the exemplary uncured organic compound of general formula (1). To this end, the uncured organic compound may comprise any uncured organic compound suitable for forming the organic polymer matrix, which may be a thermoset or a thermoplastic.
For example, in certain embodiments, the organic polymer matrix comprises a polymer selected from the group of polycarbonates, polyamides, polyimides, polysulfones, polyesters, polycarbonates, polyolefins, polynorbornenes, (meth)acrylic polymers, epoxy polymers, episulfide polymers, polystyrenes, celluloses, poly(vinyl chlorides), poly(vinyl alcohols), poly(ethylene vinyl alcohols), polyacetylenes, polyarylenes, polyarylene vinylenes, polyarylene ethynylenes, or an interpolymer thereof. As such, when the organic compound comprises the uncured organic compound, the uncured organic compound may be any monomer, oligomer, or polymer that is utilized to form the organic polymer matrix, such as any of the organic polymer matrices set forth above.
In particular, when the organic compound comprises the uncured organic compound for forming one of the polymers above, the uncured organic compound is selected based on the desired organic polymer matrix. For example, when the desired polymer is a polycarbonate, the uncured organic compound may comprise bisphenol A and/or a similar phenolic compound; when the desired polymer is a polyamide, the uncured organic compound may comprise an amino compound, a carboxylic acid, an acid chloride, and/or an amino acid; when the desired polymer is a polyimide, the uncured organic compound may comprise a dianhydride, a diamine, and/or a diisocyanate; etc. One of skill in the art readily understands that various reaction mechanisms and monomers may be utilized to form the polymer of the organic polymer matrix. The uncured organic compound may be any of these monomers utilized therefor. If a copolymer or interpolymer is desired, various different types of monomers may be utilized. The polymer of the organic polymer matrix may be a block copolymer or may be randomized.
When the organic compound comprises the uncured organic compound, the relative amounts of the uncured organic compound and the nanoparticles in the organic composition may vary based on the desired properties of the composite article, as described in greater detail below.
In an alternative embodiment, the organic compound of the organic composition comprises a polymer. This alternative embodiment is distinguished from the embodiment described above in which the organic compound comprises the uncured organic compound because in this alternative embodiment, the organic compound is a polymer, i.e., the organic compound is typically a pre-formed polymer in this embodiment.
For example, in this embodiment, the organic compound and the nanoparticles may be combined via a variety of mechanisms. For example, when the organic compound comprises a thermoplastic, the organic compound may be heated and melted such that the nanoparticles may be combined with the organic compound while the organic compound is in liquid form. Alternatively, the organic compound may be dissolved in solvent and subsequently combined with the nanoparticles while the organic compound is in liquid form or otherwise dispersed in the solvent. Alternatively, the organic compound may be kneaded or compounded with the nanoparticles while the organic compound is in solid form. The nanoparticles may also optionally be disposed in a solvent at the time of combining the nanoparticles and the organic compound, or the nanoparticles may be combined with the organic compound in neat form.
When the organic compound of the organic composition comprises a polymer, the polymer may be any of those described above. For example, the in certain embodiments, the polymer is selected from the group of polycarbonates, polyamides, polyimides, polysulfones, polyesters, polycarbonates, polyolefins, polynorbornenes, (meth)acrylic polymers, epoxy polymers, episulfide polymers, polystyrenes, celluloses, poly(vinyl chlorides), poly(vinyl alcohols), poly(ethylene vinyl alcohols), polyacetylenes, polyarylenes, polyarylene vinylenes, polyarylene ethynylenes, or an interpolymer thereof.
Depending on the particular organic compound utilized to form the organic polymer matrix of the composite article, the composite article may have various forms. For example, most typically, the composite article is a solid. However, in certain embodiments in which the organic polymer matrix has a lesser crosslink density, the composite article may be flowable, e.g. the composite article may be in the form of a gel or other highly viscous material.
The present invention also provides the composite article. The composite article comprises the organic polymer matrix and nanoparticles dispersed in the organic polymer matrix, with the nanoparticles being produced via a plasma process, as described below. The composite article may be prepared via the method or via other methods not specifically disclosed herein. The composite article may have various forms and shapes. For example, the composite article may be a slab, a film, a cone, a powder, etc. and the composite article may be solid or flowable, as introduced above. The composite article may be formed on a substrate, such as a release liner, that is optionally separable from the composite article once formed. The composite article generally has excellent physical properties, including luminescence when the nanoparticles dispersed therein are photoluminescent. Further, the composite article may be optically transparent. For example, in certain embodiments, the composite article has a light transmittance of at least 90, at least 95, at least 96, at least 97, at least 98, or at least 99, percent, as determined in accordance with ASTM D1003. The organic composition utilized to form the composite article and the composite article formed therefrom may have similar or different light transmittance values.
The relative amounts of the nanoparticles in the organic composition and the composite article may vary based on a variety of factors and considerations. For example, the relative amount of the nanoparticles may vary even from the organic composition to the composite article in embodiments where the organic composition comprises a solvent. Of course, in these embodiments, the concentration of nanoparticles increases in the composite article as compared to the organic composition. Similarly, the desired physical properties of the composite article, e.g. photoluminescent intensity, may drive the concentration of the nanoparticles in the organic composition and/or the composite article.
In certain embodiments, the organic composition comprises the nanoparticles in an amount of from 0.0001 to 80, alternatively from 0.01 to 50, alternatively from 0.1 to 25, percent by weight based on the total weight of the organic composition. This is also true with respect to the composite article.
Regardless of the type of organic composition utilized to form the composite article, the organic composition, as well as the composite article formed therefrom, further comprises nanoparticles, as introduced above. The nanoparticles of the organic composition are produced via a plasma process. As readily understood in the art, the process by which nanoparticles are produced generally impacts the physical properties and characteristics of the resulting nanoparticles. In various embodiments, the nanoparticles are MH-functional nanoparticles, where M being an independently selected Group IV element.
In various embodiments, the nanoparticles of the organic composition are produced via an RF plasma-based process. In these embodiments, a constricted RF plasma may be utilized to produce the nanoparticles. More specifically, these processes utilize an RF plasma operated in a constricted mode to produce nanoparticles from a precursor gas.
