This application claims under 35 U.S.C. §119(a) the benefit of Korean Application No. 10-2010-0139734 filed Dec. 31, 2010, the entire contents of which are incorporated herein by reference.
The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 10, 2014, is named 89159-301264.txt and is 39,731 bytes in size.
The present invention relates to a method for attenuating influenza virus
Influenza viruses in the form of a flu epidemic or a pandemic occurring every year threaten human health. As the most efficient method for preventing this, a vaccine is used. Vaccines are divided into two types, an inactivated vaccine using a surface protein of a virus as an antigen, and a live vaccine with an attenuated virus. In live vaccine preparation methods developed up to now, a cold adapted attenuated live vaccine has been mainly used as a prevention vaccine (Watanabe, S. et al., Influenza A Virus Lacking M2 Protein as a Live Attenuated Vaccine. J Virol 83, 5947-5950 (2009); Steel, J. et al., Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza. J Virol 83, 1742-1753 (2009); Perez, J. T. et al., MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotech 27, 572-576 (2009); Stech, J. et al., A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat Med 11, 683-689 (2005)). However, live vaccines have safety problems, and thus their use for infants, old people, or some people with a reduced immunity level is restricted (Cox, R. J. et al., Influenza Virus: Immunity and Vaccination Strategies. Comparison of the Immune Response to Inactivated and Live, Attenuated Influenza Vaccines. Scandinavian Journal of Immunology 59, 1-15 (2004)).
As a method for improving the safety of a live vaccine, there has been recently suggested a method of employing two or more attenuation methods in one kind of live vaccine. As a conventional technology, there is a method for introducing a cold-adaptation character into a virus, thereby resulting in propagation inhibition at a regular human body temperature of 36 to 37° C. (Monto, A. S. et al., Evaluation of an attenuated, cold-recombinant influenza B virus vaccine. J Infect Dis 145, 57-64 (1982); Lee, K.-H. et al., Characterization of live influenza vaccine donor strain derived from cold-adaptation of X-31 virus. Vaccine 24, 1966-1974 (2006); Belshe, R. B. et al., Current status of live attenuated influenza virus vaccine in the US. Virus Research 103, 177-185 (2004); Seo, S.-U. et al., Development and characterization of a live attenuated influenza B virus vaccine candidate. Vaccine 26, 874-881 (2008)). As another conventional technology, there is a method for attenuating a virus by removing or modifying a nonstructural protein 1 (NS1) from among influenza virus proteins. Also, there has been developed a method for attenuating a virus by removing M2 ion channel protein, and modifying hemagglutinin (HA) and a protein cleavage site, Further, there has been recently developed a method for reducing gene replication efficiency of a virus within a cell by using a gene silencing mechanism of miRNA.
Meanwhile, virus attenuation often even causes the destruction of propagation capability of a virus in a fertilized egg. Accordingly, in preparation of an attenuated live vaccine, sometimes, it is required to change a preparation system from a fertilized egg to a cell line (such as a MDCK cell line or a Vero cell line). Also, in some cases, an expensive enzyme required for virus propagation has to be added to a cell culture fluid.
Meanwhile, the inventors of the present invention developed X-31 ca as a donor strain of a cold-adapted attenuated live vaccine, which has a strong immunogenicity and a high propagation capability at a replication-competent temperature, and has a high attenuation at a non-replication-competent temperature (Lee, K.-H. et al., Characterization of live influenza vaccine donor strain derived from cold-adaptation of X-31 virus. Vaccine 24, 1966-1974 (2006)). The X-31 ca virus can be replicated in a lung and an upper airway of a mouse through infection (104 PFU) in spite of its high attenuation character. The infection with a live vaccine in a host cell is apparently directly related to the immunogenicity. However, a long-term survival of a virus in an infected host cell may cause a toxic problem such as spontaneous genetic variation and the virus' reassortment together with another human virus (Cox, R. J., Brokstad, K. A. & Ogra, P. Influenza Virus: Immunity and Vaccination Strategies. Comparison of the Immune Response to Inactivated and Live, Attenuated Influenza Vaccines. Scandinavian Journal of Immunology 59, 1-15 (2004)).
