METHOD OF PREPARING MALONONITRILE OXIME ETHER COMPOUND AND INTERMEDIATE COMPOUND

Abstract
Provided are a method of preparing a malononitrile oxime ether compound and an intermediate compound. The malononitrile oxime ether compound has a structure as shown in formula (VII), wherein W is selected from aryl or heteroaryl. The preparation method comprises steps: reacting a first raw material with a second raw material in the presence of a first solvent and a catalyst to obtain the intermediate compound, wherein the first raw material has a structure as shown in formula (IV), and the second raw material has a structure as shown in formula (V); and subjecting the intermediate compound as shown in formula (VI), and, a dehyclrant to a dehydrantion reaction in the presence of a second solvent to obtain the malononitrile oxime ether compound. In the preparation process for the intermediate, a cheaper cyanoacetamide is used as a raw material, the reaction conditions are mild. Moreover, the yield of the intermediate compound is high and the cost of the process is low. Furthermore, the required malononitrile oxime ether compound, is obtained only through one-step dehydration reaction. Using the preparation method, is advantageous for improving the yield of malononitrile oxime ethers and reducing the cost of the process.
Description
TECHNICAL FIELD

The prevent disclosure relates to the field of organic synthesis, in particular to a method of preparing a malononitrile oxime ether compound and an intermediate compound.


BACKGROUND

The existing literatures provide a synthetic method for the malononitrile oxime ether compound with good control effect on bacterial diseases and fungal diseases in plants, as shown in following formulas:




embedded image


wherein LG represents leaving groups, selected from halogen or other conventional nucleofugal groups, for example, trifluoromethyl groups, mesyloxy groups, tosyloxy groups or the like; M represents a cation, for example, Na+, K+, CS+, Ag+, NH4+ or the like; W represents various aryl groups or heteroaryl groups; and L represents various chain bridges.


However, when the malononitrile oxime ether compound represented by formula I is prepared by an existing method, the yield is generally lower than 60%, malononitrile, as a raw material for preparing a compound represented by formula III, is relatively high in cost, and thus the cost of the compound represented by formula III is also relatively high. Therefore, how to develop a synthetic method more suitable for industrial production is an urgent problem in the art.


SUMMARY

A primary objective of the present disclosure is to provide a method of preparing a malononitrile oxime ether compound and an intermediate compound so as to solve the problems of low product yield and high cost when the malononitrile oxime ether compound is prepared by the existing method.


In order to implement the objective, one aspect of the present disclosure provides a preparation method for the malononitrile oxime ether compound. The malononitrile oxime ether compound has a structure represented by a formula (VII),




embedded image


wherein W is selected from aryl groups or heteroaryl groups.


The preparation method comprises the following steps: enabling a first raw material to be reacted with a second raw material in the presence of a first solvent and a catalyst to obtain the intermediate compound, the first raw material has a structure represented by a formula (IV), the second raw material has a structure represented by a formula (V), and a synthetic route being as follows:




embedded image


wherein LG represents leaving groups, M is selected from monovalent cations, W is selected from aryl groups or heteroaryl groups, “custom-character” represents a chemical bond, and a configuration of double bonds may be (Z)— or (E)-; and


performing dehydration reaction with the intermediate compound represented by the formula (VI) and a dehydrating agent in the presence of a second solvent to obtain the malononitrile oxime ether compound, a synthetic route being as follows:




embedded image


In order to achieve the>objective, another aspect of the>present disclosure provides an intermediate compound. The intermediate compound has a structure represented by a formula (VI):




embedded image


wherein W is selected from aryl groups or heteroaryl groups, “custom-character” represents a chemical bond, and a configuration of double bonds may be (Z)— or (E)-.


By applying a technical solution of the present disclosure, in the preparation method, the second raw material represented by the formula (V) is prepared with cheap and available cyanoacetamide as a raw material; then the intermediate compound represented by the formula (VI) is prepared by the first raw material represented by the formula (IV) and the second raw material represented by the formula (V) in the presence of the catalyst and the first solvent; and then dehydration is performed on the intermediate compound represented by the formula (VI) in the presence of the second solvent and a dehydrating agent to obtain the required malononitrile oxime ether compound. A preparation process of an intermediate takes relatively cheap cyanoacetamide as a raw material, the whole process is moderate in reaction condition, the yield of the intermediate compound is high, and cost is low; the dehydration process of the intermediate compound is simple without special treatment, and the required malononitrile oxime ether compound may be obtained with one-step dehydration reaction only; and therefore, by the preparation method, the yield of malononitrile oxime ethers is increased and the cost is reduced.







DETAILED DESCRIPTION OF THE EMBODIMENTS

It should be noted that the examples of the present application and the characteristics in the examples can be combined with other another without conflict. The present disclosure will be explained in details with combination with the examples below.


As described in the background of the present disclosure, the problems of low yield of a product and high preparation cost exist when the malononitrile oxime ether compound is prepared by the existing method. In order to solve the technical problems, the present disclosure provides a preparation method for the malononitrile oxime ether compound. The malononitrile oxime ether compound has a structure represented by a formula (VII),




embedded image


wherein VV is selected from aryl groups or heteroaryl groups.


The preparation method comprises the following steps:


enabling the first raw material to be reacted with the second raw material in the presence of the first solvent and the catalyst to obtain the intermediate compound, the first raw material has -a structure represented by a formula (IV), the second raw material has a structure represented by a formula (V), and a synthetic route being as follows:




embedded image


wherein LG represents leaving groups, M is selected from monovalent cations, W is selected from aryl groups or heteroaryl groups, “custom-character” represents a chemical bond, and a configuration of double bonds may be (Z)— or (E)-; and


performing dehydration reaction with the intermediate compound represented by the formula (VI) and a dehydrating agent in the presence of a second solvent to obtain the malononitrile oxime ether compound, wherein a synthetic route being as follows:




embedded image


In the preparation method, the second raw material represented by the formula (V) is prepared with cheap and available cyanoacetamide as a raw material; then the intermediate compound represented by the formula (VI) is prepared by the first raw material represented by the formula (IV) and the second raw material represented by the formula (V) in the presence of the catalyst and the first solvent; and then dehydration is performed on the intermediate compound represented by the formula (VI) in the presence of the second solvent and a dehydrating agent to obtain the required malononitrile oxime ether compound. A preparation process of an intermediate takes relatively cheap cyanoacetamide as a raw material, the whole process is moderate in reaction condition, the yield of the intermediate compound is high, and the cost is low; the dehydration process of the intermediate compound is simple without special treatment, and the required malononitrile oxime ether compound may be obtained with one-step dehydration reaction only; and therefore, by the preparation method, the yield of malononitrile oxime ethers is increased and the cost is much lower.


The malononitrile oxime ether compound is a compound with good control effect on bacterial diseases and fungal diseases of plants, and therefore, the preparation method provides a novel and effective way of industrial development for the malononitrile oxime ether compound.


In a preferred embodiment, W is selected from aryl groups or heteroaryl groups rather than unsubstituted phenyl groups; and in order to further improve the dehydration performance of the intermediate compound and reduce the synthesis difficulty, a substitutent in the structure represented by the formula (VI) is preferably selected. In a preferred embodiment, W is selected from, but not limited to, any one of W1-W84. See Table 1 for the structure.