In these embodiments, the process of producing the nanoparticles may be carried out by introducing a precursor gas and, optionally, a buffer gas into a plasma chamber and generating an RF capacitive plasma in the chamber. The RF plasma may be created under pressure and RF power conditions that promote the formation of a plasma instability (i.e., a spatially and temporally strongly non-uniform plasma) which causes a constricted plasma to form in the chamber. The constricted plasma, sometimes also referred to as contracted plasma, leads to the formation of a high-plasma density filament, sometimes also referred to as a plasma channel. The plasma channel is characterized by a strongly enhanced plasma density, ionization rate, and gas temperature as compared to the surrounding plasma. It can be either stationary or non-stationary. Periodic rotations of the filament in the discharge tube may be observed, e.g. the filament may randomly change its direction of rotation, trajectory and frequency of rotation. The filament may appear longitudinally non-uniform, or striated. In other cases, the filament may be longitudinally uniform.
An inert buffer or carrier gas, such as neon, argon, krypton or xenon, may desirably be included with the precursor gas. The inclusion of such gases in the constricted plasma-based methods is particularly desirable because these gases promote the formation of the thermal instability to achieve the thermal constriction. In the RF plasmas, dissociated precursor gas species (i.e., the dissociation products resulting from the dissociation of the precursor molecules) nucleate and grow into nanoparticles.
It is believed that the formation of a constricted RF plasma promotes crystalline nanoparticle formation because the constricted plasma results in the formation of a high current density current channel (i.e., filament) in which the local degree of ionization, plasma density and gas temperature are much higher than those of ordinary diffuse plasmas which tend to produce amorphous nanoparticles. For example, in some instances gas temperatures of at least about 1000 K with plasma densities of up to about 1013 cm−3 may be achieved in the constricted plasma. Additional effects could lead to further heating of the nanoparticles to temperatures even higher than the gas temperature. These include recombination of plasma electrons and ions at the nanoparticle surface, hydrogen recombination at the particle surface and the condensation heat release related to nanoparticle surface growth. In some instances the nanoparticles may be heated to temperatures several hundred degrees Kelvin above the gas temperature. The plasma may be continuous, rather than a pulsed plasma.
Thus, some embodiments of the present processes use an RF plasma constriction to provide high gas temperatures using relatively low plasma frequencies.
Conditions that promote the formation of a constricted plasma may be achieved by using sufficiently high RF powers and gas pressures when generating the RF plasma. Any RF power and gas pressures that result in the formation of a constricted RF plasma capable of promoting nanoparticle formation from dissociated precursor gas species may be employed. Appropriate RF power and gas pressure levels may vary somewhat depending upon the plasma reactor geometry. However, in one illustrative embodiment of the processes provided herein, the RF power used to ignite the RF plasma is at least about 100 Watts and the total pressure in the plasma chamber in the presence of the plasma (i.e., the total plasma pressure) is at least about 1 Torr. This includes embodiments where the RF power is at least about 110 Watts and further includes embodiments where the RF power is at least about 120 Watts. This also includes embodiments where the total pressure in the plasma chamber in the presence of the plasma is at least about 5 Torr and further includes embodiments where the total pressure in the plasma chamber in the presence of the plasma is at least about 10 Torr (e.g. from about 10 to 15 Torr).
Conditions that promote the formation of a non-constricted RF plasmas may be similar to those described above for the production of constricted plasmas. However, nanoparticles are generally formed in the non-constricted plasmas at lower pressures, higher precursor gas flow rates, and lower buffer gas flow rates. For example, in some embodiments, the nanoparticles are produced in an RF plasma at a total pressure less than about 5 Torr and, desirably, less than about 3 Torr. This includes embodiments where the total pressure in the plasma reactor in the presence of the plasma is about 1 to 3 Torr. Typical flow rates for the precursor gas in these embodiments may be at least 5 sccm, including embodiments where the flow rate for the precursor gas is at least about 10 sccm. Typical flow rates for buffer gases in these embodiments may be about 1 to 50 sccm.
The frequency of the RF voltage used to ignite the radiofrequency plasmas may vary within the RF range. In certain embodiments, a frequency of 13.56 MHz is employed, which is the major frequency used in the RF plasma processing industry. However, the frequency may desirably be lower than the microwave frequency range, i.e., lower than about 1 GHz. This includes embodiments where the frequency will desirably be lower than the very high frequency (VHF) range (e.g. lower than about 30 MHz). For example, the present methods may generate radiofrequency plasmas using radiofrequencies of 25 MHz or less.
Additional aspects relating to this particular embodiment in which the nanoparticles are produced via this plasma process are described in U.S. Pat. No. 7,446,335 and U.S. Pat. No. 8,016,944, which are each incorporated by reference herein in their respective entireties.
In other embodiments, the nanoparticles of the organic composition are prepared in a low pressure plasma reactor, such as a low pressure high frequency pulsed plasma reactor.
In these embodiments, pulsing the plasma enables an operator to directly set the resident time for particle nucleation and thereby control the particle size distribution and agglomeration kinetics in the plasma. For example, the operating parameters of the pulsed reactor may be adjusted to form crystalline nanoparticles or amorphous nanoparticles. Semiconductor containing precursors enter into the dielectric discharge tube where the capacitively coupled plasma, or inductively coupled plasma, is operated. Nanoparticles start to nucleate as the precursor molecules are dissociated in the plasma. When the plasma is off, or in a low ion energy state, during the pulsing cycle, the charged nanoparticles can be evacuated to the reactor chamber where they may be deposited on a substrate or subjected to further processing.
The power may be supplied via a variable frequency radio frequency power amplifier that is triggered by an arbitrary function generator to establish the high frequency pulsed plasma. In one embodiment, the radiofrequency power is capacitively coupled into the plasma using a ring electrode, parallel plates, or an anode/cathode setup in the gas. Alternatively, the radiofrequency power may be inductively coupled mode into the plasma using an RF coil setup around the discharge tube. The precursor gases can be controlled via mass flow controllers or calibrated rotometers. The pressure differential from the discharge tube to the reactor chamber can be controlled through a changeable grounded or biased orifice. Depending on the orifice size and pressures, the nanoparticle distributions into the reactor chamber may change, thus providing another process parameter that can be used to adjust the properties of the resulting nanoparticles.
In one embodiment, the plasma reactor may be operated in the frequency from 10 MHz to 500 MHz at pressures from 100 mTorr to 10 Torr in the discharge tube and powers from 5 watts to 1000 watts.
