The present invention relates to the field of geopolymers and, more particularly, the field of controlled porosity geopolymers.
The present invention aims to provide a preparation method in which the main formulation parameters make it possible to simultaneously control the total porosity of the geopolymer and also its porous modes, i.e. microporous, macroporous and mesoporous, thus opening up the way for the porosity of these materials to be engineered.
The present invention also relates to the geopolymers capable of being obtained by said method, to the various uses thereof especially in the field of catalysis and filtration.
For more than thirty or so years it has been known that bringing aluminosilicate materials into contact with a solution having a high pH may result, under chosen experimental conditions, in synthetic zeolites being obtained [1]. The crystalline nature and the degree of crystallinity of the latter depend, in particular, on the nature of the initial materials used and on the solution/solid weight ratio used.
The aluminosilicate sources which may be used for this synthesis are very varied, whether they are natural minerals (illite, stilbite, kaolinite, for example [2, 3]), calcined minerals (metakaolin [4-6], etc.) or substitution materials, mainly calcined by-products or residues of industrial exploitation (fly ash [7-12]). When the initial reactive material contains mainly silica and aluminium originating from an aluminosilicate source, when it is activated by strongly alkaline solutions and when the solid/solution weight ratio is low, the material obtained is an amorphous aluminosilicate inorganic polymer [13], [14] known as a “geopolymer” [15].
The geopolymer is prepared by activation of the aluminosilicate source starting from the solution of high pH. This preparation consists in mixing together the various components, then in storing the material obtained under defined conditions of temperature, pressure and relative humidity until the final geopolymer is obtained.
The precise reactions that lead to the formation of a geopolymer, also known as geopolymerization, are complex and still poorly understood. One simplified reaction mechanism is however generally accepted [37]: it mainly consists of a dissolution/polycondensation mechanism, the various steps of which take place simultaneously.
Initially, the solid grains of the aluminosilicate source are in suspension in the aqueous phase. At high pH, the dissolution of the aluminosilicate sources is rapid and leads to the appearance of chemical species (aluminates, silicates, aluminosilicates, etc.) in the activation solution, which phase may furthermore contain silicate species. This process consumes water.
The supersaturation of the solution leads to the appearance of a gel linked to the polycondensation of the oligomers in the aqueous phase. The size of the oligomers formed depends on the size of compensating cation [38].
While the polycondensation continues, internal reorganizations and rearrangements take place that lead to the formation of a three-dimensional aluminosilicate network.
It is already known that geopolymers develop a high porosity, which gives them, in particular, their advantage in applications as insulators. Geopolymers are also used as binders [16-20] in the formulation of building materials [21, 22], concretes or mortars [23, 24] and of fire-resistant materials [25-27]. Several methods of production are known [28, 29], enabling the use thereof on a building site or in the context of prefabrications [30, 31]. Moreover, just like standard calcium-silicon Portland cements, geopolymers can be used as a matrix for covering toxic waste or for rendering toxic waste inert [32-34].
As explained above, the porous nature of the geopolymers can make them a particularly advantageous support for various applications such as, for example, in catalysis or in filtration. Thus, there is a real need for a method for preparing geopolymers for the purpose of having, in a reproducible and controlled manner, a controlled porosity material, i.e. a material for which the porosity may be determined and pre-selected starting from the preparation of the formulation of said material.
The present invention makes it possible to provide a solution to the need presented above and consists of a method that makes it possible to obtain geopolymers as monolithic materials, the porosity of which may be controlled starting from their formulation.
Indeed, the results obtained by the inventors have made it possible to develop a method by virtue of which the porosity of the material is as well controlled in the macroporous zone as in the mesoporous zone, said control applying as much to the total porosity of the material as to the pore distribution of the latter.
The term “geopolymer” is understood within the context of the present invention to mean an amorphous aluminosilicate inorganic polymer. Said polymer is obtained from a reactive material containing essentially silica and aluminium, activated by a strongly alkaline solution, the solid/solution weight ratio in the formulation being low, in particular below 0.6 and, advantageously, below 0.5. The structure of a geopolymer is composed of an Si—O—Al network formed from tetrahedra of silicates (SiO4) and of aluminates (AlO4) linked at their apexes by sharing oxygen atoms. Within this network are one (or more) charge compensating cation(s) also known as compensation cation(s). These cations, symbolized hereinafter by the letter M, make it possible to compensate for the negative charge of the AlO4− complex. The geopolymer prepared according to the method of the present invention may be microporous, macroporous or mesoporous. Advantageously, it is a macroporous or mesoporous geopolymer.