TABLE 1











embedded image


W1 









embedded image


W2 









embedded image


W3 









embedded image


W4 









embedded image


W5 









embedded image


W6 









embedded image


W7 









embedded image


W8 









embedded image


W9 









embedded image


W10









embedded image


W11









embedded image


W12









embedded image


W13









embedded image


W14









embedded image


W15









embedded image


W16









embedded image


W17









embedded image


W18









embedded image


W19









embedded image


W20









embedded image


W21









embedded image


W22









embedded image


W23









embedded image


W24









embedded image


W25









embedded image


W26









embedded image


W27









embedded image


W28









embedded image


W29









embedded image


W30









embedded image


W31









embedded image


W32









embedded image


W33









embedded image


W34









embedded image


W35









embedded image


W36









embedded image


W37









embedded image


W38









embedded image


W39









embedded image


W40









embedded image


W41









embedded image


W42









embedded image


W43









embedded image


W44









embedded image


W45









embedded image


W46









embedded image


W47









embedded image


W48









embedded image


W49









embedded image


W50









embedded image


W51









embedded image


W52









embedded image


W53









embedded image


W54









embedded image


W55









embedded image


W56









embedded image


W57









embedded image


W58









embedded image


W59









embedded image


W60









embedded image


W61









embedded image


W62









embedded image


W63









embedded image


W64









embedded image


W65









embedded image


W66









embedded image


W67









embedded image


W68









embedded image


W69









embedded image


W70









embedded image


W71









embedded image


W72









embedded image


W73









embedded image


W74









embedded image


W75









embedded image


W76









embedded image


W77









embedded image


W78









embedded image


W79









embedded image


W80









embedded image


W81









embedded image


W82









embedded image


W83









embedded image


W84









text missing or illegible when filed








Wherein X1, X2, X3, X4, X5, X6, X7, X8 and X9 independently selected from, but not limited to, hydrogen, halogens, cyano groups, nitro groups, —SF5, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, C1-C8 alkoxy groups, C1-C8 alkyl groups, —OR3, —C(═O)OR3, —N(R4)S(═O)2R5, —S(═O)2NR3R5, —N(R)C(═O)OR3, —CR4═NOR3, —CH2ON═C(CN)2, —C(═O)SR3, —C(═S)OR3, —C(═S)SR3, —CR4═NR5, —CR4═N—3NR3R5, —OSiR4R5R6, —OC(═O)R4, —OC(═O)OR3, —OC(═O)NR3R4, —OC(═S)NR3R4, R3R4, —N(R4)C(═O)NR3R5, —N(R4)C(═S)NR3R5, —N═CR4R5, —N═C—NR3R4, —N(R4)C(═NR5)NR3R6, —N(R4)OR3, —N(R4)NR3R5, —N═NR4, —N(R4)S(═O)R5, —N(R4)S(═O)2OR3, —N(Fe)S(═O)OR3, —N(R4)S(═O)NR3R5, —N(R4)S(═O)2NR3R5, NR4C(═O)R5, —SR3, —S(═O)2R4, —S(═O)R4, —S(═O)OR3, —S(═O)NR3R4, —S(═O)2OR3, —S(═O)NR3R4, —SiR3R4R5, a group G1 or a group G1 optionally substituted with a substitutent J1, wherein the group G1 is selected from, but not limited to, phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J1 is selected from, but not limited to, the halogens, cyano groups, the nitro groups, C1-C8 alkyl groups, the haloalkyl groups of C1-C8, alkoxy groups of C1-C8, haloalkoxy groups of C1-C8, alkylthio groups of C1-C8 or haloalkylthio groups of C1-C8;


Z is selected from, but not limited to, hydrogen, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, aryl groups, C1-C8 alkyl groups substituted with C1-C8 aryl groups, C1-C8 alkyl groups substituted with C1-C8 alkoxy groups, —C(═O)R3 or —C(═O)OR3;


K is selected from, but not limited to, oxygen, sulfur, NR3, N—OR4 or N—NR3R4;


R3 is selected from, but not limited to, hydrogen, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C8 alkoxycarbonyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, a group G2 or a group G2 optionally substituted with a substitutent J2, wherein the group G2 is selected from phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J2 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COON, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, amino groups substituted with C1-C3 alkyl, amino groups substituted with C1-C3 dialkyl, amino groups substituted with C3-C6 cycloalkyl, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, aminocarbonyl groups substituted with C1-C3 alkyl or sulfonamide groups substituted with C1-C3 alkyl;


R4, R5 and R6 independently include, but not limited to, hydrogen, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C8 alkoxy groups, C1-C8 haloalkoxy groups, C1-C8 alkoxycarbonyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, a group G3 or a group G3 optionally substituted with a substitutent J3, wherein the group G3 is selected from phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J3 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, C1-C3 alkylamino groups, C1-C3 dialkylamino groups, C3-C6 cycloalkylamino groups, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, C1-C3 alkylaminocarbonyl groups or C1-C3 alkylaminosulfonyl groups;


Q is selected from, but not limited to, a group G4 or a group G4 optionally substituted with a substitutent J4, the group G4 is selected from phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J4 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, C1-C3 alkylamino groups, C1-C3 dialkylamino groups, C3-C6 cycloalkylamino groups, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, C1-C3 alkylaminocarbonyl groups or C1-C3 alkylaminosulfonyl groups; and


T is selected from, but not limited to, cyano groups, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, a group G5 or a group G5 optionally substituted with a substitutent J5, wherein the group G5 is selected from phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J5 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, C1-C3 alkylamino groups, C1-C3 dialkylamino groups, C3-C6 cycloalkylamino groups, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, C1-C3 alkylaminocarbonyl groups or C1-C3 alkylaminosulfonyl groups, but the W is not selected from the unsubstituted phenyl groups.


In a preferred embodiment, the W is selected from, but not limited to W1, W2, W3, W4, W12, W16, W18, W21, W48, W58, W59, W67, W69, W70, W71, W72, W74, W79, W80, W81, W82 or W83.


X1, X2, X3, X4, X5, X6, X7, X8 and X9 independently include, but not limited to, hydrogen, fluorine, chlorine, bromine, cyano groups, nitro groups, methyl groups, ethyl groups, isopropyl groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, —OR3, —C(═O)OR3, —N(R4)S(═O)2R5, —S(═O)2NR3R4, —N(R4)C(═O)OR3, —CR4═NOR3, —CH2ON═C(CN)2, NR4C(═O)R5, the group G1 or the group G1 optionally substituted with a substitutent J1, wherein the group G1 is selected from phenyl groups or pyridyl groups, and the substitutent J1 is selected from halogens, cyano groups, nitro groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;


Z is selected from, but not limited to, hydrogen, methyl groups or benzyl groups;


K is oxygen;


R3 is selected from, but not limited to, hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxycarbonyl groups, the group G2 or the group G2 optionally substituted with the substitutent J2, wherein the group G2 is selected from phenyl groups and pyridyl groups, and the substitutent J2 is selected from halogens, cyano groups, nitro groups or trifluoromethyl groups;


R4 and R5 independently include, but not limited to, hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups, trifluoromethoxy groups, methoxycarbonyl groups, the group G3 or the group G3 optionally substituted with the substitutent J3, wherein the group G3 is selected from phenyl groups and pyridyl groups, and the substitutent J3 is selected from halogens, cyano groups, nitro groups, methyl groups, ethyl groups, propyl groups, chloromethyl groups, bromomethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;


Q is selected from, but not limited to, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9 and Q10, phenyl groups, pyridyl groups or the group G4 optionally substituted with the substitutent J4, wherein the group G4 is selected from phenyl groups or pyridyl groups, and the substitutent J4 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, trifluoromethoxy groups, methylthio groups, ethylthio groups, trifluoromethylthio groups and trifluoroethylthio groups, wherein structures of Q1-Q10 are in Table 2.












TABLE 2











embedded image


Q1









embedded image


Q2









embedded image


Q3









embedded image


Q4









embedded image


Q5









embedded image


Q6









embedded image


Q7









embedded image


Q8









embedded image


Q9









embedded image



Q10











T is selected from, but not limited to, cyano groups, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, trifluoroethyl groups, difluoroethyl groups, cycloproply groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, the group G5 or the group G5 optionally substituted with the substitutent J5, wherein the group G5 is selected from phenyl groups and pyridyl groups, and the substitutent J5 is selected from halogens, cyano groups, nitro groups, methyl groups, ethyl groups, propyl groups, isopropyl groups, chloromethyl groups, bromomethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, cycloproply groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, trifluoromethoxy groups, methylthio groups, ethylthio groups, trifluoromethylthio groups or trifluoroethylthio groups.


Further preferably, W is selected from, but not limited to, W1, W2, W4, W16, W18, W59 or W69.


In, a preferred embodiment, in the dehydration reaction process, a molar ratio of the intermediate compound to the dehydrating agent is 1 to (1-20). The molar ratio of the intermediate compound to the dehydrating agent is selected from, but not limited to, the above range. However, further improvement in dehydration efficiency of the intermediate compound represented by the formula (VI) is facilitated if the molar ratio is limited in the above range.