Referring now to
In one embodiment, the electrodes 13, 14 for a plasma source inside the dielectric tube 11 that is a flow-through showerhead design in which a VHF radio frequency biased upstream porous electrode plate 13 is separated from a down stream porous electrode plate 14, with the pores of the plates aligned with one another. The pores could be circular, rectangular, or any other desirable shape. Alternatively, the dielectric tube 11 may enclose an electrode 13 that is coupled to the VHF radio frequency power source 10 and has a pointed tip that has a variable distance between the tip and a grounded ring 14 inside the dielectric tube 11. In this case, the VHF radio frequency power source 10 operates in a frequency range of about 10 to 500 MHz. In another alternative embodiment, the pointed tip 13 can be positioned at a variable distance between the tip and a VHF radio frequency powered ring 14 operated in a push-pull mode (180° out of phase). In yet another alternative embodiment, the electrodes 13, 14 include an inductive coil coupled to the VHF radio frequency power source so that radio frequency power is delivered to the precursor gas (or gases) by an electric field formed by the inductive coil. Portions of the dielectric tube 11 can be evacuated to a vacuum level between 1×10−7 to 500 Torr.
The nucleated nanoparticles may pass into a larger vacuum evacuated reactor 15, where collection on a solid substrate 16 (including a chuck) or into an appropriate liquid substrate/solution can occur. For example, the nanoparticles may be collected in the organic composition to form the organic composition of the invention. Alternatively, the nanoparticles may be collected in a capture fluid and subsequently introduced to the organic composition to form the organic composition. The solid substrate 16 can be electrically grounded, biased, temperature controlled, rotating, positioned relative the electrodes producing the nanoparticles, or on a roll-to-roll system. If deposition onto substrates is not the choice, then the particles are evacuated into a suitable pump for transition to atmospheric pressure. The nanoparticles can then be sent to an atmospheric classification system, such as a differential mobility analyzer, and collected for further functionalization or other processing. In the illustrated embodiment, the plasma is initiated with a high frequency plasma via an RF power amplifier such as an AR Worldwide Model KAA2040 or an Electronics and Innovation 3200L. The amplifier can be driven (or pulsed) by an arbitrary function generator (e.g., a Tektronix AFG3252 function generator) that is capable of producing up to 200 watts of power from 0.15 to 150 MHz. In various embodiments, the arbitrary function may be able to drive the power amplifier with pulse trains, amplitude modulation, frequency modulation, or different waveforms. The power coupling between the amplifier and the precursor gas typically increases as the frequency of the RF power increases. The ability to drive the power at a higher frequency may therefore allow more efficient coupling between the power supply and discharge.
If desired, nanoparticles having varying agglomeration lengths can be produced by nucleating the nanoparticles from at least one precursor gas in a VHF radio frequency low pressure plasma discharge and collecting the nucleated nanoparticles by controlling the mean free path of the nanoparticles as an aerosol, thus allowing particle-particle interactions prior to collection. The nucleated nanoparticles may be collected on a solid substrate within a vacuum environment where the collection distance is greater than the mean free path of the particles controlled via the pressure. The agglomeration lengths of the nanoparticles can thereby be controlled. Alternatively, the nucleated nanoparticles may be collected in a liquid substrate within a vacuum environment where the collection distance is greater than the mean free path of the particles controlled via the pressure thus controlling the agglomeration lengths of the nanoparticles. The further away the substrate is from the nucleation region (plasma discharge), the longer the agglomerations are at a constant pressure. The synthesized nanoparticles may be evacuated out of the low pressure environment into an atmospheric environment as an aerosol so that the agglomeration length is at least partially controlled by the concentration of the aerosol.
In certain embodiments, nanoparticles can be produced by synthesizing crystalline or amorphous core nanoparticles using VHF radio frequency low pressure plasma that is discharged in a low pressure environment by pulsing the discharge to control the plasma residence time. For example, the amorphous core nanoparticles can be synthesized at increased plasma residence time relative to the precursor gas molecular residence time through a VHF radio frequency low pressure plasma discharge. Alternatively, crystalline core nanoparticles can be synthesized at lower plasma residence times at the same operating conditions of discharge drive frequency, drive amplitude, discharge tube pressure, chamber pressure, plasma power density, gas molecule residence time through the plasma, and collection distance from plasma source electrodes.
Additional aspects relating to this particular embodiment in which the nanoparticles are produced via this plasma process are described in International (PCT) Publication No. WO 2010/027959 (PCT/US2009/055587), which is incorporate by reference herein in its entirety.
Referring to
The plasma generating chamber 22 comprises an electrode configuration 24 that is attached to a variable frequency RF amplifier 21. The plasma generating chamber 22 also comprises a second electrode configuration 25. The second electrode configuration 25 is either ground, DC biased, or operated in a push-pull manner relative to the electrode configuration 24. The electrodes 24, 25 are used to couple the very high frequency (VHF) power to the reactant gas mixture to ignite and sustain a glow discharge of plasma within the area identified as 23. The first reactive precursor gas (or gases) is then dissociated in the plasma to provide charged atoms which nucleate to form nanoparticles. However, other discharge tube configurations are contemplated, and may be used in carrying out the method disclosed herein.
In the embodiment of
The plasma generating chamber 22 also comprises a power supply. The power is supplied via a variable frequency radio frequency power amplifier 21 that is triggered by an arbitrary function generator to establish high frequency pulsed plasma in area 23. Preferably, the radiofrequency power is capacitively coupled into the plasma using a ring electrode, parallel plates, or an anode/cathode setup in the gas. Alternatively, the radiofrequency power may be inductively coupled mode into the plasma using an RF coil setup around the discharge tube.
The plasma generating chamber 11 may also comprise a dielectric discharge tube. Preferably, a reactant gas mixture enters the dielectric discharge tube where the plasma is generated. Nanoparticles which form from the reactant gas mixture start to nucleate as the first reactive precursor gas molecules are dissociated in the plasma.
The vacuum source 28 may comprise a vacuum pump. Alternatively, the vacuum source 28 may comprise a mechanical, turbo molecular, or cryogenic pump.