Accordingly, in order to eliminate a live vaccine's latent risk raised from the conventional technology and previous research, the inventors of the present invention have tried to develop an attenuation method which can more quickly remove a virus from a virus-infected cell, and can improve stability of a live vaccine without damage to immunogenicity and high productivity, and then thus have completed this invention.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
An object of the present invention is to provide a method for attenuating an influenza virus.
Also, another object of the present invention is to provide a method for more quickly removing an influenza virus from an infected cell.
A further object of the present invention is to provide an attenuated virus which can be quickly removed from an infected cell and has a high immunogenicity and a high productivity in a fertilized egg.
A yet further object of the present invention is to provide a method for vaccinating a host by using an attenuated virus which can be quickly removed from an infected cell and has a high immunogenicity and a high productivity in a fertilized egg.
A yet further object of the present invention is to provide a method for preparing a recombinant virus and preparing an attenuated live vaccine, in which the virus is prepared by any one selected from the group consisting of measles virus, mumps virus, rubella virus, poliovirus, common cold virus, rotavirus, yellow fever virus, varicella virus, hepatitis B virus, human papillomavirus, HSV-1, HSV-2, adenovirus and coxsackie virus.
In order to achieve the above objects, the inventors of the present invention completed the present invention by introducing a protease recognition site into a protein within an influenza virus, and using a host's self-defense mechanism in virus attenuation.
The inventors of the present invention noticed that caspase (protease) activated in an influenza virus-infected cell cleaves matrix proteins, resulting in apotopsis of the infected cell. Then, they prepared, as an influenza virus protein, a recombinant protein in which an amino acid residue to be cleaved by caspase is introduced. They found that in a cell infected with a virus having the inventive recombinant protein, the virus's recombinant protein was cleaved by caspase and thus virus toxicity was significantly reduced. Also, the inventive attenuated virus induced the production of a large amount of antibodies in serum and a respiratory organ's mucosal tissue of a mouse. Also, it was observed that the attenuated virus having the inventive recombinant protein can maintain its high propagation capability in a fertilized egg used for mass production of a conventional live vaccine. Accordingly, the preparation of the inventive attenuated virus can employ a conventional live vaccine virus preparation process as it is, and thus is highly advantageous in view of economic efficiency due to there being no increase in an additional production cost. As described above, the present invention is characterized in that through recombination of various proteins within an influenza virus, the virus is subjected to an action of a host's defense mechanism. Thus, unlike the conventional technology, there is no need to remove or modify a specific protein. Accordingly, the present invention in combination with the conventional technology may be used for preparing a live vaccine using an attenuated virus. In this case, according to the characteristics of the conventional technology to be used in combination with the present invention, by adjusting the protein to be cleaved, the number of cleavage sites, etc., it is possible to secure balance of the immunogenicity and the safety of a live vaccine. Especially, in a case of a protease, since the activity is highly sensitive to a temperature, it is possible to inhibit the activity of the enzyme within a fertilized egg by changing a culture temperature of the fertilized egg. This allows a new type of attenuation method to be developed which can keep a live vaccine's productivity as it is.
An attenuated live vaccine has a very similar mechanism to an actual infection mechanism of a virus. It has a higher defense capability than an inactivated vaccine so that it can induce not only a specific antibody response but also a cell immune response. Accordingly, for attenuation of a developed live vaccine through cold-adaptation or subculture in a non-human cell, genetic mutation causing attenuation of a virus was randomly induced, and then, an attenuated virus barely showing any toxicity in a human cell was prepared and used as a live vaccine. However, with the development of molecular virology and the advent of reverse genetic technology, a live vaccine has been recently prepared by directly causing mutation in measles virus, mumps virus, rubella virus, poliovirus, common cold virus, rotavirus, yellow fever virus, varicella virus, hepatitis B virus, human papillomavirus, HSV-1, HSV-2, adenovirus and coxsackie virus (Lauring, A. S., Jones, J. O. & Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat Biotech 28, 573-579 (2010)).
The foregoing and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
Hereinafter, the present invention will be described in more detail.