In a preferred embodiment, the dehydrating agent is selected from, but not limited to, one or more selected from a group consisting of acetic anhydride, bistrichloromethyl carbonate (triphosgene), thionyl chloride, phosphorus oxychloride and phosphorus pentoxide. The type of the dehydrating agent is selected from, but not limited to, the above types. However, further improvement in dehydration efficiency of the intermediate compound represented by the formula (VI) is facilitated if the above types are selected. Preferably, the dehydrating agent is thionyl chloride and/or phosphorus oxychloride.


The second solvent may be an organic solvent commonly used in the art. The second solvent is selected from, but not limited to, one or more selected from a group consisting of halogenated hydrocarbons (preferably, trichloromethane, tetrachloromethane or dichloroethane), aromatic hydrocarbons (preferably, benzene, toluene or chlorobenzene), nitrile compound (preferably, acetonitrile, propionitrile or butyronitrile) and DMF. More preferably, the second solvent is selected from trichloromethane, dichloroethane, acetonitrile, toluene or DMF.


In a preferred embodiment, a reaction temperature of the dehydration reaction is 0-150° C., and a reaction time is 0.5-48 h; and preferably, the reaction temperature is 20-80° C. The reaction temperature and the reaction time of dehydration reaction include, but not limited to, the above ranges, but further increase in yield of the malononitrile oxime ether compound is facilitated if the reaction temperature and the reaction time are limited in the above ranges.


The group M and the group W may be preferably selected in order to further increase the yield of the intermediate compound.


In a preferred embodiment, LG is halogen, and preferably, is Cl or Br.


In a preferred embodiment, the M is selected from, but not limited to, Na+, K+, CS+, Ag+ or NH4+, and preferably, Na+ or K+.


In a preferred embodiment, in the preparation process of the intermediate compound, a molar ratio of the first raw material to the second raw material to the catalyst is 1 to (1-5) to (0.05-0.5). The molar ratio of the first raw material to the second raw material to the catalyst is selected from, but not limited to, the above range. However, further increase in yield of the intermediate compound represented is facilitated if the molar ratio is limited in the above range.


In a preferred embodiment, the catalyst is selected from, but not limited to, one or more selected from a group consisting of NaI, KI, tetrabutylammonium bromide and benzyltriethylammoniumchloride. The type of the catalyst is selected from, but not limited to, the above types; however, further increase in reaction rate of the first raw material to the second raw material is facilitated if the above types are employed, and thus shortening of the reaction period is facilitated.


In the preparation method, the first solvent may employ an organic solvent commonly used in the art. The first solvent is selected from, but not limited to, one or more selected from a group consisting of nitrile compounds (preferably, acetonitrile, propionitrile or butyronitrile), ketone compounds (preferably, acetone, butanone, pentanone or hexanone), DMF, DMSO, 1,3-dimethyl-2-imidazolidinone and N-methyl-2-pyrrolidone; and more preferably, the first solvent is one or more selected from a group consisting of acetonitrile, acetone, butanone, DMF and DMSO.


In a preferred embodiment, a reaction temperature of the preparation process of the intermediate compound is 0-150° C., and a reaction time is 0.5-48 h. The reaction temperature and the reaction time of the preparation process of the intermediate compound include, but not limited to, the above ranges, but further increase in yield of the intermediate compound is facilitated if the reaction temperature and the reaction time are limited in the above ranges. Preferably, the reaction temperature is 20-80° C.


Another aspect of the present application further provides an intermediate compound for preparing the malononitrile oxime ether compound represented by (VII), and the intermediate compound has a structure represented by a formula (VI):




embedded image


wherein the W is selected from, but not limited to aryl groups or heteroaryl groups.


The required malononitrile oxime ether compound may be obtained with the simple dehydration process only by the intermediate compound represented by the formula (VI). The whole process does not need special processing, and the preparation process may be finished with one-step reaction only, such that by preparing the malononitrile oxime ether compound with the intermediate compound, increase in yield of the malononitrile oxime ether compound and reduction in process cost are both facilitated.


Note that, a chemical bond represented by “custom-character” in the formula (VI) means that a configuration of double bonds may be (Z)— or (E)-. Therefore, the intermediate compound may be a compound with a (Z)-configuration, or a compound with an (E)-configuration or a mixture of the two. The chemical bonds, represented by wavy lines, involved in the present application all have the same meaning.


In a preferred embodiment, the W is selected from aryl groups or heteroaryl groups, rather than following groups: the unsubstituted phenyl groups, 4-bromophenyl groups, 4-methoxyphenyl groups, 2-cyanophenyl groups, 3-fluorophenyl groups, 4-nitrophenyl groups, 4-phenylphenyl groups, 4-benzoylphenyl groups, 3-phenoxyphenyl groups and 2-(1,3-dimethoxy-3-oxo-propenyl-2-yl) phenyl groups or benzo[1,2,3]thiadiazole-7-yl groups,


wherein structures of 4-bromophenyl groups, 4-methoxyphenyl groups, 2-cyanophenyl groups, 3-fluorophenyl groups, 4-nitrophenyl groups, 4-phenylphenyl groups, 4-benzoyl phenyl groups, 3-phenoxyphenyl groups and 2-(1,3-dimethoxy-3-oxo-propenyl-2-yl) phenyl groups or benzo[1,2,3]thiadiazole-7-yl groups are in Table 3.









TABLE 3









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











As a carbon-nitrogen double bond causes geometrical isomerism, the intermediate compound further contains a Z isomer, an E isomer or a mixture,


In order to further improve the dehydration performance of the intermediate compound and reduce the synthesis difficulty, substitutents in the structure represented by the formula (VI) are further preferably selected. In a preferred embodiment, the W is selected from, but not limited to any one of W1-W84, the structure of which is in the Table 2, wherein X1, X2, X3, X4, X5, X6, X7, X8, X9 independently include, but not limited to, hydrogen, halogens, cyano groups, nitro groups, —SF5, C1-C5 alkyl groups , C1-C8 haloalkyl groups , C3-C6 cycloalkyl groups, C2-C5 alkenyl groups, C2-C5 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, C1-C8 alkoxy groups, C1-C8 alkyl groups, —OR3, —C(═O)OR3, —N(R4)S(═O)2R5, —S(═O)2NR3R5, —N(R4)C(═O)OR3, —CR4═NOR3, —CH2ON═C(CN)2, —C(═O)SR3, —C(═S)OR3, —C(═S)SR3, —CR4═NR5, —CR4═N—NR3R5, —OSiR4R5R6, —OC(═O)R4, —OC(═O)OR3, —OC(═O)NR3R4, —OC(═S)NR3R4, —NR3R4, —N(R4)C(═O)NR3R5, —N(R4)C(═S)NR3R5, —N═CR4R5, —N═C—NR3R4, —N(R4)C(═NR5)NR3R6, —N(R4)OR3, —N(R4)NR3R5, —N═NR4, -N(R4)S(═O)R5, —N(R4)S(═O)2OR3, —N(R4)S(═O)OR3, —N(R4)S(═O)NR3R5, —N(R4)S(═O)2NR3R5, NR4C(═O)R5, —SR3, —S(═O)2R4, —S(═O)R4, —S(═O)OR3, —S(═O)NR3R4, —S(═O)2OR3, —S(═O)NR3R4, —SiR3R4R5, a group G1 or a group G1 optionally substituted with a substitutent J1, wherein the group G1 is selected from phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J1 is selected from halogens, cyano groups, nitro groups, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C1-C8alkoxy groups, C1-C8 haloalkoxy groups, C1-C8 alkylthio groups or C1-C8 haloalkylthio groups;


Z is selected from, but not limited to, hydrogen, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, aryl groups, C1-C8 alkyl groups substituted with aryl groups, C1-C8 alkyl groups substituted with C1-C8 alkoxy groups, —C(═O)R3 or —C(═O)OR3;


K is selected from, but not limited to, oxygen, sulfur, NR3, N—OR4 or N—NR3R4;


R3 is selected from, but not limited to, hydrogen, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C8 alkoxycarbonyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, the group G2 or the group G2 optionally substituted with the substitutent J2, wherein the group G2 is selected from, but not limited to, phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J2 is selected from, but not limited to, halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, amino groups substituted with C1-C3 alkyl, amino groups substituted with C1-C3 dialkyl, amino groups substituted with C3-C6 cycloalkyl, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, aminocarbonyl groups substituted with C1-C3 alkyl or sulfonamide groups substituted with C1-C3 alkyl;


