This application claims the benefit of a Chinese Patent Application having a Serial number of CN 201410610935.1, published as CN 104480475A and filed on Nov. 4, 2014.
1. Field of the Invention
The present invention generally relates to a Nd—Fe—B magnet and a method of preparing a hard aluminum film on the surface of the Nd—Fe—B magnet.
2. Description of the Prior Art
Due to the potential difference between the Nd-rich phase and the Nd2Fe14B phase, and the hydrogen absorption properties of an Nd—Fe—B magnet, it is very easy for the Nd—Fe—B magnet to corrode. To prevent the Nd—Fe—B magnet from corroding, it is known in the art to provide an anti-corrosive coating layer on the surface of the Nd—Fe—B magnet. The known methods include:
The invention provides for a method including the steps of depositing a first film on the surface of the Nd—Fe—B magnet in the plating machine under a vacuum and subjecting the Nd—Fe—B magnet having the first film to the anodic oxidation process under a solution containing an electrolyte to form an anti-corrosive coating on the surface of the first film to prevent the Nd—Fe—B magnet from corroding.
The invention provides for the Nd—Fe—B magnet including a first film defining a first Vickers hardness covering the Nd—Fe—B magnet and an anti-corrosive coating defining a second Vickers hardness covering the first film on the Nd—Fe—B magnet with the second Vickers hardness being at least eight times the first Vickers hardness of the first film.
The invention provides a simple process for preparing the hard aluminum film on a surface of a Nd—Fe—B magnet. In addition, the invention provides for a lower degree of damage to the Nd—Fe—B magnets. The invention also provides for an increase in the binding force between the anti-corrosive coating of oxidized aluminum and the binding matrix. Specifically, the Vickers hardness for the anti-corrosive coating of oxidized aluminum is eight times higher than the Vickers hardness for the first film of aluminum. The invention further provides for an increase in anti-corrosion for the Nd—Fe—B magnets.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, it is one aspect of the invention to provide a Nd—Fe—B magnet. The Nd—Fe—B magnet includes a first film defining a first Vickers hardness covering the Nd—Fe—B magnet, and an anti-corrosive coating defining a second Vickers hardness covering the first film on the Nd—Fe—B magnet. The second Vickers hardness of the anti-corrosive coating is at least eight times the first Vickers hardness of the first film. The first film covering the Nd—Fe—B magnet is aluminum and the anti-corrosive coating covering the first film on the Nd—Fe—B magnet is oxidized aluminum.
It is another aspect of the present invention to provide a method for preparing a hard aluminum film on a surface of the Nd—Fe—B magnet. The method utilizes a plating machine and an anodic oxidation process. The anodic oxidation process includes a cathode of aluminum and an anode.
The method includes the steps of grinding the Nd—Fe—B magnet, polishing the Nd—Fe—B magnet, and washing the Nd—Fe—B magnet using an alcohol. The next step of the method includes depositing a first film of aluminum having a thickness of between 5 μm and 40 μm on the surface of the Nd—Fe—B magnet in the plating machine under a vacuum. It should be appreciated that the plating machine can use a number of processes to deposit the aluminum onto the surface of the Nd—Fe—B magnet. The number of processes may include, but no limited to arc ion plating, magnetron sputtering, magnetic controlled arc ion plating, and vacuum evaporation.
The step of depositing the first film on the surface of the Nd—Fe—B magnet is further defined as depositing the aluminum having the thickness of between 5 μm and 40 μm on the surface of the Nd—Fe—B magnet in the plating machine under the vacuum having a predetermined pressure range between 2.0×10−3 Pa and 9.0×10−3 Pa. Next, an inert gas of Argon is added to the plating machine to raise the predetermined pressure of the vacuum in the plating machine to between 0.2 Pa and 0.8 Pa. The step of depositing the aluminum further includes a step of applying a biasing electric voltage in a range of between 350V and 650V to the Nd—Fe—B magnet to clean the Nd—Fe—B magnet. Then, the biasing electric voltage is reduced to a range of between 100V and 200V to allow depositing of the aluminum on the surface of the Nd—Fe—B magnet.