In one embodiment, the electrodes 24, 25 for a plasma source inside the plasma generating chamber 22 comprise a flow-through showerhead design in which a VHF radio frequency biased upstream porous electrode plate 24 is separated from a down stream porous electrode plate 25, with the pores of the plates aligned with one another. The pores may be circular, rectangular, or any other desirable shape. Alternatively, the plasma generating chamber 22 may enclose an electrode 24 that is coupled to the VHF radio frequency power source and has a pointed tip that has a variable distance between the tip and a grounded ring inside the chamber 22.
In one embodiment, the VHF radio frequency power source may be operated in a manner substantially similar to that described above with respect to the embodiment of
In one embodiment, the power and frequency of the plasma system is preselected to create an optimal operating space for the formation of the nanoparticles. Preferably, tuning both the power and frequency creates an appropriate ion and electron energy distribution in the discharge to help dissociate the molecules of the reactive precursor gas and nucleate the nanoparticles.
The plasma reactor system 20 illustrated in
Advantageously, the operation of the plasma reactor system 20 at higher frequency ranges and pulsing the plasma provides the same conditions as in conventional constricted/filament discharge techniques that use a plasma instability to produce the high ion energies/densities, but with the additional advantage that users can control operating conditions to select and produce nanoparticles having various sizes, which impacts their characteristic physical properties, e.g. photoluminescence.
For a pulse injection, the synthesis of the nanoparticles can be done with a pulsed energy source, such as a pulsed very high frequency RF plasma, a high frequency RF plasma, or a pulsed laser for pyrolysis. Preferably, the VHF radiofrequency is pulsed at a frequency ranging from about 1 to about 50 kHz.
Another method to transfer the nanoparticles to the capture fluid is to pulse the input of the reactant gas mixture while the plasma is ignited. For example, one could ignite the plasma in which a first reactive precursor gas is present to synthesize the nanoparticles, with at least one other gas present to sustain the discharge, such as an inert gas. The nanoparticle synthesis is stopped when the flow of first reactive precursor gas is stopped with a mass flow controller. The synthesis of the nanoparticles continues when the flow of the first reactive precursor gas is started again. This produces a pulsed stream of nanoparticles. This technique can be used to increase the concentration of nanoparticles in the capture fluid if the flux of nanoparticles impinging on the capture fluid is greater than the absorption rate of the nanoparticles into the capture fluid.
In another embodiment, the nucleated nanoparticles are transferred from the plasma generating chamber 22 to particle collection chamber 26 containing capture fluid via the aperture or orifice 31 which creates a pressure differential. It is contemplated that the pressure differential between the plasma generating chamber 22 and the particle collection chamber 26 can be controlled through a variety of ways. In one configuration, the discharge tube inside diameter of the plasma generating chamber 22 is much less than the inside diameter of the particle collection chamber 26, thus creating a pressure drop. In another configuration, a grounded physical aperture or orifice may be placed between the discharge tube and the collection chamber 26 that forces the plasma to reside partially inside the orifice, based on the Debye length of the plasma and the size of the chamber 22. Another configuration comprises using a varying electrostatic orifice in which a positive concentric charge is developed that forces the negatively charged plasma through the aperture 31.
It is contemplated that the capture fluid may be used as a material handling and storage medium. In one embodiment, the capture fluid is selected to allow nanoparticles to be absorbed and disperse into the fluid as they are collected, thus forming a dispersion or suspension of nanoparticles in the capture fluid. Nanoparticles will be adsorbed into the fluid if they are miscible with the fluid. For example, the nanoparticles may be collected in the organic composition to form the organic composition of the invention. Alternatively, the nanoparticles may be collected in a capture fluid and subsequently introduced to the organic composition to form the organic composition.
The capture fluid is selected to have the desired properties for nanoparticle capture and storage. In a specific embodiment, the vapor pressure of the capture fluid is lower than the operating pressure in the plasma reactor. Preferably, the operating pressure in the reactor and collection chamber 26 range from about 1 to about 5 mTorr. Other operating pressures are also contemplated. The capture fluid may comprise a silicone fluid such as polydimethylsiloxane, phenylmethyl-dimethyl cyclosiloxane, tetramethyltetraphenyltrisiloxane, and/or pentaphenyltrimethyltrisiloxane. Alternatively, the capture fluid may comprise the uncured organic compound such that the organic composition may be formed in situ as the nanoparticles are produced and collected.
The capture fluid may be agitated during the direct capture of the nanoparticles, e.g. by stirring, rotation, inversion, and other suitable methods of providing agitation. If higher absorption rates of the nanoparticles into the capture liquid are desired, more intense forms of agitation are contemplated, e.g. ultrasonication.
As first introduced above, in the embodiment of
Additional aspects relating to this particular embodiment in which the nanoparticles are produced via this plasma process are described in International (PCT) Publication No. WO 2011/109299 (PCT/US2011/026491), which is incorporated by reference herein in its entirety.
Referring to
Example reactors are described in WO 2010/027959 and WO 2011/109229, each of which is described above and incorporated by reference in its entirety herein. Such reactors can be, but are not limited to, low pressure high frequency pulsed plasma reactors. For example,
In the embodiment of
The diffusion pump 120 includes a reservoir 107 in fluid communication with the chamber 101. The reservoir 107 supports or contains a diffusion pump fluid. The reservoir may have a volume of about 30 cc to about 15 liters. The volume of diffusion pump fluid in the diffusion pump may be about 30 cc to about 15 liters.
The diffusion pump 120 can further include a heater 109 for vaporizing the diffusion pump fluid in the reservoir 107 to a vapor. The heater 109 heats up the diffusion pump fluid and vaporizes the diffusion pump fluid to form a vapor (e.g., liquid to gas phase transformation). For example, the diffusion pump fluid may be heated to about 100 to about 400° C. or about 180 to about 250° C.
A jet assembly 111 can be in fluid communication with the reservoir 107 comprising a nozzle 113 for discharging the vaporized diffusion pump fluid into the chamber 101. The vaporized diffusion pump fluid flows and rises up though the jet assembly 111 and emitted out the nozzles 113. The flow of the vaporized diffusion pump fluid is illustrated in
As the gas flows through the chamber 101, nanoparticles in the gas can be absorbed by the diffusion pump fluid, thereby collecting the nanoparticles from the gas. For example, a surface of the nanoparticles may be wetted by the vaporized and/or condensed diffusion pump fluid. Furthermore, the agitating of cycled diffusion pump fluid may further improve absorption rate of the nanoparticles compared to a static fluid. The pressure within the chamber 101 may be less than about 1 mTorr.