R4, R5 and R6 independently include, but not limited to, hydrogen, C1-C8 alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C8 alkoxy groups, C1-C8 haloalkoxy groups, C1-C8 alkoxycarbonyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, the group G3 or the group G3 optionally substituted with the substitutent J3, wherein the group G3 is selected from, but not limited to, phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J3 is selected from, but not limited to, halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, C1-C3 alkylamino groups, C1-C3 dialkylamino groups, C3-C6 cycloalkylamino groups, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, C1-C3 alkylaminocarbonyl groups or C1-C3 alkylaminosulfonyl groups;


Q is selected from, but not limited to, the group G4 or the group G4 optionally substituted with the substitutent J4, the group G4 is selected from, but not limited to, phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J4 is selected from, but not limited to, halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, C1-C3 alkylamino groups, C1-C3 dialkylamino groups, C3-C6 cycloalkylamino groups, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, C1-C3 alkylaminocarbonyl groups or C1-C3 alkylaminosulfonyl groups; and


T is selected from, but not limited to, cyano groups, C1-C8alkyl groups, C1-C8 haloalkyl groups, C3-C6 cycloalkyl groups, C2-C8 alkenyl groups, C2-C8 haloalkenyl groups, C2-C8 alkynyl groups, C2-C8 haloalkynyl groups, the group G5 or the group G5 optionally substituted with the substitutent J5, wherein the group G5 is selected from, but not limited to, phenyl groups, pyridyl groups, pyrazolyl groups, thiazolyl groups, isothiazolyl groups or thiadiazolyl groups, and the substitutent J5 is selected from, but not limited to, halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, —CONH2, —COOH, —CHO, C1-C4 alkyl groups, C1-C4 haloalkyl groups, C3-C6 cycloalkyl groups, C1-C3 alkoxy groups, C1-C3 haloalkoxy groups, C1-C3 alkylthio groups, C1-C3 haloalkylthio groups, C1-C3 alkylamino groups, C1-C3 dialkylamino groups, C3-C6 cycloalkylamino groups, C1-C3 alkoxycarbonyl groups, C1-C3 alkylsulphonyl groups, C1-C3 alkylaminocarbonyl groups or C1-C3 alkylaminosulfonyl groups, but the W is not selected from the following groups: unsubstituted phenyl groups, 4-bromophenyl groups, 4-methoxyphenyl groups, 2-cyanophenyl groups, 3-fluorophenyl groups, 4-nitrophenyl groups, 4-phenylphenyl, 4-benzoylphenyl groups, 3-phenoxyphenyl groups and 2-(1,3-dimethoxy-3-oxo-propenyl-2-yl) phenyl groups or benzo[1,2,3]thiadiazole-7-yl groups.


In a preferred embodiment, the W is selected from, but not limited to W1, W2, W3, W4, W12, W16, W21, W48, W58, W59, W67, W68, W69, W70, W72, W74, W79, W80, W81, W82 or W83.


X1, X2, X3, X4, X5, X6, X7, X8 and X9 independently comprise, but not limited to, hydrogen, fluorine, chlorine, bromine, cyano groups, nitro groups, methyl groups, ethyl groups, isopropyl groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, —OR3, —C(═O)OR3, —N(R4)S(═O)2R5, —S(═O)2NR3R4, —N(R4)C(═O)OR3, —CR4=NOR3, —CH2ON═C(CN)2, NR4C(═O)R5, the group G1 or the group G1 optionally substituted with the substitutent J1, wherein the group G1 is selected from, but not limited to, phenyl groups or pyridyl groups, and the substitutent J1 is halogens, cyano groups, nitro groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;


Z is selected from, but not limited to, hydrogen, methyl groups or benzyl groups;


K is oxygen;


R3 is selected from, but not limited to, hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxycarbonyl groups, the group G2 or the group G2 optionally substituted with the substitutent J2, wherein the group G2 is selected from, but not limited to, phenyl groups and pyridyl groups, and the substitutent J2 is halogens, cyano groups, nitro groups ortrifluoromethyl groups;


R4 and R5 independently include, but not limited to, hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups, trifluoromethoxy groups, methoxycarbonyl groups, the group G3 or the group G3 optionally substituted with the substitutent J3, wherein the group G3 is selected from, but not limited to, phenyl groups and pyridyl groups, and the substitutent J3 is halogens, cyano groups, nitro groups, methyl groups, ethyl groups, propyl groups, chloromethyl groups, bromomethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;


Q is selected from, but not limited to, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, phenyl groups, pyridyl groups or the group G4 optionally substituted with the substitutent J4, wherein the group G4 is selected from, but not limited to, phenyl groups or pyridyl groups, and the substitutent J4 is halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, trifluoromethoxy groups, methylthio groups, ethylthio groups, trifluoromethylthio groups and trifluoroethylthio groups, wherein structures of Q1-Q10 are in Table 3; and


T is selected from, but not limited to, cyano groups, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, trifluoroethyl groups, difluoroethyl groups, cycloproply groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, the group G5 or the group G5 optionally substituted with the substitutent J5, wherein the group G5 is selected from, but not limited to, phenyl groups and pyridyl groups, and the substitutent J5 is halogens, cyano groups, nitro groups, methyl groups, ethyl groups, propyl groups, isopropyl groups, chloromethyl groups, bromomethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, cycloproply groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, trifluoromethoxy groups, methylthio groups, ethylthio groups, trifluoromethylthio groups or trifluoroethylthio groups.


Further preferably, the W is selected from, but not limited to, W1, W2, W3, W4, W16, W18, W59 or W69.


In the technical solution of the present disclosure, an important intermediate (VI) compound for preparing the malononitrile oxime ether compound (VII) is represented in Table 4, but is not limited to just the compounds.