The next step of the method is subjecting the Nd—Fe—B magnet having the first film to the anodic oxidation process under a solution containing an electrolyte to form an anti-corrosive coating on the surface of the first film to prevent the Nd—Fe—B from corroding. The electrolyte can be selected from at least one of sulfuric acid, chromic acid, boric acid and oxalic acid. The electrolyte is present, in the solution, in an amount of between 15 wt. % to 20 wt. %. The step of subjecting the Nd—Fe—B magnet having the first film to the anodic oxidation process further including a step of disposing the Nd—Fe—B magnet having the first film of aluminum on the anode of the anodic oxidation process. Then, an electric potential of between 12V and 20V is applied between the cathode of aluminum and the anode including the Nd—Fe—B magnet having the first film of aluminum to oxidize the first film of aluminum on the surface of the Nd—Fe—B magnet to produce the anti-corrosive coating of oxidized aluminum on the surface of the first film of aluminum to prevent the Nd—Fe—B magnet from corroding. In other words, by applying the electric potential between the cathode and the anode, the first film of aluminum disposed on the surface of the Nd—Fe—B magnet oxidizes thereby producing the anti-corrosive coating of oxidized aluminum on the surface of the first film of the Nd—Fe—B magnet.
In order to have a better understanding of the present invention, the implementing examples set forth below provide illustrations of the present invention. The implementing examples are only used to illustrate the present invention and do not limit the scope of the present invention.
Samples of Nd—Fe—B magnets, grinded, polished, and cleaned by alcohol, are placed in a vacuum furnace of an arc ion plating machine. The vacuum furnace of the arc plating machine has the predetermined pressure of between 5×10−3 Pa and 5.5×10−3 Pa. Next, the inert gas of Argon is introduced into the vacuum furnace to raise the predetermined pressure of the vacuum furnace to between 0.3 Pa and 0.35 Pa. The biasing electric voltage of 400V is applied to the Nd—Fe—B magnets for 10 min to clean the Nd—Fe—B magnets. The multi-arc ion source in the arc plating machine is switched on with the current being 60 A. After 60 seconds, the biasing electric voltage is reduced to 100 V for 200 minutes to allow for the complete of depositing the aluminum film on the surface of the Nd—Fe—B magnets. The thickness of the aluminum film on the Nd—Fe—B magnets is between 5 μm and 40 μm. The anti-corrosive coating of the oxidized aluminum film is prepared by disposing the Nd—Fe—B magnets having the aluminum film on the anode and disposing the anode including the Nd—Fe—B magnets having the aluminum film in the solution containing the electrolyte of sulfuric acid in the amount of 15 wt. %. The temperature of the solution containing 15 wt. % sulfuric acid is kept between 18° C. and 20° C. The electric potential of 12V is applied, for 2 minutes, between the cathode of aluminum and the anode including the Nd—Fe—B magnets having the aluminum film to oxidize the aluminum film to produce the anti-corrosive coating of the oxidized aluminum film.
The sectional view and component analysis of the hard aluminum film layer are shown in
Samples of Nd—Fe—B magnets, grinded, polished, and cleaned by alcohol, are placed in a vacuum furnace of an arc ion plating machine. The vacuum furnace of the arc plating machine has the predetermined pressure of 2.0×10−3 Pa. Next, the inert gas of Argon is introduced into the vacuum furnace to raise the predetermined pressure of the vacuum furnace to 0.2 Pa. The biasing electric voltage of 350V is applied to the Nd—Fe—B magnets for 15 min to clean the Nd—Fe—B magnets. The multi-arc ion source in the arc plating machine is switched on with the current being 50A. After 70 seconds, the biasing electric voltage is reduced to 100 V for 200 minutes to allow for the complete of depositing the aluminum film on the surface of the Nd—Fe—B magnets. The thickness of the aluminum film on the Nd—Fe—B magnets is between 5 μm and 40 μm. The anti-corrosive coating of the oxidized aluminum film is prepared by disposing the Nd—Fe—B magnets having the aluminum film on the anode and disposing the anode including the Nd—Fe—B magnets having the aluminum film in the solution containing the electrolyte of sulfuric acid in the amount of 18 wt. %. The electric potential of 15V is applied, for 3 minutes, between the cathode of aluminum and the anode including the Nd—Fe—B magnets having the aluminum film to oxidize the aluminum film to produce the anti-corrosive coating of the oxidized aluminum film.