The diffusion pump fluid with the nanoparticles can then be removed from the diffusion pump 120. For example, the diffusion pump fluid with the nanoparticles may be continuously removed and replaced with diffusion pump fluid that substantially does not have nanoparticles.
Advantageously, the diffusion pump 120 can be used not only for collecting nanoparticles but also evacuating the reactor 20 (and collection chamber 26). For example, the operating pressure in the reactor 20 can be a low pressure, e.g. less than atmospheric pressure, less than 760 Torr, or between about 1 and about 760 Torr. The collection chamber 26 can, for example, range from about 1 to about 5 mTorr. Other operating pressures are also contemplated.
The diffusion pump fluid can be selected to have the desired properties for nanoparticle capture and storage. The diffusion pump fluid may be the same as the capture fluid described above relative to the embodiment of
The system 50 may also include a vacuum pump or vacuum source 33 in fluid communication with the outlet 105 of the diffusion pump 120. The vacuum source 33 can be selected in order for the diffusion pump 120 to operate properly. In one form of the present disclosure, the vacuum source 33 comprises a vacuum pump (e.g., auxiliary pump). The vacuum source 33 may comprise a mechanical, turbo molecular, or cryogenic pump. However, other vacuum sources are also contemplated.
One method of producing nanoparticles with the system 50 of
Regardless of the particular plasma system and process utilized to produce the nanoparticles of the organic composition, the plasma system generally relies on a precursor gas, as introduced above in the various embodiments. The precursor gas may alternatively be referred to as a reactant gas mixture or a gas mixture. The precursor gas is generally selected based on a desired composition of the nanoparticles, as described in greater detail below with reference to the nanoparticles. For example, when the nanoparticles comprise silicon nanoparticles, the precursor gas may contain silicon, and when the nanoparticles comprise germanium, the precursor gas may contain germanium. Furthermore, the precursor gas may be selected from silanes, disilanes, halogen-substituted silanes, halogen-substituted disilanes, C1-C4 alkyl silanes, C1-C4 alkyldisilanes, and mixtures thereof. In one form of the present disclosure, precursor gas may comprise silane which comprises from about 0.1 to about 2% of the total gas mixture. However, the gas mixture may also comprise other percentages of silane and/or additional or alternative precursor gasses, as described below with reference to the nanoparticles formed therefrom.
The precursor gas may be mixed with other gases such as inert gases to form a gas mixture. Examples of inert gases that may be included in the gas mixture include argon, xenon, neon, or a mixture of inert gases. When present in the gas mixture, the inert gas may comprise from about 1% to about 99% of the total volume of the gas mixture. The precursor gas may have from about 0.1% to about 50% of the total volume of the gas mixture. However, it is also contemplated that the precursor gas may comprise other volume percentages such as from about 1% to about 50% of the total volume of the gas mixture.
In one form of the present disclosure, the reactant gas mixture also comprises a second precursor gas which itself can comprise from about 0.1 to about 49.9 volume % of the reactant gas mixture. The second precursor gas may comprise BCl3, B2H6, PH3, GeH4, or GeCl4. The second precursor gas may also comprise other gases that contain carbon, germanium, boron, phosphorous, or nitrogen. The combination of the first precursor gas and the second precursor gas together may make up from about 0.1 to about 50% of the total volume of the reactant gas mixture.
In another form of the present disclosure, the reactant gas mixture further comprises hydrogen gas. Hydrogen gas can be present in an amount of from about 1% to about 10% of the total volume of the reactant gas mixture. However, it is also contemplated that the reactant gas mixture may comprise other percentages of hydrogen gas.
Nanoparticles for the organic composition can be prepared by any of the methods described above. Contingent on the precursor gas and molecules utilized in the plasma process, nanoparticles of various composition may be produced. For example, the nanoparticles may be semiconducting nanoparticles comprising at least one element selected from Group IV, Group IV-IV, Group II-IV, and Group III-V. Alternatively, the nanoparticles may be metal nanoparticles comprising at least one element selected from Group IIA, Group IIIA, Group IVA, Group VA, Group IB, Group IIB, Group IVB, Group VB, Group VIB, Group VIIB, and Group VIIIB metals. These Group designations of the periodic table are generally from the CAS or old IUPAC nomenclature, although Group IV elements are referred to as group 14 elements under the modern IUPAC system, as readily understood in the art. Alternatively still, the nanoparticles may be metal alloy nanoparticles, metal oxide nanoparticles, metal nitride nanoparticles, ceramic nanoparticles, etc.
The processes provided herein are particularly well-suited for use in the production of nanoparticles that are single-crystal and comprise Group IV semiconductors, including silicon, germanium and tin, from precursor molecules containing these elements. Silane and germane are examples of precursor molecules that may be used in the production of nanoparticles comprising silicon and germanium, respectively. Organometallic precursor molecules may also be used. These molecules include a Group IV metal and organic groups. Organometallic Group IV precursors include, but are not limited to organosilicon, organogermanium and organotin compounds. Some examples of Group IV precursors include, but are not limited to, alkylgermaniums, alkylsilanes, alkylstannanes, chlorosilanes, chlorogermaniums, chlorostannanes, aromatic silanes, aromatic germaniums and aromatic stannanes. Other examples of silicon precursors include, but are not limited to, disilane (Si2H6), silicon tetrachloride (SiCl4), trichlorosilane (HSiCl3) and dichlorosilane (H2SiCl2). Still other suitable precursor molecules for use in forming crystalline silicon nanoparticles include alkyl and aromatic silanes, such as dimethylsilane (H3C—SiH2—CH3), tetraethyl silane ((CH3CH2)4Si) and diphenylsilane (Ph-SiH2—Ph). In addition to germane, particular examples of germanium precursor molecules that may be used to form crystalline Ge nanoparticles include, but are not limited to, germanium tetrachloride (GeCl4), tetraethyl germane ((CH3CH2)4Ge) and diphenylgermane (Ph-GeH2—Ph).