embedded image












TABLE 4







No.
W









 1
4-CF3S—Ph



 2
2-Cl—Ph



 3
3-Cl—Ph



 4
4-Cl—Ph



 5
2-F—Ph







 6


embedded image









 7
4-F—Ph



 8
2-Br—Ph



 9
3-Br—Ph







 10


embedded image









 11
2-I—Ph



 12
3-I—Ph



 13
4-I—Ph



 14
2-Me—Ph



 15
3-Me—Ph



 16
4-Me—Ph



 17
2-MeO—Ph



 18
3-MeO—Ph







 19


embedded image









 20
2-CF3—Ph



 21
3-CF3—Ph



 22
4-CF3—Ph



 23
2-CF3O—Ph



 24
3-CF3O—Ph



 25
6-Cl-2-pyridyl



 26
2-Cl-3-pyridyl



 27
4-Cl-3-pyridyl



 28
5-Cl-3-pyridyl



 29
6-Cl-3-pyridyl



 30
2-Cl-4-pyridyl



 31
3-Cl-4-pyridyl



 32
1-naphthyl



 33
2,4-diCl—Ph



 34
2,6-diCl—Ph



 35
3.4-diCl—Ph



 36
3,5-diCl—Ph



 37
2-Cl-6-F—Ph



 38
2-Cl-4-Me—Ph



 39
2,4-di(MeO)—Ph



 40
2-Cl-4-Et—Ph



 41
2-Cl-5-NO2—Ph



 42
3-Cl-4-Me—Ph



 43
4-Cl-3-Me—Ph



 44
2-F-4-Me—Ph



 45
2,3,4,5,6-5F—Ph







 46


embedded image









 47


embedded image









 48


embedded image









 49


embedded image









 50


embedded image









 51


embedded image









 52


embedded image









 53


embedded image









 54


embedded image









 55


embedded image









 56


embedded image









 57


embedded image









 58


embedded image









 59


embedded image









 60


embedded image









 61


embedded image









 62


embedded image









 63


embedded image









 64


embedded image









 65


embedded image









 66


embedded image









 67


embedded image









 68


embedded image









 69


embedded image









 70


embedded image









 71


embedded image









 72


embedded image









 73


embedded image









 74


embedded image









 75


embedded image









 76


embedded image









 77


embedded image









 78


embedded image









 79


embedded image









 80


embedded image









 81


embedded image









 82


embedded image









 83


embedded image









 84


embedded image









 85


embedded image









 86


embedded image









 87


embedded image









 88


embedded image









 89


embedded image









 90


embedded image









 91


embedded image









 92


embedded image









 93


embedded image









 94


embedded image









 95


embedded image









 96


embedded image









 97


embedded image









 98


embedded image









 99


embedded image









100


embedded image









101


embedded image









102


embedded image









103


embedded image









104


embedded image









105


embedded image









106


embedded image









107


embedded image









108


embedded image









109


embedded image









110


embedded image









111


embedded image









112


embedded image









113


embedded image









114


embedded image









115


embedded image









116


embedded image









117


embedded image









118


embedded image









119


embedded image









120


embedded image









121


embedded image









122


embedded image









123


embedded image









124


embedded image









125


embedded image









126


embedded image









127
3,4-diBr—Ph



128
3-F-4-Cl—Ph



129
3-I-4-Cl—Ph



130
3-Cl-4-Br—Ph







131


embedded image









132


embedded image









133


embedded image









134


embedded image









135


embedded image









136


embedded image









137


embedded image









138


embedded image









139


embedded image









140


embedded image









141
4-CF3O—Ph



142
2-CHF2O—Ph



143
3-CHF2O—Ph



144
4-CHF2O—Ph



145
2-(CF3)2CF—Ph



146
3-(CF3)2CF—Ph



147
4-(CF3)2CF—Ph



148
2-NO2—Ph



149
3-NO2—Ph







150


embedded image









151


embedded image









152
3-CN—Ph



153
4-CN—Ph



154
2-N(CH3)2—Ph



155
3-N(CH3)2—Ph



156
4-N(CH3)2—Ph



157
2-pridyl



158
3-pridyl



159
4-pyridyl



160
2-Furyl



161
2-thiazolyl



162
3-Cl-2-pyridyl



163
4-Cl-2-pyridyl



164
5-Cl-2-pyridyl



165
2-F-4-CN—Ph



166
3-F-4-Me—Ph



167
2,4-diMe—Ph



168
2,5-diMe—Ph



169
3,4-diMe—Ph



170
3,4-di(MeO)—Ph



171
3,5-di(MeO)—Ph



172
3,5-di(CF3)—Ph



173
2,5-diCl-4-F—Ph



174
2,4,5-triCl—Ph



175
2,4,6-triCl—Ph



176
2,4,6-triCH3—Ph



177
2-F-4-CN—Ph



178
2,4-diF—Ph



179
3,4-diF—Ph



180
3,5-diF—Ph



181
2,6-diF—Ph



182
2,4,5-triF—Ph



183
3,4,5-triF—Ph



184
2,4,6-triF—Ph







185


embedded image









186


embedded image









187


embedded image









188


embedded image









189


embedded image









190


embedded image









191


embedded image









192


embedded image









193


embedded image









194


embedded image









195


embedded image









196


embedded image









197


embedded image









198


embedded image









199


embedded image









200


embedded image









201


embedded image









202


embedded image









203


embedded image









204


embedded image









205


embedded image









206


embedded image









207


embedded image









208


embedded image









209


embedded image









210


embedded image









211


embedded image









212


embedded image









213


embedded image









214


embedded image









215


embedded image









216


embedded image









217


embedded image









218


embedded image









219


embedded image









220


embedded image









221


embedded image









222


embedded image









223


embedded image









224


embedded image









225


embedded image









226


embedded image









227


embedded image









228


embedded image









229


embedded image









230


embedded image









231


embedded image









232


embedded image









233


embedded image









234


embedded image









235


embedded image









236


embedded image









237


embedded image









238


embedded image









239


embedded image









240


embedded image









241


embedded image









242


embedded image









243


embedded image









244


embedded image









245


embedded image









246


embedded image









247


embedded image









248


embedded image









249


embedded image









250


embedded image









251


embedded image









252


embedded image









253


embedded image









254


embedded image









255


embedded image









256


embedded image









257


embedded image









258


embedded image









259


embedded image









260


embedded image









261


embedded image









262


embedded image









263


embedded image









264


embedded image









265


embedded image









266


embedded image









267
3,4-diI—Ph



268
3-Br-4-Cl—Ph



269
3-Cl-4-F—Ph



270
3-Cl-4-I—Ph







271


embedded image









272


embedded image









273


embedded image









274


embedded image









275


embedded image









276


embedded image









277


embedded image









278


embedded image









279


embedded image









280


embedded image










1HNMR (600 MHz) and physico-chemical properties of partial compounds are as follows:

















TABLE 5








Physical


Compound
Solvent

1HNMR(data)

property


















9
CDCl3
7.54-7.52 (m, 2H), 7.32-7.29 (m, 2H),
White




6.39 (s, 1H), 5.92 (s, 1H), 5.39 (s, 2H).
solid


29
CDCl3
8.44 (s, 1H), 7.72 (d, 2H), 7.42 (d, 2H),
White




6.34 (s, 1H), 5.56 (s, 1H), 5.43 (s, 2H).
solid


35
DMSO-
8.08 (s, 1H), 8.00 (s, 1H), 7.81 (s, 1H),
White



d6
7.70 (d, 1H), 7.50 (dd, 1H), 5.48 (s,
solid




2H).



60
CDCl3
7.95-7.93 (m, 2H), 7.46-7.45 (m, 3H),
White




7.36 (s, 1H), 6.52 (s, 1H), 5.68 (s, 1H),
solid




5.61 (s, 2H).



61
CDCl3
7.88 (d, 2H), 7.43(d, 2H), 7.37(s, 1H),
White




6.48 (s, 1H), 5.60 (s, 2H), 5.50 (s, 1H).
solid


105
DMSO-
8.94 (dd, 1H), 8.41 (t, 1H), 8.09-8.06
Yellow



d6
(m, 2H), 8.05 (s, 1H), 7.98 (s, 1H), 7.86
solid




(d, 1H), 7.59-7.57 (m, 1H), 5.68 (s,





2H).



153
CDCl3
7.72 (d, 2H), 7.49 (d, 2H), 6.33 (s, 1H),
White




5.49 (s, 2H), 5.48 (s, 1H).
solid


187
CDCl3
7.44-7.41 (m, 2H), 7.38-7.35 (m, 1H),
White




7.33-7.32 (m, 1H), 7.30-7.27 (m, 4H),
solid




6.42 (s, 1H), 5.85 (s, 1H), 5.54 (s, 2H),





2.27 (s, 3H).



192
CDCl3
7.62 (s, 1H), 6.37 (s, 1H), 5.72 (s, 1H),
Pale




5.52 (s, 2H).
Yellow





solid









In the above definitions of the compounds of the general formulas, the used terms are collected for representing the following substituents generally:


the term “unsubstituted” represents that all the substituents are hydrogen;


halogens: refer to fluorine, chlorine, bromine or iodine;


alkyl groups: linear or branched alkyl groups, for example, methyl groups, ethyl groups, n-propyl groups, isopropyl groups, or different butyl isomers, pentyl isomers or hexyl isomers;


haloalkyl groups: linear or branched alkyl groups, and hydrogen atoms on these alkyl groups may be partially or wholly substituted with halogens, for example, chloromethyl groups, dichloromethyl groups, trichloromethyl groups, fluoromethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups and the like;


cycloalkyl groups: substituted or unsubstituted cyclic alkyl groups, for example, cyclopropyl groups, cyclopentyl groups or cyclohexyl groups, and the substituents, for example, methyl groups, halogens and the like;


alkenyl groups: include linear or branched alkenes, for example, vinyl groups, 1-propenyl groups, 2-propenyl groups and different butenyl isomers, pentenyl isomers and hexenyl isomers, and the alkenyl groups further include polyenes, for example, 1,2-propadienyl groups and 2,4-hexadienyl groups;


haloalkenyl groups: alkenyl groups, at least one or more hydrogen atoms substituted with halogen atoms;


alkynyl groups: include linear or branched alkynes, for example, ethynyl groups, 1-propynyl groups and different butynyl isomers, pentynyl isomers and hexynyl isomers, and the alkynyl groups further include groups consisting of multiple triple bonds, for example, 2, 5-hexadiyne groups;


haloalkynyl groups: alkynyl groups, at least one or more hydrogen atoms of which may be substituted with halogen atoms;


