Method of preparing a low lethality projectile for flight in 37mm and 40mm weapon shells

Information

  • Patent Grant
  • 6374742
  • Patent Number
    6,374,742
  • Date Filed
    Monday, August 28, 2000
    23 years ago
  • Date Issued
    Tuesday, April 23, 2002
    22 years ago
Abstract
An anti-personnel projectile launched from a 37 mm or 40 mm weapon shell required at impact to have a low lethality consequence, in which the projectile is fitted in the shell in a shape characterized by a blunt end in the direction of flight and maintained in this shape by oppositely directed air resistance and propelling forces to obviate a change of shape during flight that might cause a serious injury.
Description




The present invention relates generally to projectiles used primarily for low lethality anti-personnel end use, as for example for crowd control by a municipality police force, and more particularly relates to improvements for assuring that a projectile in use will have the requisite low lethality consequence upon impact, and thus avoiding unintentional severe injury to any individual.




EXAMPLE OF THE PRIOR ART




The need for low lethality projectiles is well known in the art, and additionally can be inferred from the promulgation by the National Institute of Justice of low lethality-qualifying standards exemplified by its standard 0101.03 tests. A known projectile which currently is a low lethality munition of choice consists of a flat bag which is folded in half to fit within a 12 gauge shotgun shell, and after exiting from the muzzle is supposed to unfold into a flat bag shape and impact in this flat bag shape upon a target. As such the kinetic energy is distributed over the area of the bag instead of at a point as in regular ammunition. As a consequence there is less of a possibility of an undesirable penetration while permitting the delivery of a desirable incapacitating impact.




The shape of the above described projectile at impact is not always predictable based solely on its construction as a bag, because the bag can be flat at impact only if it unfolds after exiting from the muzzle. However, on numerous occasions in practice it does not unfold and contacts a target with its folded together side edges and thus, with a shape that can, and often does, inflict serious injury. The inability to predict the projectile shape that will contact the target is believed to occur when several shapes are involved such as, in the case of the above described projectile, i.e., a first shape to accommodate the size dimensions to facilitate being loaded into the 12 gauge shotgun shell, and a second shape to achieve a low lethality consequence upon impact. Logic dictates that the need to change shapes during flight is a happenstance that perhaps most often will occur but which might not occur on occasion due to the shape-change complication.




Broadly, it is an object of the present invention to provide a low lethality anti-personnel projectile overcoming the foregoing and other shortcomings of the prior art.




More particularly, it is an object to impose a low lethality contacting surface of the projectile at impact by the manner in which it is loaded into a weapon shell, thus requiring no shape change but maintaining in flight the singular shape involved, all as will be better understood as the description proceeds.











The description of the invention which follows, together with the accompanying drawings should not be construed as limiting the invention to the example shown and described, because those skilled in the art to which this invention appertains will be able to devise other forms thereof within the ambit of the appended claims.





FIG. 1

is a perspective view of a projectile in accordance with the present invention in a work-in-process condition;





FIG. 2

is an elevational view of the constructed projectile preparatory to being loaded into a 37 mm weapon shell;





FIG. 3

is a longitudinal cross sectional view of an empty 37 mm weapon shell;





FIGS. 3A and 3B

are similarly longitudinal cross sectional views, but showing, in sequence, the loading of the projectile of

FIG. 2

into the 37 mm weapon shell of

FIG. 3

;





FIG. 4

is an elevational view showing, in full line, the shape of the projectile at impact, and in phantom perspective, the shape of the projectile in flight; and





FIG. 5

is a view similar to

FIG. 3

, but of a 40 mm weapon shell.











By way of one example of many to serve as background in understanding the present invention, in police management of an unruly crowd, even kept at bay by a barricade, it often escalates to a confrontation between the police and an individual crossing the barricade, which necessitates management of the individual. It is police standard operating procedure to limit force in such a confrontation commsensurate to the d anger posed. A first and lowest level of force dictated by the circumstances would be to strike the individual, typically at eight to twenty yards, with a low lethality munition, i.e., a munition that does not fill or seriously maim the individual. If, however, continuing with the example, the individual withdraws a concealed weapon, the use of a lethal munition would be dictated.




To qualify a munition as being of low lethality, and as best understood from

FIG. 4

, the projectile


10


is subjected to testing similar to the standard 0101.03 tests used by the National Institute of Justice, which 0101.03 tests to determine the effectiveness of, for example, a “bulletproof” vest measures the depth of deformation of a projectile in a known specific type of viscous clay. Thus, in the testing of projectile


10


, there is applied on a target


12


, a selected thickness of said known viscosity of clay


14


and it is required that in the typical range of confrontation that a projectile fired from a weapon (not shown) not penetrate the clay


14


beyond a specified depth


16


, which currently is 40 mm.