In certain embodiments, the nanoparticles comprise at least one of silicon and germanium. Further, the nanoparticles may comprise silicon alloys and/or germanium alloys. Silicon alloys that may be formed include, but are not limited to, silicon carbide, silicon germanium, silicon boron, silicon phosphorous, and silicon nitride. The silicon alloys may be formed by mixing at least one first precursor gas with the second precursor gas or using a precursor gas that contains the different elements. However, other methods of forming alloyed nanoparticles are also contemplated.
In another form of the present disclosure, the nanoparticles may undergo an additional doping step. For example, the nanoparticles may undergo gas phase doping in the plasma, where a second precursor gas is dissociated and is incorporated in the nanoparticles as they are nucleated. The nanoparticles may also undergo doping in the gas phase downstream of the production of the nanoparticles, but before the nanoparticles are captured in the liquid. Furthermore, doped nanoparticles may also be produced in the diffusion pump fluid where the dopant is preloaded into the diffusion pump fluid and interacts with the nanoparticles after they are captured. Doped nanoparticles can be formed by contact with organosilicon gases or liquids, including, but not limited to trimethylsilane, disilane, and trisilane. Gas phase dopants may include, but are not limited to, BCl3, B2H6, PH3, GeH4, or GeCl4.
The nanoparticles may exhibit a number of unique electronic, magnetic, catalytic, physical, optoelectronic and optical properties due to quantum confinement effects. For example, many semiconductor nanoparticles exhibit photoluminescence effects that are significantly greater than the photoluminescence effects of macroscopic materials having the same composition.
The nanoparticles may have a largest dimension or average largest dimension less than 50, less than 20, less than 10, or less than 5, nm. Furthermore, the largest dimension or average largest dimension of the nanoparticles may be between 1 and 50, between 2 and 50, between 2 and 20, between 2 and 10, or between about 2.2 and about 4.7, nm. The nanoparticles can be measured by a variety of methods, such as with a transmission electron microscope (TEM). For example, as understood in the art, particle size distributions are often calculated via TEM image analysis of hundreds of different nanoparticles. In various embodiments, the nanoparticles may comprise quantum dots, typically silicon quantum dots. Quantum dots have excitons confined in all three spatial dimensions and may comprise individual crystals, i.e., each quantum dot is a single crystal.
In various embodiments, the nanoparticles may be photoluminescent when excited by exposure to UV light. Depending on the average diameter of the nanoparticles, they may photoluminescence in any of the wavelengths in the visible spectrum and may visually appear to be red, orange, green, blue, violet, or any other color in the visible spectrum. For example, nanoparticles with an average diameter less than about 5 nm may produce visible photoluminescence, and nanoparticles with an average diameter less than about 10 nm may produce near infrared (IR) luminescence. In one form of the present disclosure, the photoluminescent silicon nanoparticles have a photoluminescent intensity of at least 1×106 at an excitation wavelength of about 365 nm. The photoluminescent intensity may be measured with a Fluorolog3 spectrofluorometer (commercially available from Horiba of Edison, N.J.) with a 450 W Xe excitation source, excitation monochromator, sample holder, edge band filter (400 nm), emission monochromator, and a silicon detector photomultiplier tube. To measure photoluminescent intensity, the excitation and emission slit width are set to 2 nm and the integration time is set to 0.1s. In these or other embodiments, the photoluminescent silicon nanoparticles may have a quantum efficiency of at least 4% at an excitation wavelength of about 395 nm as measured on an HR400 spectrophotometer (commercially available from Ocean Optics of Dunedin, Fla.) via a 1000 micron optical fiber coupled to an integrating sphere and the spectrophotometer with an absorption of >10% of the incident photons. Quantum efficiency was calculated by placing a sample into the integrating sphere and exciting the sample via a 395 nm LED driven by an Ocean Optics LED driver. The system was calibrated with a known lamp source to measure absolute irradiance from the integrating sphere. The quantum efficiency was then calculated by the ratio of total photons emitted by the nanoparticles to the total photons absorbed by the nanoparticles. Further, in these or other embodiments, the nanoparticles may have a full width at half maximum emission of from 20 to 250 at an excitation wavelength of 270-500 nm.
Furthermore, both the photoluminescent intensity and luminescent quantum efficiency may continue to increase over time when the nanoparticles (optionally in the organic composition, capture fluid, or diffusion pump fluid) are exposed to air. In another form of the present disclosure, the maximum emission wavelength of the nanoparticles shifts to shorter wavelengths over time when exposed to oxygen. The luminescent quantum efficiency of the directly captured silicon nanoparticle composition may be increased by about 200% to about 2500% upon exposure to oxygen. However, other increases in the luminescent quantum efficiency are also contemplated. The photoluminescent intensity may increase from 400 to 4500% depending on the time exposure to oxygen and the concentration of the nanoparticles in the fluid. However, other increases in the photoluminescent intensity are also contemplated. The wavelength emitted from the direct capture composition also experiences a blue shift of the emission spectrum. In one form of the present disclosure, the maximum emission wavelength shifts about 100 nm, based on about a 1 nm decrease in nanoparticle core size, depending on the time exposed to oxygen. However, other maximum emission wavelength shifts are also contemplated.
It is to be understood that the appended claims are not limited to express and particular compounds, compositions, or methods described in the detailed description, which may vary between particular embodiments which fall within the scope of the appended claims. With respect to any Markush groups relied upon herein for describing particular features or aspects of various embodiments, different, special, and/or unexpected results may be obtained from each member of the respective Markush group independent from all other Markush members. Each member of a Markush group may be relied upon individually and or in combination and provides adequate support for specific embodiments within the scope of the appended claims.
Further, any ranges and subranges relied upon in describing various embodiments of the present invention independently and collectively fall within the scope of the appended claims, and are understood to describe and contemplate all ranges including whole and/or fractional values therein, even if such values are not expressly written herein. One of skill in the art readily recognizes that the enumerated ranges and subranges sufficiently describe and enable various embodiments of the present invention, and such ranges and subranges may be further delineated into relevant halves, thirds, quarters, fifths, and so on. As just one example, a range “of from 0.1 to 0.9” may be further delineated into a lower third, i.e., from 0.1 to 0.3, a middle third, i.e., from 0.4 to 0.6, and an upper third, i.e., from 0.7 to 0.9, which individually and collectively are within the scope of the appended claims, and may be relied upon individually and/or collectively and provide adequate support for specific embodiments within the scope of the appended claims. In addition, with respect to the language which defines or modifies a range, such as “at least,” “greater than,” “less than,” “no more than,” and the like, it is to be understood that such language includes subranges and/or an upper or lower limit. As another example, a range of “at least 10” inherently includes a subrange of from at least 10 to 35, a subrange of from at least 10 to 25, a subrange of from 25 to 35, and so on, and each subrange may be relied upon individually and/or collectively and provides adequate support for specific embodiments within the scope of the appended claims. Finally, an individual number within a disclosed range may be relied upon and provides adequate support for specific embodiments within the scope of the appended claims. For example, a range “of from 1 to 9” includes various individual integers, such as 3, as well as individual numbers including a decimal point (or fraction), such as 4.1, which may be relied upon and provide adequate support for specific embodiments within the scope of the appended claims.