In the present invention, first, from among 11 proteins encoded by influenza virus, NP (nucleocapsid protein) and NS1 (nonstructural protein) were converted into substrates of a caspase. With several references on three-dimensional structures of the NP protein and the NS1 protein, a position was determined, into which a caspase recognition site can be introduced while the structural modification of these proteins and the productivity reduction in a fertilized egg are minimized (Ye, Q. et al., The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA, Nature 444, 1078-1082, (2006); Boulo, S. et al., Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes, Virus Research 124, 12-21, (2007); Bornholdt, Z. A. et al X-ray structure of influenza virus NS1 effector domain. Nat Struct Mol Biol 13, 559-560, (2006)). The caspase is divided into three sub groups according to a substrate specificity (Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6, 1028-1042, (1999)). In order to effectively deliver an influenza virus protein, a DEVD amino acid sequence (SEQ ID NO: 11), which is a recognition sequence of caspase 3, 7 included in group II, was selected. Through a mutagenesis method using PCR, a DEVD (Asp-Glu-Val-Asp; SEQ ID NO: 11) sequence was inserted into the NP protein and the NS1 protein.
An NP-C virus including a DEVD (SEQ ID NO: 11) sequence inserted into an NP protein, an NS1-C virus including a DEVD sequence inserted into an NS1 protein, and a DM-C virus including a DEVD sequence inserted into both of an NP protein and an NS1 protein were prepared, and these viruses were used for experiments. Specifically, by using a reverse genetics technology, mutant viruses, that is, an NP-C virus, an NS1-C virus, and a DM-C virus, which have DEVD recognition sites at 431st to 434th positions from NP protein's amino terminal end of a human influenza A/PR/8/34 (H1N1) virus (ATCC No. VR-95), and at 101st to 104th positions from NS1 protein's amino terminal end were prepared (Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences of the United States of America 97, 6108-6113 (2000)). Also, a DM-C:H5N1 6:2 reassortant virus was prepared by mixing genes of HA (GenBank accession EU146622), and NA (GenBank accession EU146623) of A/Indonesia/5/2005 (H5N1) virus with 6 genes within a DM-C virus. In an MDCK cell line (ATCC No. CCL-34) infected with the attenuated virus, after 9 hours from infection, cleavage of NP and NS1 proteins was observed. Then, with the lapse of time, the amount of cleaved proteins was increased, and became more than that of the original protein. This supports the fact that the cleavage by caspase is continuously carried out during apoptosis.
According to the present invention, it was determined that in proportion to the number of proteins converted into substrates of caspase, the attenuation level is increased. For example, a DM-C virus (an attenuated virus), which was prepared in such a manner that it has two caspase recognition sites, showed a attenuation character appropriate as a live vaccine in both in vitro and in vivo, and showed a high immunogenicity and a high protectiveness. When the DM-C virus was inoculated with a high concentration of 106 PFU into a mouse, it was found that the virus was restrictively propagated. After 1 day from the inoculation, in the lung, the amount of virus was rapidly reduced up to 1/100 of the inoculation amount, and in the upper airway fluid, for 10 days since the inoculation, no remaining virus was detected. After the infection of cells by an influenza virus, a caspase activated during apoptosis continuously cleaves its substrate proteins until apoptosis of the cells is completed. This vigorous activity allows a DM-C virus protein to be efficiently cleaved, thereby resulting in a rapid reduction of virus. Also, according to results from a recent piece of research, an NS1 protein has an apoptosis inhibiting function, and such a function is inhibited through cleavage by a caspase at the initial stage of infection. This facilitates an apoptosis process, thereby further facilitating the cleavage of NP and NS1. Such a process facilitates the cleavage of proteins of a recombinant virus and a reassortant virus, resulting in a significant decrease of a propagation speed of the viruses. A recombinant virus having a recognition site for any one protein of NP and NS1 proteins, unlike a DM-C virus, showed a lower toxicity than a wild type virus. However, the recombinant virus, when inoculated with a high concentration, resulted in reduction of a mouse weight.
For the attenuated virus according to the present invention, its propagation capability in a fertilized egg was observed. The inventive attenuated virus showed a slightly reduced productivity in a fertilized egg. It is assumed that such a result was caused by the occurring of cleavage of a virus protein in a fertilized egg with caspase activity, or a slight obstruction of a protein's natural structure and function due to the introduction of a caspase recognition site. However, when the culture temperature in a fertilized egg was lowered to 33° C., viruses were propagated up to 108 PFU or more. Thus, there was hardly any difference in productivity between the wild type virus and the inventive attenuated virus. Although the relationship between the culture temperature and the virus productivity in a fertilized egg needs to be examined through detailed research, such a result provided an interesting possibility which allows a fertilized egg itself to be utilized as a production system.