alkoxy groups: linear or branched alkyl groups, bonded to the structures via oxygen atom bonds, for example, methoxy groups, ethoxy groups, t-butoxy groups and the like;


haloalkoxy groups: linear or branched alkoxy groups, and hydrogen atoms on these alkoxy groups may be partially or wholly substituted with the halogens, for example, chloromethoxy groups, dichloromethoxy groups, trichloromethoxy groups, fluoromethoxy groups, difluoromethoxy groups, trifluoromethoxy groups, chlorofluoromethoxy groups, trifluoroethoxy groups and the like;


alkylthio groups: the linear or branched alkyl groups, bonded to the structures via sulfur atom bonds, for example, methylthio groups, ethylthio groups and the like;


haloalkylthio groups: linear or branched alkylthio groups, and hydrogen atoms on these alkylthio groups may be partially or wholly substituted with the halogens, for example, difluoromethylthio groups, trifluroethylthio groups and the like;


alkylamino groups: linear or branched alkyl groups, bonded to the structures via nitrogen atom bonds, for example, methylamino groups, ethylamino groups, n-propylamino groups, isopropylamino groups andisomeric butyl amine;


dialkylamino groups: two same or different linear or branched alkyl groups, bonded to the structures via the nitrogen atom bonds, for example, dimethylamino groups, methylethylamino groups and the like;


cycloalkylamino groups: cycloalkyl-NH—, for example, cyclopropylamino groups;


alkylaminocarbonyl groups: alkyl-NH—CO—, for example, CH3NHCO—;


alkylaminosulfonyl groups: alkyl-NH—S(O)2—, for example, CH3NHS(O)2—;


alkoxyalkyl groups: alkyl-O-alkyl-, for example, CH3OCH2—;


haloalkoxyalkyl groups: linear or branched alkoxyalkyl groups, and hydrogen atoms on these alkoxyalkyl groups may be partially or wholly substituted with the halogens, for example, chloromethoxymethyl groups, dichloromethoxymethyl groups, trichloromethoxymethyl groups, fluoromethoxymethyl groups, difluoromethoxymethyl groups, trifluoromethoxymethyl groups, chlorofluoromethoxymethyl groups, trifluoroethoxymethyl groups and the like;


alkoxyalkoxy groups: alkyl-O-alkyl-O—, for example, CH3OCH2O—;


alkoxycarbonyl groups: alkyl-O—CO—, for example, CH3OCO—;


alkylsulphonyl groups: alkyl-S(O)2—, for example, methylsulfonyl groups;


aryl groups: monocyclic or polycyclic aromatic groups with 6-20 carbon atoms, for example, phenyl groups and naphthyl groups;


arylalkyl groups: aryl-alkyl-, for example, PhCH2—; and


heteroaryl groups: monocyclic or polycyclic heteroaromatic groups with 1-20 carbon atoms and 1-4 heteroatoms selected from N, S and O, for example, pyrrolyl groups, furyl groups, thienyl groups, imidazolyl groups, pyrazolyl groups, oxazolyl groups, thiazolyl groups, isoxazolyl groups, isothiazolyl groups, pyridyl groups, pyrimidinyl groups, pyridazinyl groups, pyridazinone groups, indolyl groups, benzofuranyl groups, benzoxazolyl groups, benzothienyl groups, benzothiazolyl groups, benzoisoxazolyl groups, benzoisothiazolyl groups, benzimidazolyl groups, benzopyrazolyl groups, quinoxalinyl groups and the like.


The present application will be further described in detail with reference to the specific embodiments below, and these examples should not be interpreted as limiting the claimed protective scope of the present application.


The compound IV in various examples may be purchased or may be prepared according to the method described in a literature “WO2017107939A1”.


The compound V in various examples is prepared according to the method described in a literature “Journal of Coordination Chemistry, 57 (16),1431-1445, 2004”.


Embodiment 1
1) Preparation of 2-cyano-2-[((3,4-dichlorophenyl)methoxy)imino]acetamide (Compound 35)



embedded image


A mixture of 3,4-dichlorobenzyl chloride (9.87 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (10.66 g, 75.0 mmol), potassium iodide (0.84 g, 5.0 mmol) and acetonitrile (80 mL) was added into a reaction flask. The mixture was stirred at 80° C. for 10 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 35(11.00 g, analysis by HNMR, isomers Z: E=1:1) as white solid with yield of 80% (calculated by 3,4-dichlorobenzyl chloride).



1HNMR (600 MHz, DMSO-d6) δ(ppm):8.08 (s, 1H), 8.00 (s, 1H), 7.81 (s, 1H), 7.70 (d, 1H), 7.50 (dd, 1H), 5.48 (s, 2H).


2) Preparation of 2-[((3, 4-dichlorophenyl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((3,4-dichlorophenyl)methoxy)imino]acetamide (11.00 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and ethylene dichloride (80 mL) was added into a reaction flask. The mixture was stirred at 80° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((3,4-dichlorophenyl)methoxy)imino]malononitrile(9.03 g as white solid with yield of 88%(calculated by the 2-cyano-2-[((3,4-dichlorophenyl)methoxy)imino]acetamide).



1HNMR (600 MHz, CDCl3) δ(ppm):7.50 (d, 1H), 7.48 (d, 1H), 7.23 (dd, 1H), 5.46 (s, 2H).


Embodiment 2
1) Preparation of 2-cyano-2-[((2-phenylthiazole-4-yl)methoxy)imino]acetamide (Compound 60)



embedded image


A mixture of 4-(chloromethyl)-2-phenylthiazole (10.59 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (11.37 g, 80.0 mmol), tetrabutylammonium bromide (0.82 g, 2.5 mmol) and acetone (80 mL) was added into a reaction flask. The mixture was stirred at 60° C. for 12 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 60 (11.86 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 82%(calculated by 4-(chloromethyl)-2-phenylthiazole).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.95-7.93 (m, 2H), 7.46-7.45 (m, 3H), 7.36 (s, 1H), 6.52 (s, 1H), 5.68 (s, 1H), 5.61 (s, 2H).


2) Preparation of 2-[((2-phenylthiazole-4-yl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((2-phenylthiazole-4-yl)methoxy)imino]acetamide (11.57 g, 40.0 mmol), phosphorus oxychloride (55.75 g, 360.0 mmol) and trichloromethane (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((2-phenylthiazole-4-yl)methoxy)imino]malononitrile (9.32 g as pale yellow solid with yield of 86% (calculated by the 2-cyano-2-[((2-phenylthiazole-4-yl)methoxy)imino]acetamide).



1HNMR (600 MHz, CDCl3) δ(ppm):7.95-7.94 (m, 2H), 7.46-7.45 (m, 3H), 7.40 (s, 1H), 5.67 (s, 2H).


Embodiment 3
1) Preparation of 2-cyano-2-[((2-(4-chlorophenyl)thiazol-4-yl)methoxy)imino]acetamide (Compound 61)



embedded image


A mixture of 4-(chloromethyl)-2-(4-chlorophenyl)thiazol (12.33 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (11.37 g, 80.0 mmol), triethylbenzylammonium chloride 0.35 g, 1.5 mmol) and butanone (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 12 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 61(13.12 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 81%(calculated by the 4-(chloromethyl)-2-(4-chlorophenyl)thiazol).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.88 (d, 2H), 7.43 (d, 2H), 7.37 (s, 1H), 6.48 (s, 1H), 5.67 (s, 2H), 5.50 (s, 1H).


2) Preparation of 2-[((2-(4-chlorophenyl)thiazol-4-yl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((2-(4-chlorophenyl)thiazol-4-yl)methoxy)imino]acetamide (12.96 g, 40.0 mmol), phosphorus oxychloride (55.75 g, 360.0 mmol) and trichloromethane (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((2(4-chlorophenyl)thiazol-4-yl)methoxy)imino]malononitrile (10.52 g as pale yellow solid with yield of 86%(calculated by 2-cyano-2-[((2-(4-chlorophenyl)thiazol-4-yl)methoxy)imino]acetamide).



1HNMR (300 MHz, CDCl3) δ(ppm): 7.89 (d, 2H), 7.44 (d, 2H), 7.42 (s, 1H), 5.67 (s, 2H).