Remember that, according to the International Union of Pure and Applied Chemistry (IUPAC) [35], the following terms are described:
The present invention puts forward the possibility of defining the porosity of the geopolymer by the formulation, more particularly in macroporous and mesoporous domains. Furthermore, the method that is the subject of the present invention is noteworthy since an identical porosity of the final material may originate from several different initial formulations.
Formulating a geopolymer comes down to choosing [5, 10, 36]:
(1) an aluminosilicate source;
(2) one or more compensation cation(s);
(3) an activation solution of high pH, characterized in particular by its amount of water and the amount of soluble silicates that it may possibly contain.
The pore properties of the material are influenced by the specific choices of the species selected for the preparation. Thus, a judicious determination of all of the formulation and processing parameters makes it possible to control a priori several properties linked to the porosity of the geopolymer.
Thus, the studies of the inventors have made it possible to show that three fundamental properties of the porous materials may thus be predefined by an appropriate choice during the preparation thereof:
(a′) the total porosity;
(b′) the class of porosity (macroporosity, mesoporosity or microporosity); and
(c′) the pore distribution and especially the pore size distribution in a given class.
Thus, within the context of the present invention, the expression “controlled porosity” is understood to mean the control of the total porosity, of the class of porosity and/or of the pore distribution.
The present invention is therefore characterized by a motivated choice of certain parameters starting from the formulation of the geopolymer to be prepared after having previously defined the pore characteristics of said geopolymer.
The present invention therefore relates to a method for preparing a controlled porosity geopolymer comprising a step of dissolution/polycondensation of an aluminosilicate source in an activation solution that may optionally contain silicate components, said method comprising the following successive steps that consist in:
a. defining at least one characteristic of the porosity of the geopolymer to be prepared;
b. determining a value or an element for at least one parameter chosen from the total amount of water, the total amount of silica, the compensation cation, and the particle size distribution of the optional silicate components, which makes it possible to obtain the characteristic defined in step (a); and
c. selecting said value or said element predetermined in step (b).
Step (a) of the method according to the present invention consists in defining at least one characteristic chosen from the group constituted by the total porosity, the class of porosity and the pore distribution such as the pore size distribution in a given class. Advantageously, at least two of these characteristics and, more particularly, the three characteristics are defined in step (a).
Step (b) of the method according to the present invention may be carried out in various ways.
Advantageously, this step consists in testing various values (or various elements) for at least one parameter from among the parameters previously listed and determining the value (or the element) that makes it possible to obtain at least one characteristic defined in step (a).
As a variant, step (b) of the method according to the invention may consist in identifying the value (or the element) that makes it possible to obtain at least one characteristic defined in step (a) on the basis of data previously obtained and in particular accessible to a person skilled in the art in scientific publications or patent applications.
It may be necessary to repeat step (b) several times and in particular for each pore characteristic defined.
More particularly, the present invention relates to a method for preparing a controlled porosity geopolymer comprising a step of dissolution/polycondensation of an aluminosilicate source in an activation solution that may optionally contain silicate components, said method comprising a step that consists in selecting:
The expression “around X %” is understood to mean X %±2%.
Indeed, the studies of the inventors have made it possible to show that the total porosity of the geopolymers may be controlled by modifying the formulation parameters of these materials, in particular the water content. Thus, without being limited to any one theory, the amount of water influences the total porosity of the geopolymer probably by conditioning:
The amount of water may especially be set via the H2O/M2O molar ratio with H2O corresponding to the sum of the amount, expressed in moles, of water present in the activation solution and of the amount, expressed in moles, of water possibly bound to the aluminosilicate source and M2O corresponding to the molar amount of compensation cation oxide in the activation solution. A person skilled in the art may obtain and/or calculate these values, with no inventive effort, by using standard chemical analyses, such as weighing or X-ray fluorescence, of all of the reactants used. Thus, an increase in the H2O/M2O molar ratio makes it possible to increase the total porosity of the geopolymer thus obtained. By way of example and non-limitingly, the inventors have shown that an H2O/M2O molar ratio greater than 10, advantageously greater than 11 makes it possible to obtain a geopolymer for which the water-accessible porosity is greater than 50%.