Samples of Nd—Fe—B magnets, grinded, polished, and cleaned by alcohol, are placed in a vacuum furnace of an arc ion plating machine. The vacuum furnace of the arc plating machine has the predetermined pressure of 9.0×10−3 Pa. Next, the inert gas of Argon is introduced into the vacuum furnace to raise the predetermined pressure of the vacuum furnace to 0.8 Pa. The biasing electric voltage of 650V is applied to the Nd—Fe—B magnets for 10 min to clean the Nd—Fe—B magnets. The multi-arc ion source in the arc plating machine is switched on with the current being 70 A. After 50 seconds, the biasing electric voltage is reduced to 200 V for 100 minutes to allow for the complete of depositing the aluminum film on the surface of the Nd—Fe—B magnets. The thickness of the aluminum film on the Nd—Fe—B magnets is between 5 μm and 40 μm. The anti-corrosive coating of the oxidized aluminum film is prepared by disposing the Nd—Fe—B magnets having the aluminum film on the anode and disposing the anode including the Nd—Fe—B magnets having the aluminum film in the solution containing the electrolyte of sulfuric acid in the amount of 20 wt. %. The electric potential of 20V is applied, for 5 minutes, between the cathode of aluminum and the anode including the Nd—Fe—B magnets having the aluminum film to oxidize the aluminum film to produce the anti-corrosive coating of the oxidized aluminum film.
The process in Implementing Example 4 is similar to the process as set forth in Implementing Example 1. The only differences are magnetron sputtering, magnetic control arc ion plating, or vacuum evaporation is used for depositing the aluminum film on the surface of the Nd—Fe—B magnets and the electrolyte used during the anodic oxidation process is selected from at least one of chromic acid, boric acid, or oxalic acid.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility. The use of the word “said” in the apparatus claims refers to an antecedent that is a positive recitation meant to be included in the coverage of the claims whereas the word “the” precedes a word not meant to be included in the coverage of the claims. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0610935 | Nov 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6251196 | Nishiuchi et al. | Jun 2001 | B1 |
6275130 | Yoshimura et al. | Aug 2001 | B1 |
6281774 | Nishiuchi et al. | Aug 2001 | B1 |
6326087 | Nishiuchi et al. | Dec 2001 | B1 |
6399147 | Nishiuchi et al. | Jun 2002 | B2 |
6444328 | Nishiuchi et al. | Sep 2002 | B1 |
6878217 | Kikugawa et al. | Apr 2005 | B2 |
6884513 | Kikugawa et al. | Apr 2005 | B2 |
7402226 | Machida et al. | Jul 2008 | B2 |
8163106 | Kikugawa et al. | Apr 2012 | B2 |
8182619 | Morimoto et al. | May 2012 | B2 |
8823478 | Tanaka et al. | Sep 2014 | B2 |
Number | Date | Country |
---|---|---|
1974845 | Jun 2007 | CN |
102041506 | May 2011 | CN |
102191464 | Sep 2011 | CN |
102400189 | Apr 2012 | CN |
0995763 | Apr 1997 | JP |
2004111516 | Apr 2004 | JP |
2006245064 | Sep 2006 | JP |
2007049834 | Feb 2007 | JP |
2011190466 | Sep 2011 | JP |
2016514213 | May 2016 | JP |
2014158767 | Oct 2014 | WO |
Entry |
---|
Chinese Search Report for corresponding application No. 2014106109351 dated Nov. 4, 2014, 1 page. |
European Search Report for corresponding application No. EP 15 19 2895 dated Mar. 17, 2016, 2 pages. |
Japanese Search Report for corresponding application No. 2015-209943 dated Nov. 18, 2016, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20160125985 A1 | May 2016 | US | |
20180040398 A9 | Feb 2018 | US |