Embodiment 4
1) Preparation of 2-cyano-2-[((4-methoxyphenyl)methoxy)imino]acetamide



embedded image


A mixture of 4-methoxybenzyl chloride (7.91 g, 50.0 mmol), 2-cyano-2-hydroxinnino acetamide potassium salt (14.32 g, 90.0 mmol), sodium iodide (0.76 g, 5.0 mmol) and DMF (40 mL) was added into a reaction flask. The mixture was stirred at 40° C. for 12 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((4-methoxyphenyl)methoxy)imino]acetamide (9.66 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 82%(calculated by 4-methoxybenzyl chloride).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.32 (d, 2H), 6.92 (d, 2H), 6.41 (s, 1 H), 5.90 (s, 1H), 5.36 (s, 2H), 3.83 (s, 3H).


2) Preparation of 2-[((4-methoxyphenyl)methoxy)imino]malononitrile




embedded image


A mixture of 2-cyano-2-[((4-methoxyphenyl)methoxy)imino]acetamide (9.43 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and toluene (80 mL) was added into a reaction flask. The mixture was stirred at 80° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((4-methoxyphenyl)methoxy)imino]malononitrile (7.57 g as colourless oil with yield of 87%(calculated by the 2-cyano-2-[(((4-methoxyphenyl)methoxy)imino]acetamide).



1HNMR (300 MHz, CDCl3) δ(ppm): 7.33 (dd, 2H), 6.93 (dd, 2H), 5.46 (s, 2H), 3.83 (s, 3H).


Embodiment 5
1) Preparation of 2-cyano-2-[((6-chloropyridine-3-yl)methoxy)imino]acetamide (Compound 29)



embedded image


A mixture of 2-chloro-5-chloromethylpyridine (8.19 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide potassium salt (14.32 g, 90.0 mmol), potassium iodide (0.84 g, 5.0 mmol) and DMF (40 mL) was added into a reaction flask. The mixture was stirred at 40° C. for 12 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((6-chloropyridine-3-yl)methoxy)imino]acetamide (9.88 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 82% (calculated by the 2-chloro-5-chloromethylpyridine).



1HNMR (600 MHz, CDCl3) δ(ppm): 8.44 (s, 1H), 7.72 (d, 2H), 7.42 (d, 2H), 6.34 (s, 1H), 5.56 (s, 1H), 5.43 (s, 2H).


2) Preparation of 2-[((6-chloropyridine-3-yl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((6-chloropyridine-3-yl)methoxy)imino]acetamide (9.64 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and toluene (80 mL) was added into a reaction flask. The mixture was stirred at 80° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((6-chloropyridine-3-yl)methoxy)imino]malononitrile (7.58 g as pale yellow oil with yield of 85% (calculated by the 2-cyano-2-[((6-chloropyridine-3-yl)methoxy)imino]acetamide).



1HNMR (600 MHz, CDCl3) δ(ppm): 8.45 (s, 1H), 7.71 (d, 1H), 7.43 (d, 1H), 5.52 (s, 2H).


Embodiment 6
1) Preparation of 2-cyano-2-[((2-chlorothiazole-5-yl)methoxy)imino]acetamide (Compound 192)



embedded image


A mixture of 2-chloro-5-chloromethylthiazole (8.49 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (12.80 g, 90.0 mmol), tetrabutylammonium bromide (1.63 g, 5.0 mmol) and acetone (80 mL) was added into a reaction flask. The mixture was stirred at 40° C. for 12 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((2-chlorothiazole-5-yl)methoxy)imino]acetamide (10.01 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 81% (calculated by the 2-chloro-5-chloromethylthiazole).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.62 (s, 1H), 6.37 (s, 1H), 5.72 (s, 1H), 5.52 (s, 2H).


2) Preparation of 2-[((6-chloropyridine-3-yl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((2-chlorothiazole-5-yl)methoxy)imino]acetamide (9.89 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and trichloromethane (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica, gel to obtain the compound 2-[((2-chlorothiazole-5-yl)methoxy)imino]malononitrile (8.06 g as pale yellow solid with yield of 88% (calculated by the 2-cyano-2-[((2-chlorothiazole-5-yl)methoxy)imino]acetamide).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.65 (s, 1H), 5.62 (s, 2H).


Embodiment 7
1) Preparation of 2-cyano-2-[((quinoline-6-yl)methoxy)imino]acetamide (Compound 105)



embedded image


A mixture of 6-chloromethyl)quinoline (8.98 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (12.80 g, 90.0 mmol), tetrabutylammonium bromide (1.63 g, 5.0 mmol) and acetone (80 mL) was added into a reaction flask. The mixture was stirred at 50° C. for 12 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((quinoline-6-yl)methoxy)imino]acetamide (10.66 g, analysis by HNMR, isomers Z:E=1:1) as yellow solid with yield of 83% (calculated by the 6-chloromethyl)quinoline).



1HNMR (600 MHz, DMSO-d6) δ(ppm): 8.99 (d, 1H), 8.41 (t, 1H), 8.09-8.06 (m, 2H), 8.05 (s, 1H), 7.98 (s, 1H), 7.86 (d, 1H), 7.59-7.57 (m, 1H), 5.68 (s, 2H).


2) Preparation of 2-[((quinoline-6-yl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((quinoline-6-yl)methoxy)imino]acetamide (10.27 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and trichloromethane (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((quinoline-6-yl)methoxy)imino]malononitrile (8.40 g as yellow oil with yield of 88% (calculated by the 2-cyano-2-[((quinoline-6-yl)methoxy)imino]acetamide).


HNMR (300 MHz, CDCl3) δ(ppm): 8.94 (dd, 1H), 8.23 (d, 1H), 8.18 (d, 1H), 7.87 (s, 1H), 7.72 (dd, 1H), 7.52-7.48 (m, 1H), 5.72 (s, 2H).


Embodiment 8
1) Preparation of 2-cyano-2-[((3-bromophenyl)methoxy)imino]acetamide



embedded image


A mixture of 3-bromobenzyl chloride (10.37 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (12.80 g, 90.0 mmol), tetrabutylammonium bromide (1.63 g, 5.0 mmol) and acetone (80 mL) was added into a reaction flask. The mixture was stirred at 60° C. for 10 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((3-bromophenyl)methoxy)imino]acetamide (11.83 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 83% (calculated by the 3-bromobenzyl chloride).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.54-7.52 (m, 2H), 7.32-7.29 (m, 2H), 6.39 (s, 1H), 5.92 (s, 1H), 5.39 (s, 2H).


2) Preparation of 2-[((3-bromophenyl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((3-bromophenyl)methoxy)imino]acetamide (11.40 g, 40.0 mmol), thionyl chloride (48.07 g, 400.0 mmol) and toluene (80 mL) was added into a reaction flask. The mixture was stirred at 80° C. for 8 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((3-bromophenyl)methoxy)imino]malononitrile (9.07 g as yellow oil with yield of 85%(calculated by the 2-cyano-2-[((3-bromophenyl)methoxy)imino]acetamide).



1HNMR (300 MHz, CDCl3) δ(ppm): 7.57-7.53 (m, 2H), 7.33-7.30 (m, 2H), 5.47 (s,2H).


Embodiment 9
1) Preparation of 2-cyano-2-[((4-cyanophenyl)methoxy)imino]acetamide



embedded image


A mixture of 4-(chlororriethyl)benzonitrile (7.66 g, 50.0 mmol), 2-cyano-2-hyclroximino acetamide sodium salt (12.80 g, 90.0 mmol), tetrabutylammonium bromide (1.63 g, 5.0 mmol) and butanone (80 mL) was added into a reaction flask. The mixture was stirred at 80° C. for 10 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((4-cyanophenyl)methoxy)imino]acetamide (9.68 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 84% (calculated by the 4-(chloromethyl)benzonitrile).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.72 (d, 2H), 7.49 (d, 2H), 6.33 (s, 1H), 5.49 (s, 2H), 5.48 (s, 1H).


2) Preparation of 2-[((4-cyanophenyl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((4-cyanophenyl)methoxy)imino]acetamide (9.22 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and acetonitrile (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 10 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. The mixture was extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((4-cyanophenyl)methoxy)imino]malononitrile (7.14 g as white solid with yield of 84%(calculated by the 2-cyano-2-[((4-cyanophenyl)methoxy)imino]acetamide).