The inventors have also demonstrated that the particle size distribution of the silicate components possibly present in the activation solution and in particular the median diameter or range of this particle size distribution influence the total porosity of the geopolymer thus obtained. Thus, the predetermined value for the particle size distribution of the optional silicate components is advantageously chosen from a predetermined value of the median diameter of the particle size distribution of the optional silicate components or a predetermined value of the range of the particle size distribution of the optional silicate components. On the one hand, the lower the median diameter of the silicate components used, the more the polymer obtained has a low water-accessible porosity. On the other hand, the lower the range of the particle size distribution of the silicate components, the more the pore distribution of the geopolymer obtained is centred about a low value and, consequently, the lower the total porosity of the geopolymer.
Thus, a person skilled in the art could obtain a geopolymer, for which the total porosity will be controlled by selecting either an appropriate amount of water, or silicate components that have a suitable particle size distribution in terms of median diameter and/or in terms of range of the particle size distribution, or an appropriate amount of water and silicate components that have a suitable particle size distribution in terms of median diameter and/or in terms of range of the particle size distribution.
Through the work of the inventors, it has also been demonstrated that the class of porosity (macropores, mesopores or micropores) may be chosen starting from the processing by selecting a suitable total concentration of silica.
Thus, starting from a set amount of water, the porous mode depends on the porosity specific to the gel. This comes down to modifying the polycondensation behaviour, for example by doping the amount of silicate monomers via addition of reactants into the activation solution. Moreover, the unreacted silica seems to also result in a steric hindrance of the residual aqueous pore space, therefore in a reduction of the porous mode of the material. It should be noted that, as explained previously, the particle size distribution of the silica used has an impact on the methods of hindrance and therefore on the porosity of the material.
The expression “amount of silica” is understood to mean the sum of the silica provided by the aluminosilicate source and of the silica optionally present in the activation solution. The SiO2/M2O molar ratio makes it possible to assess the total amount of silica, SiO2, corresponding to the molar amount of silicon oxide provided by the aluminosilicate source and by the silica optionally present in the activation solution. As stated previously, a person skilled in the art may obtain and/or calculate these values, with no inventive effort, by using standard chemical analyses, such as weighing or X-ray fluorescence, of all of the reactants used. Thus, an SiO2/M2O molar ratio greater than 1 and especially greater than 1.1 makes it possible to obtain a geopolymer having a unimodal mesoporosity whereas an SiO2/M2O molar ratio of less than 1, especially of less than 0.9, in particular of less than 0.8 and, more particularly, of less than 0.7 makes it possible to obtain a geopolymer, having a unimodal macroporosity.
Finally, the pore distribution and especially the pore size in one pore range may also be predetermined via an appropriate formulation. A geopolymer having a unimodal porosity and, very particularly, a unimodal macroporosity or mesoporosity, for which the distribution of the pore volumes is more or less extensive, may be synthesized by choosing one or more suitable compensation cation(s). At set water and silica contents in the material, the size and the arrangement of the oligomers formed depends on the size of the compensating cations used. The distribution of the thus controlled porosity therefore appears to be a porosity intrinsic to the initial oligomeric structures.
The compensation cation is especially chosen from alkali materials, alkaline-earth metals and mixtures thereof. The term “mixture” is understood to mean mixtures of two or more alkali metals, mixtures of two or more alkaline-earth metals and mixtures of one or more alkali metals with one or more alkaline-earth metals. Among the alkali metals, lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and caesium (Cs) are more particularly preferred. Among the alkaline-earth metals, magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba) are more particularly preferred.
The amount of compensation cation(s) capable of being used within the context of the method of the present invention is between 0.1 and 10, especially between 0.5 and 5, in particular between 0.8 and 2, most particularly, relative to the molar amount of Al2O3. Advantageously, in the various formulations used within the context of the present invention, the amount of compensation cation(s) is chosen so that the M2O/Al2O3 molar ratio is equal to 1.