Underlying the present invention is the recognition that projectile


10


, although having physical attributes that might disqualify it as low lethality, can be shaped preparatory to being fired along a path of flight


18


to the target


12


with a blunt or flat end


20


and, most important, that this optimum shaped end


20


is effectively maintained during flight


18


by air resistant forces


22


exerted against the front or blunt end


20


of the projectile


10


and the opposite direction flight-propelling forces


24


exerted against the rear end


26


of the projectile


10


. Stated some what differently, the opposing forces


22


and


24


maintain an interposed cylindrical shape


28


in the body of the projectile


10


, and this shape


28


is characterized by the noted blunt end


20


and, as a result, does not impact upon the target


12


with a lethal consequence. In practice in fact, the opposite directional forces


22


and


24


cause the projectile blunt end


20


to undergo a progressive expanse during flight, as noted at


21


, and at impact, as noted at


23


.




To achieve low lethality utility, projectile


10


is constructed using a tubular sock-like body of stretchable fabric construction material


32


having a closed front end


34


and a rear edge


36


bounding an opening


38


into a body compartment


40


. In a work-in-process condition, as illustrated in

FIG. 1

, a selected amount of rubber pellets, individually and collectively designated


42


, is inserted through the opening


38


to partially fill the compartment


40


, particularly in the area of the closed end


34


. As best shown in

FIG. 2

, the construction of the projectile


10


is completed by a tie or the like, as at


44


, which delineates the rubber pellet-filled body


46


from a length portion or tail


48


of the fabric construction material


32


.




To launch or propel the constructed projectile of

FIG. 2

, use is made of an empty weapon shell, which in

FIG. 3

is selected for illustration to be a 37 mm weapon shell but which also could be a 40 mm weapon shell as illustrated in FIG.


5


. The weapon used for the 37 mm shell is in the parlance of munitions a so-called riot or gas gun used by and for law enforcement, and the weapon used for the 40 mm shell, again in the parlance of munitions, is a so-called grenade launcher used by the military, and both these weapons and associated shells are intended to be referred to by the designation weapon shell(s). Each shell is generally designated


50


, and the

FIG. 3

illustration thereof having a cylindrical wall


52


bounding a compartment


54


. Wall


52


has a front edge


56


bounding an opening


58


into the compartment


54


and a rear wall


60


serving as a closure for the compartment. Prior to loading the projectile


10


through the front opening


58


and into the compartment


54


, there is positioned in the rear of casing


50


a plastic cap


64


which holds propellant


66


in combustible relation to a primer


68


. In munitions parlance, the plastic cap


64


is generally known as a “wad,” “pressure wad,” or “gas wad,” and functions like a piston, pushing the projectile out of the shell and down the barrel while containing the gasses behind it as well as protecting the projectile


10


against the heat of explosion.




For completeness' sake, it is noted that although the dimensions of the 37 mm weapon shell are well known, that these dimensions as related to the loading of the projectile


10


within the compartment


54


are a compartment length


72


of 3½ inches with the propellant


66


in place and a diameter


74


of approximately 1½ inches, and that the 40 mm weapon shell similarly has a compartment length of 3½ inches, not including the propellant


66


, and a slightly larger diameter.




Similarly for completeness' sake, it is noted that in practice best results are achieved with a constructed projectile


10


having a length


76


from its closed end


34


to the applied tie of approximately 4 inches and, flattened by slight finger pressure, a maximum width


78


of approximately 2 inches. The tail


48


is cut to length


80


but preferably should not exceed 4 inches.




The bulk of the

FIG. 2

constructed projectile


10


is then manually stuffed through the front opening


58


into the compartment


54


which, not only of course properly positions the projectile


10


for firing, but also reshapes the projectile


10


so it can qualify for low lethality end use. Without this reshaping, the curvature shape


82


of the projectile front end


34


would penetrate the field-testing clay


14


beyond the depth


16


, and thus disqualify the projectile


10


as a low lethality munition.




In the preferred loading sequence of the projectile


10


into the shell compartment


54


, the tail


48


is folded into a resulting bulk, as at


84


, and in this folded configuration is urged in movement


86


into the compartment


54


, as illustrated in FIG.


3


A. Continuing to apply the force


86


, the rubber pellet-filled projectile front


34


is worked fully into the compartment


54


, as illustrated in

FIG. 3B

, aided by rotational twists of the projectile front end


34


in addition to the longitudinally directed force


86


.




Alternatively, the projectile


10


can be inserted through a funnel (not shown); preferably tail first, and will assume a folded configuration as a result of being compressed between the rubber pellet-filled body


32


and the rear confines of the shell


50


. After either loading sequence, the shell front end opening


58


in then closed in a well known fashion by an appropriate closure


88


appropriately seated and held in place in the end opening


58


.




The propellant


66


is then ignited, in a well understood manner, by the primer


68


which, also in a well understood manner, causes the projectile


10


in the shape illustrated in FIG.


3


B and is characterized by a blunt-shaped front end


20


, reshaped therein to from a curvature shape


82


, to be launched along a path of movement


18


for eventual impact against the target


12


wherein the forces


22


and


24


maintain the blunt shape of the front end


34


during flight movement


18


and, consequently also at impact.