The following examples are intended to illustrate the invention and are not to be viewed in any way as limiting to the scope of the invention.
Composite articles are formed in accordance with the disclosure. In particular, organic compositions are prepared which comprise an organic compound and nanoparticles produced via a plasma process. The composite articles are formed from the organic compositions.
Nanoparticles are produced via a plasma process for incorporation into the organic composition. In particular, the nanoparticles are produced via the plasma process exemplified above via the embodiment of
In particular, 90 sccm Ar, 17 sccm SiH4 (2% vol. in Ar), and 6 sccm H2 gas are delivered to the reactor via mass flow controllers. The reactor has a base pressure of less than 2×10−8 Torr.
15 mL of diffusion pump fluid (10% m/m of heptadecafluorodecyl methacrylate and a perfluoropolyether compound commercially available under the tradename Fomblin® Y-LVAC 14/6 from Sigma Aldrich of St. Louis, Mo.) is disposed into the chamber of the reactor at an operating pressure of 1×10−4 Torr, rotating at 15 rpm.
The reactor operates at 120 W coupled plasma power at 127 MHZ in the discharge tube at 3.5 Torr.
Nanoparticles are synthesized and injected into the diffusion pump fluid located about 5 cm downstream from the orifice. The nanoparticles are produced at a rate of about 0.01 wt % Si nanoparticles per 5 minutes.
The nanoparticles are removed from the reactor along with the diffusion pump fluid and transferred to a glass vial that was sealed under nitrogen. The vial is sonicated for one hour to disperse the nanoparticles in the diffusion pump fluid to form a suspension. The resulting suspension is cloudy and brown. Upon exposure to ultraviolet or blue irradiation, the resulting suspension exhibits bright red luminescence.
The suspension of Preparation Example 1 is transferred to a quartz flask under an inert environment and exposed to UV-C irradiation for about 1 hour. The UV-C irradiation in part initiates hydrosilylation between the nanoparticles and the heptadecafluorodecyl methacrylate of the diffusion pump fluid. The suspension is then centrifuged, which resulted in two phases: a clear bottom liquid phase and a yellow waxy top phase. Photoluminescence of the yellow waxy top phase is observed upon exposure to UV irradiation. The clear bottom liquid phase is removed via pipette. 7.5 grams of heptadecafluorodecyl methacrylate, i.e., an uncured organic compound, are combined with the yellow waxy top phase, i.e., the nanoparticles, to form an organic composition. 0.01 grams of a benzoyl peroxide initiator (commercially available under the tradename Luperox® A98 from Sigma Aldrich of St. Louis, Mo.) are added to the organic composition. The organic composition is sonicated to disperse the nanoparticles in the organic composition, and the organic composition becomes a clear yellow suspension. A portion of the organic composition is disposed in part on three 1×1 inch square quartz substrates and spread with a k-bar to form uncured films. The uncured films are baked at 90° C. for 24 hours to polymerize the heptadecafluorodecyl methacrylate, i.e., the uncured organic compound, thereby forming the composite articles. The composite articles each comprise the polymerized heptadecafluorodecyl methacrylate with the nanoparticles dispersed therein. The composite articles are easily separated from their quartz substrates. Upon exposure to UV or blue irradiation, the composite articles exhibit bright red luminescence.
3 mL of the organic composition prepared in Example 1 is disposed into a 15 mL conical centrifuge tube. The centrifuge tube is placed in a vacuum antechamber for 3 minutes to degas. After degassing, the centrifuge tube and its contents are baked at 90° C. for 24 hours to polymerize the heptadecafluorodecyl methacrylate, i.e., the uncured organic compound, thereby forming the composite article. The composite article is a soft solid that is easily removed from the centrifuge tube. Upon exposure to UV or blue irradiation, the composite article exhibits bright red luminescence.
Nanoparticles are produced via a plasma process for incorporation into the organic composition. In particular, the nanoparticles are produced via the plasma process exemplified above via the embodiment of
In particular, 90 sccm Ar, 17 sccm SiH4 (2% vol. in Ar), and 6 sccm H2 gas are delivered to the reactor via mass flow controllers. The reactor has a base pressure of less than 2×10−8 Torr.
A diffusion pump fluid (phenyl methyl siloxane) is disposed into the chamber of the reactor at an operating pressure of 1×10−4 Torr, rotating at 15 rpm.
The reactor operates at 120 W coupled plasma power at 127 MHZ in the discharge tube at 3.5 Torr.
Nanoparticles are synthesized and injected into the diffusion pump fluid located about 5 cm downstream from the orifice. The nanoparticles are produced at a rate of about 0.01 wt % Si nanoparticles per 5 minutes. The nanoparticles and the diffusion pump fluid are centrifuged and the nanoparticles are separated from the diffusion pump fluid. The nanoparticles are re-dispersed in toluene after separation from the diffusion pump fluid.
The nanoparticles are removed from the reactor along with the diffusion pump fluid and transferred to a glass vial. The nanoparticles and the diffusion pump fluid are centrifuged and separated from the diffusion pump fluid. The nanoparticles are re-dispersed in toluene after separation from the diffusion pump fluid.
50 mL of toluene and 0.5 grams of polycarbonate pellets (molecular weight ˜45,000; Tg of 149° C.), i.e., an organic compound, are disposed in a round bottom flask and heated to reflux while stirring. After about 30 minutes, most of the polycarbonate pellets has dissolved in the toluene. A suspension of toluene and nanoparticles produced in Preparation Example 2 is disposed in the flask to form an organic composition. The organic composition is refluxed for an additional 5 minutes. The contents of the flask are cooled to room temperature, and the toluene is removed via rotary evaporation to form the composite article. The composite article is in the form of a powdered resin having a white/slightly yellow hue. The composite article exhibits a strong orange/red photoluminescence upon exposure to UV irradiation.