Thus, by way of examples and within the context of the alkali metal compensation cations, the selection step consists in selecting a compensation cation from potassium, sodium and caesium in order to obtain a range of the pore distribution of the geopolymer containing potassium as the compensation cation that is less than the range of the pore distribution of the geopolymer containing sodium as the compensation cation, which is itself less than the range of the pore distribution of the geopolymer containing caesium as the compensation cation. On the basis of example IV in the experimental section below, a person skilled in the art will know how to determine, as a function of the compensation cation or of the mixture of compensation cations used, the influence on the porosity distribution without demonstrating particular inventive effort.
Any aluminosilicate source known to a person skilled in the art may be used within the context of the method of the invention. Advantageously, this aluminosilicate source is a solid source containing amorphous aluminosilicates. These amorphous aluminosilicates are especially chosen from natural aluminosilicate minerals such as illite, stilbite, kaolinite, pyrophyllite, andalusite, bentonite, kyanite, milanite, grovenite, amesite, cordierite, feldspar, allophane, etc.; calcined natural aluminosilicate minerals such as metakaolin; synthetic glass based on pure aluminosilicates; aluminous cement; pumice; calcined by-products or residues of industrial exploitation such as fly ash and glass furnace slags respectively obtained from the combustion of coal and during the conversion of molten iron ore in a blast furnace; and mixtures thereof.
The aluminosilicate source used within the context of the present invention is in a solid form and, advantageously, in the form of a powder or of a mixture of particles. These particles especially have a median diameter (d50) between 0.1 and 40 μm, in particular between 0.5 and 20 μm and, very particularly, between 1 and 10 μm. By way of example and non-exhaustively, when metakaolin is used as an aluminosilicate source, it is in the form of particles, the median diameter (d50) of which determined by laser particle size analysis is around 6 μm. As a reminder, particles of which the average diameter (d50) is 6 μm means that half of the particles have a diameter of less than 6 μm.
A person skilled in the art, at the moment of formulation, will know, without an inventive effort, how to calculate the amount of aluminosilicate source to be used as a function of the composition of the aluminosilicate source used and of the desired objective, i.e. of the properties desired for the geopolymer. Indeed, as a function of the desired properties, a person skilled in the art will know how to choose the values best suited for achieving this objective and therefore will know how to set the H2O/M2O and/or SiO2/M2O molar ratios.
The expression “activation solution” is understood within the context of the present invention to mean a strongly alkaline aqueous solution which may optionally contain silicate components. The expression “strongly alkaline” is understood to mean a solution for which the pH is greater than 9, especially greater than 10, in particular greater than 11 and, more particularly greater than 12.
The activation solution comprises the compensation cation or the mixture of compensation cations in the form of an ionic solution or of a salt. Thus, the activation solution is especially chosen from an aqueous solution of sodium silicate (Na2SiO3), of potassium silicate (K2SiO2), of sodium hydroxide (NaOH), of potassium hydroxide (KOH), of calcium hydroxide (Ca(OH)2), of caesium hydroxide (CsOH) and sulphate, phosphate and nitrate, etc. derivatives thereof.
A person skilled in the art knows various ways of preparing such an activation solution either by diluting existing commercial compositions or by preparing it extemporaneously. A person skilled in the art also knows various ways for adjusting the pH to the desired value, where necessary.
The silicate components present in the activation solution may be not only the silicates provided by the silicates of the compensation cations present in the activation solution but also other silicates added to the activation solution. The latter are especially chosen from silica, colloidal silica and vitreous silica. It is therefore clear that the silicate components present in the activation solution are either solely the silicate(s) provided in the form of silicates of the compensation cations, or solely the silicate(s) added and chosen from silica, colloidal silica and vitreous silica, or a mixture of these two sources of silicates. The activation solution is prepared by mixing the various elements described previously which make it up. The mixture may be produced under a more or less intense stirring as a function of the nature of said elements.
By way of example and by using, as an aluminosilicate source, metakaolin, the chemical composition of which is given in Table 1 below, the solid/solution weight ratio is, within the context of the present invention, low, in particular below 0.6 and advantageously below 0.5. This weight ratio corresponds to the weight of solids (i.e. aluminosilicate source+compensation cations+silicate components) over the mass of solution (i.e. activation solution).