An amino acid sequence of a protein used in the present invention is indicated with sequence Nos 1 to 10: RNA polymerase PA (SEQ ID NO.: 1), RNA polymerase PB1 (SEQ ID NO.: 2, RNA polymerase PB2 (SEQ ID NO.: 3), nucleocapsid protein (NP, SEQ ID NO.: 4), Matrix protein (M) (M1(matrix): SEQ ID NO.: 5, M2 (ion channel): SEQ ID NO.: 6), nonstructural protein (NS) (NS1: SEQ ID NO.: 7, NS2: SEQ ID NO.: 8), HA (hemagglutinin, SEQ ID NO.: 9) and NA (neuraminidase, SEQ ID NO.: 10).
The term “target protein” used in the present invention indicates a protein within an influenza virus, which is subjected to the action of a host enzyme.
The term “attenuated virus” used in the present invention is used jointly with “mutant virus”.
In the present invention, as a protease, a caspase was used. However, it is natural that various enzymes may be used for the object of the present invention. Also, besides NP, NS1, and matrix proteins, membrane proteins such as HA, NA, and M2, or RNA polymerase such as PB2, PB1 and PA may be used as a target protein for the object of the present invention.
The term “caspase recognition sequence” used in the present invention indicates a sequence to be recognized and decomposed by caspase, and includes, but not limited to, DEVD (SEQ ID NO: 11), AEVD (SEQ ID NO: 12), IETD (SEQ ID NO: 13), WEHD (SEQ ID NO: 14), and YVAD (SEQ ID NO: 15; BMC Pharmacology 2004, 4:7, 2004 May, p 8 and Nature, Vol 437|6 Oct. 2005).
The term “influenza virus” used in the present invention indicates a virus which can cause influenza, and includes, but is not limited to, A type, B type, and C type influenza viruses.
The term “wild type non-toxic protein” used in the present invention indicates another protein except for surface proteins causing toxicity in a host, such as hemagglutinin (HA) and neuraminidase (NA), and includes, but is not limited to, three RNA polymerases PA, PB1 and PB2, nucleocapsid protein (NP), Matrix protein (M) and nonstructural protein (NS).
The term “recombinant non-toxic protein” used in the present invention indicates the wild type non-toxic protein substituted with a caspase recognition sequence.
The term “toxic protein surface protein” used in the present invention indicates a surface protein causing toxicity in a host, and includes, but is not limited to, hemagglutinin (HA) and neuraminidase (NA).
All references cited herein are incorporated herein by reference.
All animal experiments in the present invention were approved by Institutional Animal Care and Use Committee (IACUC) of Yonsei Laboratory Animal Research Center (YLARC), and carried out under YLARC IACUC guidelines.
As described above, the influenza virus including the inventive recombinant virus shows a high attenuation characteristic, and does not cause a reduction in productivity in a fertilized egg. Accordingly, the present invention may be developed as an economically efficient live vaccine preparation method which has both safety and efficiency and can use a fertilized egg as a production system. Also, since a protein is not removed or modified during attenuation, the present invention may be used in combination with a conventional attenuated vaccine preparation technology such as cold-adaptation.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, Preparation Examples and Examples as described below are only for illustrative purposes and are not intended to limit the scope of the invention.
By using a reverse genetic technology, mutant viruses, that is, an NP-C virus and an NS1-C virus, were prepared which have DEVD (SEQ ID NO: 11) recognition sites at 431st to 434th positions from NP protein's amino terminal end of a A/PR/8/34 virus, and at 101st to 104th positions from NS1 protein's amino terminal end (see
In order to secure the safety of the recombinant virus, a polybasic cleavage site of the HA gene was modified into a monobasic cleavage site (PQRESRRKKRG→PQREKRG; SEQ ID NOs: 16 and 17). In NP and NS1 genes of all of the prepared viruses, sequencing of cDNA obtained through RT-PCR was carried out so as to determine if there exists an undesired mutant.
In order to find the cleavage by caspase in the MDCK cell line, after infection of virus of 1 MOI (see
The attenuation character, in vitro, was determined. In order to determine the temperature's effect on virus propagation, a virus propagation speed in an MDCK cell line was measured under various temperature conditions.