Nanoparticles are produced via a plasma process for incorporation into the organic composition. In particular, the nanoparticles are produced via the plasma process exemplified above via the embodiment of
In particular, 90 sccm Ar, 17 sccm SiH4 (2% vol. in Ar), and 6 sccm H2 gas are delivered to the reactor via mass flow controllers. The reactor has a base pressure of less than 2×10−8 Torr.
A diffusion pump fluid (phenyl methyl siloxane) is disposed into the chamber of the reactor at an operating pressure of 1×10−4 Torr, rotating at 15 rpm.
The reactor operates at 120 W coupled plasma power at 127 MHZ in the discharge tube at 3.5 Torr.
Nanoparticles are synthesized and injected into the diffusion pump fluid located about 5 cm downstream from the orifice. The nanoparticles are produced at a rate of about 0.01 wt % Si nanoparticles per 5 minutes.
The nanoparticles are removed from the reactor along with the diffusion pump fluid and transferred to a glass vial that was sealed under nitrogen. The nanoparticles are isolated from the diffusion pump fluid.
The nanoparticles produced in Preparation Example 3, 1 gram of methyl methacrylate, i.e., an uncured organic compound, and 0.2 mL of a 30% H2O2 solution are disposed in a small glass vial to form an organic composition. The vial is placed in a sonic bath and is sonicated for 10 minutes so as to disperse the nanoparticles in the organic composition. The organic composition is then disposed onto several 1×1 inch square quartz substrates and spread with a meier rod to form uncured films. The uncured films are heated at 85° C. for about 1 hour to polymerize the methyl methacrylate, i.e., the uncured organic compound, thereby forming the composite articles. The composite articles are mostly clear with a slightly yellow hue. The composite articles exhibit a strong orange/red photoluminescence upon exposure to UV irradiation.
Nanoparticles are produced via a plasma process for incorporation into the organic composition. In particular, the nanoparticles are produced via the plasma process exemplified above via the embodiment of
In particular, 90 sccm Ar, 17 sccm SiH4 (2% vol. in Ar), and 6 sccm H2 gas are delivered to the reactor via mass flow controllers. The reactor has a base pressure of less than 2×10−8 Torr.
A diffusion pump fluid (commercially available under the tradename Dow Corning® 704 diffusion pump fluid from Dow Corning Corporation of Midland, Mich.) is disposed into the chamber of the reactor at an operating pressure of 1×10−4 Torr, rotating at 15 rpm.
The reactor operates at 120 W coupled plasma power at 127 MHZ in the discharge tube at 3.5 Torr.
Nanoparticles are synthesized and injected into the diffusion pump fluid located about 5 cm downstream from the orifice. The nanoparticles are produced at a rate of about 0.01 wt % Si nanoparticles per 5 minutes.
The nanoparticles are removed from the reactor along with the diffusion pump fluid in the form of a suspension and transferred to a glass vial. The nanoparticles and the diffusion pump fluid are aged at 85° C.
The suspension comprising nanoparticles produced in Preparation Example 4 is centrifuged to concentrate the nanoparticles. After centrifuging, a packed solid and a top fluid results. The top fluid is removed and discarded and the packed solid (which comprises the nanoparticles) is washed by repeated suspension in toluene and subsequent centrifugation. Concentrated and dry nanoparticles are obtained. 0.05 grams of a benzoyl peroxide initiator (commercially available under the tradename Luperox® A98 from Sigma Aldrich of St. Louis, Mo.) are dissolved in 10 g of methyl methacrylate, i.e., an uncured organic compound, to form a solution. 3 mL of the solution is combined with the nanoparticles produced in Preparation Example 4 to form an organic composition. The organic composition is placed in a sonic bath and sonicated for 15 minutes to disperse the nanoparticles in the organic composition. The organic composition is disposed in a new 15 mL centrifuge tube and placed in a 90° C. water bath under constant stirring and periodic vortexing to prevent settling of the nanoparticles. After 30 minutes, the organic composition is a highly viscous mixture and is placed in a 60° C. oven overnight to polymerize the methyl methacrylate and form the composite article. The following day, the composite article is removed from the centrifuge tube by cutting. The composite article has a hazy yellow appearance and exhibits a strong orange/red photoluminescence upon exposure to UV irradiation.
Nanoparticles are produced via a plasma process for incorporation into the organic composition. In particular, the nanoparticles are produced via the plasma process exemplified above via the embodiment of
In particular, 90 sccm Ar, 17 sccm SiH4 (2% vol. in Ar), and 6 sccm H2 gas are delivered to the reactor via mass flow controllers. The reactor has a base pressure of less than 2×10−8 Torr.
A diffusion pump fluid (poly(ethylene glycol) methyl ether methacrylate, having a molecular weight of about 475, along with 100 ppm of 2-methoxyhydroquinone as a stabilizer) is disposed into the chamber of the reactor at an operating pressure of 1×10−4 Torr, rotating at 15 rpm.
The reactor operates at 120 W coupled plasma power at 127 MHZ in the discharge tube at 3.5 Torr.
Nanoparticles are synthesized and injected into the diffusion pump fluid located about 5 cm downstream from the orifice. The nanoparticles are produced at a rate of about 0.01 wt % Si nanoparticles per 5 minutes.
The organic composition is formed in situ upon capturing the nanoparticles in the uncured organic compound, i.e., the poly(ethylene glycol) methyl ether methacrylate. After forming the organic composition, the organic composition is transferred to a glass vial and is sealed under nitrogen. The vial is placed into an iced sonic bath to disperse the nanoparticles throughout the organic composition for 1 hour via sonification. During sonification, the uncured organic compound polymerized to form the composite article. The composite article is in the form of a clear yellow gel with a few suspended aggregates (i.e., aggregated nanoparticles). The composite article exhibits a strong red photoluminescence upon exposure to UV irradiation.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings. The invention may be practiced otherwise than as specifically described.
This application claims priority to and all advantages of U.S. Patent Application No. 61/971,236, filed on Mar. 27, 2014, the content of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61971236 | Mar 2014 | US |