The method of preparing a controlled porosity geopolymer that is the subject of the present invention and, more particularly, the dissolution/polycondensation steps consists, firstly, in mixing the aluminosilicate source with the activation solution under a more or less intense stirring as a function of the nature of the aluminosilicate source and of the elements contained in the activation solution then in storing the material obtained under defined temperature, pressure and relative humidity conditions until the final geopolymer is obtained.
These various steps are carried out at a temperature between 20 and 120° C. and especially between 20 and 100° C. The reaction time until the controlled porosity geopolymer is obtained will depend on the temperature chosen from the range of temperatures above. Specifically, the closer the temperature is to ambient temperature, the longer the reaction time. It should be noted that the reaction time is also a function of the compensation cation(s) used. By way of examples, the reaction time could be between 5 minutes and 48 hours, especially between 1 and 42 hours, advantageously between 5 and 36 hours and, in particular, between 10 hours and 24 hours.
The person skilled in the art knows the optimal pressure and relative humidity conditions to be used, during these steps, as a function of the various reactants used (i.e. aluminosilicate source and elements present in the activation solution). By way of example and non-limitingly, the reaction is carried out under sealed conditions and under a pressure corresponding to atmospheric pressure.
The present invention also relates to a geopolymer capable of being prepared by the method of the invention and having a unimodal mesoporosity with 50% of the pores having an accessibility diameter determined by mercury porosity that extends over less than 5 nm (highly refined pore distribution), between 5 and 10 nm (broader pore distribution) or over more than 10 nm (extended pore distribution).
The present invention also relates to a geopolymer capable of being prepared by the method of the invention and having a unimodal macroporosity with 50% of the pores having an accessibility diameter determined by mercury porosity that extends over less than 10 nm (highly refined pore distribution), between 10 and 50 nm (broader pore distribution) or over more than 50 nm (extended pore distribution).
The present invention also relates to a catalyst support and/or support for separating chemical species comprising a geopolymer as defined previously and to the use of said geopolymer. All the uses known to a person skilled in the art using a geopolymer and especially the uses described in the prior art mentioned above are envisaged within the context of the present invention. The present invention relates, more particularly, to the use of a geopolymer as defined previously in catalysis or in filtration.
The invention will be better understood on reading the following figures and examples, the objective of which is not to limit the invention in its applications, it is only a question of illustrating here the possibilities offered by this novel development of the art.
I.1. Aluminosilicate Source
In all of the following examples, the aluminosilicate source used is metakaolin since this aluminosilicate source makes it possible to obtain geopolymers that are more “pure” and for which the properties are overall more homogeneous [39, 40].
The metakaolin used is Pieri Premix MK (Grace Construction Products), the composition of which, determined by X-ray fluorescence, is listed in Table 1. The specific surface area of this material, measured by the Brunauer-Emmett-Teller method, is equal to 19.9 m2/g and the median diameter of the particles (d50), determined by laser particle size analysis, is equal to 5.9 μm.
I.2. Compensating Cations.
In all of the following examples, the compensating cations used are alkali metals. Specifically, these cases are the most frequently encountered in the literature ([40-42] for example); they therefore constitute a better illustration of the subject.
Moreover, in order to maximize the geopolymerization reactions and to ensure the electroneutrality of the material, the amount of alkali metal introduced into the mixture was set so that the M2O/Al2O3 overall ratio is equal to 1. The alkali metal hydroxide solutions used were prepared by dissolving granules of NaOH, of KOH (Prolabo, Rectapur, 98%) and of CsOH (Alfa Aesar, 99.9%) in ultrapure water.
I.3. Silica.
The silica optionally added to the system is an amorphous silica (BDH), the average diameter of which is equal to 128.81 μm.
I.4. Method of Synthesis.
The mixing of the constituents took place in two steps.
During the first step, the activation solutions containing alkali metal silicates were prepared. The alkali metal hydroxide solutions were obtained by dissolving appropriate products in ultrapure water. The amorphous silica optionally added to the system was then introduced into these solutions and mixed for 30 minutes. The composition of these activation solutions is thus entirely described by:
the natures of the alkali metals used in the formulation and their optional molar ratio;
the H2O/M2O molar ratio, denoted by e;
the SiO2/M2O molar ratio, denoted by s.