The high productivity in a fertilized egg (Korean Poultry TS) as well as the attenuation character provides an advantage in that the cost for production of a live vaccine can be reduced. In order to measure the productivity in a fertilized egg, a virus with 100 PFU (plaque forming unit) was inoculated into a fertilized egg, and cultured for 3 days under various temperature conditions. An allantoic fluid of each fertilized egg was collected and then the amount of virus within the fluid was measured (see
In order to determine the safety as a live vaccine candidate in an animal model, toxicity of a mouse model was tested. A BABL/c female mouse (aged 6 weeks) (from Orientbio) was anesthetized with ketamine, and nasally administered with virus (50 ul). For the mice, a change in the weight and the death rate were measured daily. The toxicity tests on a wild type virus, mutant viruses, and a DM-C:H5N1 reassortant virus were carried out by using 6 mice in each group. The mice were infected with the mutant virus (103˜106 PFU), while as a control group, the wild type virus (104 PFU) was inoculated (see
Since a gene of an influenza virus is RNA, a mutation may frequently occur during virus propagation. During a subculture process in a production system of a DM-C virus, in order to test the genetic stability of a caspase recognition site, the virus was subjected to subculture ten times in a fertilized egg and an MDCK cell line, and then it was found that the base sequence of the caspase recognition site was not changed. In order to measure the genetic stability of the DM-C virus, the virus was subjected to subculture ten times in a fertilized egg and an MDCK cell line. During a subculture process in a fertilized egg, 10 fertilized eggs were inoculated with a virus (100 PFU), and after 3 day-culture, an allantoic fluid was collected. Then, chicken red blood cells were used to carry out HA assay. From among these, a sample with the highest titer was selected, subjected to measurement of a virus titer through plaque assay in the MDCK cell line, and was used for the following subculture. For subculture using the MDCK cell line, the MDCK cell line was infected with the virus (103 PFU) obtained from the previous subculture. After culture at 37° C. for 48 hours, the amount of virus within the supernatant was measured through plaque assay. From the virus obtained after subcultures 10 times in the fertilized egg and the MDCK cell line, the RNA was extracted, and then sequencing of NP and NS genes was carried out so as to determine if a mutation had occurred.
After 3 weeks from DM-C virus infection, from a serum of a mouse, the amounts of IgG antibody and hemagglutinin inhibition (HI) antibody were measured and from the nasal wash and the lower respiratory tract (BALF), the amount of secretory antibody IgA was measured. The amount of the antibody was expressed as an inverse number of a dilution multiple, in which by the dilution multiple, an O.D value measured at 450 nm through ELISA assay is 0.1 or more. As the amount of infection was increased, the amounts of the antibodies were increased (see
Possibility as a live vaccine parent strain was tested. For this, a 6:2 DM-C:H5N1 reassortant virus was prepared by combining antigen genes HA and NA of A/Indonesia/5/2005 (H5N1) virus with 6 genes of DM-C virus. The propagation speed of the reassortant virus in an MDCK cell line was similar to that of DM-C virus (see
For 3 days after infection, from the lungs of mice in all groups, infection virus was observed. Meanwhile, from the upper airway fluid, virus was observed in only a group vaccinated with 103 PFU while in other groups vaccinated with greater than 103 PFU, no virus was observed (see
Although several exemplary embodiments of the present invention have been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0139734 | Dec 2010 | KR | national |
Number | Date | Country |
---|---|---|
10-2010-0045436 | May 2010 | KR |
1020110113615 | Oct 2011 | KR |
2004-111249 | Dec 2004 | WO |
Entry |
---|
Palker et al., Protective efficacy of intranasal cold-adapted influenza A/New Caledonia/20/99 (H1N1) vaccines comprised of egg-or cell culture-derived reassortants, 2004, Virus Research, vol. 105, pp. 183-194. |
Yoshimori, A. et al., “A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score”, BMC Pharmacology, 4: 7 (May 22, 2004). |
Korean Office Action for Korean Application No. 10-2010-0139734, dated Sep. 25, 2012. |
Number | Date | Country | |
---|---|---|---|
20120171243 A1 | Jul 2012 | US |