It should be noted that force


24


exists as an applied influence on the shaping of the projectile


10


during flight as a result of the reaction to the decelerating force


22


, but not as part of the force causing the projectile


10


to be accelerated down the barrel of the launching weapon which, as generally understood, is a force of the expanding gas phenomenon of the ignited primer


68


, since said expanding gas force ceases when the projectile


10


exits from the weapon barrel.




It is further to be noted that the projectile


10


requires ballast which as hereinbefore noted preferably is to consist of rubber pellets


42


which in practice provides a desired volume, a weight not exceeding 60 grams in the size fabric body


32


noted and is particulate in nature. However, it is to be understood that particulate ballast pellets of materials other than rubber can be used and provide similar projectile weight and volume to achieve a low lethality consequence.




While the apparatus for practicing the within inventive method, as well as said method herein shown and disclosed in detail is fully capable of attaining the objects and providing the advantages hereinbefore stated, it is to be understood that it is merely illustrative of the presently preferred embodiment of the invention and that no limitations are intended to the detail of construction or design herein shown other than as defined in the appended claims.



Claims
  • 1. A method of shaping a projectile so as to have a specified low lethality consequence upon impact against an individual, said shaping method comprising the steps of using an empty 37 mm weapon shell having a cylindrical wall bounding a projectile compartment and a front edge bounding a front opening into said projectile compartment and having a rear wall serving as a closure for said projectile compartment, positioning projectile-propelling explosive means adjacent said projectile compartment closure, using preliminarily an unfilled tubular sock-like projectile body of fabric construction material having a closed front end and a rear edge bounding a rear opening therein to, filling through said rear opening of said tubular sock-like projectile body a selected amount of rubber pellets to assume a position therein against said closed end, forming folds in said tubular sock-like projectile body inmediately forward of said rear opening thereof, inserting said formed folds of said tubular sock-like projectile body into said projectile compartment front opening, urging in movement said rubber pellet-filled closed front end of said tubular sock-like projectile body fully into said projectile compartment to an extent causing said formed folds thereof into firm contact against said projectile propelling explosive means and said rubber pellet-filled closed front end to expand radially into contact with said 37 mm weapon shell cylindrical wall so as to assume said cylindrical shape thereof characterized by a blunt front end, and igniting said projectile-propelling means, whereby said tubular sock-like projectile body exits from said 37 mm weapon shell projectile compartment in said blunt-ended cylindrical shape against a force of air resistance to flight exerted against a front thereof and pushed by a force urging said shape in flight exerted against a rear thereof such that said blunt-ended cylindrical shape is maintained during flight and at impact to thereby contribute to a low lethality consequence.
  • 2. A method of shaping a projectile so as to have a specified low lethality consequence upon impact against an individual, said shaping method comprising the steps of using an empty 40 mm weapon shell having a cylindrical wall bounding a projectile compartment and a front edge bounding a front opening into said projectile compartment and having a rear wall serving as a closure for said projectile compartment, positioning projectile-propelling explosive means adjacent said projectile compartment closure, using preliminarily an unfilled tubular sock-like projectile body of fabric construction material having a closed front end and a rear edge bounding a rear opening therein to, filling through said rear opening of said tubular sock-like projectile body a selected amount of rubber pellets to assume a position therein against said closed end, forming folds in said tubular sock-like projectile body immediately forward of said rear opening thereof, inserting said formed folds of said tubular sock-like projectile body into said projectile compartment front opening, urging in movement said rubber pellet-filled closed front end of said tubular sock-like projectile body fully into said projectile compartment to an extent causing said formed folds thereof into firm contact against said projectile propelling explosive means and said rubber pellet-filled closed front end to expand radially into contact with said 40 mm weapon shell cylindrical wall so as to assume said cylindrical shape thereof characterized by a blunt front end, and igniting said projectile-propelling means, whereby said tubular sock-like projectile body exits from said 40 mm weapon shell projectile compartment in said blunt-ended cylindrical shape against a force of air resistance to flight exerted against a front thereof and pushed by a force urging said shape in flight exerted against a rear thereof such that said blunt-ended cylindrical shape is maintained during flight and at impact to thereby contribute to a low lethality consequence.
Parent Case Info

This application is a continuation-in-part of U.S. patent application Ser. No. 09/434,453, filed on Nov. 5, 1999, now U.S. Pat. No. 6,202,562.

US Referenced Citations (7)
Number Name Date Kind
3710720 Mawhinney Jan 1973 A
3952662 Greenlees Apr 1976 A
4823702 Woolsey Apr 1989 A
5259319 Dravecky Nov 1993 A
5450795 Adelman Sep 1995 A
5750918 Mangolds et al. May 1998 A
6202562 Brunn et al. Mar 2001 B1
Foreign Referenced Citations (1)
Number Date Country
103509 Mar 1984 EP
Non-Patent Literature Citations (1)
Entry
Product Update: 12 Gauge Bean Bag Rounds, by Bill Moles, Apr. 10, 2000.
Continuation in Parts (1)
Number Date Country
Parent 09/434453 Nov 1999 US
Child 09/648559 US