During the second step, the geopolymer was prepared by mixing metakaolin and the activation solution in a standardized laboratory mixer (European Standard EN 196-1) for 1 minute at slow speed and 2 minutes at rapid speed. The material is then placed in Teflon moulds having dimensions of 4×4×16 cm, vibrated for a few seconds, then placed under sealed conditions at 20° C. and at atmospheric pressure for 24 hours. After this period, the geopolymer was demoulded then placed in a sealed bag and stored at ambient pressure and ambient temperature until use.
I.5. Experimental Methods.
The porosity of the geopolymers was characterized by:
It is possible to control the total porosity of the geopolymers by modifying the formulation parameters of these materials, in particular the water content.
Table 2 summarizes the water porosity measurements carried out on geopolymers of different composition. A small variation in the water content greatly impacts the total porosity measured.
The object here is to formulate two materials having controlled and distinct pore modes: the first material must have a unimodal macroporosity centred about 100 nm, the second geopolymer a unimodal mesoporosity centred about 10 nm.
The two geopolymers were manufactured according to the following formulations:
Compensating cation: sodium only, s=1.2, e=12;
Compensating cation: sodium only, s=0.6, e=12.
The analyses carried out on these materials by mercury porosimetry (
The objective here is to formulate three materials that have unimodal mesoporosities, the pore volume distribution of which is more or less extensive.
The geopolymers were manufactured according to the following formulations:
Compensating cation: sodium only, s=1.2, e=12;
Compensating cation: potassium only, s=1.2, e=12;
Compensating cation: caesium only, s=1.2, e=12.
The analyses carried out on these two materials by mercury porosimetry (
the potassium geopolymer has a unimodal porosity, the distribution of which is highly refined since more than 50% of the pores have an access diameter between 4.7 and 6.1 nm;
the caesium geopolymer also has a single pore mode, but the pore distribution of which is broader than that of the potassium geopolymer: 50% of the pores have an access diameter between 4.1 and 8.8 nm;
the sodium geopolymer, the porosity of which is still unimodal and selective, but the distribution of which is more spread out since the range of pores is of greater size: 50% of the pores have an access diameter between 9.9 and 16.5 nm.
The objective here is to study the influence of the silicate components that the activation solution may contain and, more particularly, the influence of the nature of the silica introduced into the activation solution.
Thus, three different types of silica were introduced into the activation solution:
The particle sizes were determined by laser particle size analysis.
V.1. Water-Accessible Porosity Results.
Table 3 below compares the values of the total porosities of the geopolymers synthesized with Tixosil 331 and 38 silicas with the porosity of a geopolymer synthesized with a BDH precipitated silica.
The median diameter and the range of the particle size distribution have a significant influence on the water-accessible porosity: the lower the median diameter, the lower the total porosity.
V.2. Pore Size Distribution Results.
Table 4 summarizes the formulations of the geopolymers studied.
The size distribution of the pore access diameters, obtained by mercury porosimetry, is given in
The Tixosil 38 silica makes it possible to obtain geopolymers, the pore dispersion of which is centred around smaller values than the Tixosil 331. The Tixosil 38 has a particle size slightly below the Tixosil 331, but that is above all much less dispersed.
It should be emphasized that the porosity obtained is always mesoporous (silica content), and refined (potassium compensating cation): the particle size of the silica therefore mainly influences the water-accessible porosity of the material and the characteristic dimensions of the diameter on which the pore mode is centred.
A judicious formulation of the geopolymers makes it possible to control the macroporosity and/or the mesoporosity of these materials and opens the way for engineering the porosity of these materials, amorphous aluminosilicate inorganic polymers.
The applications of materials of this type, which are easy to process, inexpensive and for which the thermal properties and fire-resistance properties no longer need to be demonstrated, could prove to be multiple in varied industrial sectors using catalytic supports and/or supports for separating chemical species.
Concrete with Fly Ash as Source Material: Effect of Mixture Composition. In 7th CANMET/ACI International Conference on Recent Advances in Concrete Technology. 2004. May 26-29, Las Vegas, USA.
Number | Date | Country | Kind |
---|---|---|---|
0758409 | Oct 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/63865 | 10/15/2008 | WO | 00 | 4/16/2010 |