1HNMR (300 MHz, CDCl3) δ(ppm): 7.74 (d, 2H), 7.50 (d, 2H), 5.57 (s, 2H).


Embodiment 10
1) Preparation of 2-cyano-2-[((2-methyl-4-phenylphenyl)methoxy)imino]acetamide



embedded image


A mixture of 2-methyl-3-phenylbenzyl chloride (10.95 g, 50.0 mmol), 2-cyano-2-hydroximino acetamide sodium salt (12.80 g, 90.0 mmol), tetrabutylammonium bromide (1.63 g, 5.0 mmol) and acetonitrile (80 mL) was added into a reaction flask. The mixture was stirred at 60° C. for 10 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with ethyl acetate (100 mL) and water (50 mL). Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-cyano-2-[((2-methyl-4-phenylphenyl)methoxy)imino]acetamide (12.00 g, analysis by HNMR, isomers Z:E=1:1) as white solid with yield of 81% (calculated by the 4-(chloromethyl)benzonitrile).



1HNMR (600 MHz, CDCl3) δ(ppm): 7.44-7.41 (m, 2H), 7.38-7.35 (m, 1H), 7.33-7.32 (m, 1H), 7.30-7.27 (m, 4H), 6.42 (s, 1H), 5.85 (s, 1H), 5.54 (s, 2H), 2.27 (s,3H).


2) Preparation of 2-[((4-cyanophenyl)methoxy)imino]malononitrile



embedded image


A mixture of 2-cyano-2-[((2-methyl-4-phenylphenyl)methoxy)imino]acetamide (11.85 g, 40.0 mmol), phosphorus oxychloride (61.95 g, 400.0 mmol) and ethylene dichloride (80 mL) was added into a reaction flask. The mixture was stirred at 70° C. for 10 h and monitored by Thin-Layer Chromatography until the reaction was over. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice water slowly. Then the organic phase was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. the residue was purified by column chromatography on silica gel to obtain the compound 2-[((2-methyl-4-phenylphenyl)methoxy)imino]malononitrile (9.57 g as yellow oil with yield of 86% (calculated by the 2-cyano-2-[((2-methyl-4-phenylphenyl)methoxy)imino]acetamide).



1HNMR. (300 MHz, CDCl3) δ(ppm): 7.44-7.42 (m, 2H), 7.38-7.36 (m, 1H), 7.33-7.32 (m, 2H), 7.30-7.27 (m, 3H), 5.65 (s, 2H), 2.27 (s, 3H).


Embodiment 11

Differences between the embodiment 11 and the embodiment 2 were as follows: the molar ratio of the first raw material to the second raw material to the catalyst was 1 to 1.6 to 0.03; and the yield of the compound 60 was 75%.


Embodiment 12

Differences between the embodiment 12 and the embodiment 2 were as follows: in the preparation process of the intermediate compound, the reaction temperature was 100° C.; and the yield of the compound 60 was 70%.


Embodiment 13

Differences between the embodiment 13 and the embodiment 9 were as follows: in the dehydration reaction process, the molar ratio of the intermediate compound to the dehydrating agent was 1 to 0.5.


The yield of the 2-[((4-cyanophenyl)methoxy)imino]malononitrile was 65%.


Embodiment 14

Differences between the embodiment 14 and the embodiment 2 were as follows: the first raw material was 1-methyl-1-hydro-2-pyrrolylbenzyl chloride; the yield of 2-cyano-2-[((1 -methyl-1-hydro-pyrrolyl-2-yl)methoxy)imino]acetamide, as the intermediate, was 76%; and the yield of the 2-[((1-methyl-1-hydro-pyrrolyl-2-yl)methoxy)imino]malononitrile was 72%.


Embodiment 15

Differences between the embodiment 15 and the embodiment 2 were as follows: the first raw material was 1-methyl-1-hydro-5-pyrazolylbenzyl chloride; the yield of 2-cyano-2-[((1-methyl-1-hydro-pyrazolyl-5-yl)methoxy)imino]acetamide, as the intermediate, was 73%; and the yield of preparing the 2-[((1-methyl-1-hydro-pyrazolyl-5-yl)methoxy)imino]malononitrile was 74%.


From the above description, it could be seen that the present disclosure could realize the following technological effects:


Known from the background art, the yield of the malononitrile oxime ether compound represented by formula I was lower than 60% generally, comparison from the embodiment 1 to the embodiment 10 showed that the yields of the malononitrile oxime ether compound represented by formula (VII) were all larger than 80%, and thus, by the preparation method provided by the present application, the yield of the malononitrile oxime ether compound might be greatly increased.


Comparison among the embodiment 2, the embodiment 11 and the embodiment 12 showed that increase in yield of the intermediate compound was facilitated if the molar ratio of the first raw material to the second raw material to the catalyst was limited in a preferred range of the present application in the preparation process of the intermediate compound.


Comparison between the embodiment 9 and the embodiment 13 showed that increase in yield of the intermediate compound was facilitated if the molar ratio of the intermediate compound to the dehydrating agent was limited in a preferred range of the present application in the dehydration reaction process.


Comparison among the embodiment 2, the embodiment 14 and the embodiment 15 showed that increase in yield of the malononitrile oxime ether compound was facilitated by preferably selecting the substituent in the structure represented by the formula (IV).


What stated above are merely preferred examples of the present disclosure but are not used to limit the present disclosure, and various modifications and variations can be made in the present disclosure to those skilled in the art. Any modifications, equivalent substitutions, improvements and the like within the spirit and principles of the present disclosure are intended to be embraced by the protection range of the present disclosure.

Claims
  • 1. A preparation method for a malononitrile oxime ether compound represented by a formula (VII),
  • 2. The preparation method according to claim 1, wherein in the dehydration reaction process, a molar ratio of the intermediate compound and the dehydrating agent is 1 to (1-20).
  • 3. The preparation method according to claim 1, wherein the dehydrating agent is one or more selected from a group consisting of acetic anhydride, bistrichlomm ethyl carbonate, thionyl chloride, phosphorus oxychlonde and phosphorus pentoxide, and preferably, is thionyl, chloride and/or phosphorus oxychloride; and the solvent is one or more selected from a. group consisting of halogenated alkane compounds, aromatic hydrocarbon compounds, nitrite compounds and DMF, and preferably, is trichloromethane, dichloroethane, acetonitrile, toluene or the DMF.
  • 4. The preparation method according to claim 1, wherein a reaction temperature of the dehydration reaction is 0-150° C., and a reaction time is 0.5-48 h; and preferably, the reaction temperature is 20-80° C.
  • 5. The preparation method according to claim 1, wherein the LG is a halogen, and preferably, Cl or Br.
  • 6. The preparation method according to claim 1, wherein the M selected from Na+, K+, Cs+, Ag+ or NH4+, and preferably, is Na+ or K+.
  • 7. The preparation method according to claim 1, wherein the catalyst, is one or more selected from a group cortsisting of NaI, KI, tetrabutylammonium bromide and benzyltriethylammoniumchloride; and the first solvent is one or more selected from a gmup consisting of nitrile compounds, ketone compounds, DMF, DMSO, 1,3-dimethyl-2-imidazolidinone and N-methyl-2-pyrrolidone, and preferably, is one or more selected from a group consisting of acetonitrile, acetone, butanone, DMF and DMSO.
  • 8. The preparation method according to claim 1, wherein in the preparation process of the intermediate compound, a molar ratio of the first raw material, the second raw material and the catalyst is 1 to (1-5) to (0.05-0.5).
  • 9. The preparation method according to claim 1, wherein a reaction temperature of the preparation process of the intermediate compound is 0-150° C., and a reaction time is 0.5-48 h; and preferably, the reaction temperature is 20-80° C.
  • 10. The preparation method according to claim 1, wherein the W is selected from aryl groups or heteroaryl groups, rather than unsubstituteol phenyl groups; and preferably, the W is selected from any one of W1-W84:
  • 11. The preparation method according to claim 10, wherein the W is selected from W1, W2, W3, W4, W12, W16, W18, W21, W48, W58, W59, W67, W68, W69, W70, W71, W72, W74, W79, W80, W81, W82 or W83; the X1, the X2, the X3, the X4, the X5, the X6, the X7, the X8 and the X9 are independently selected from hydrogen, fluorine, chlorine, bromine, cyano groups, nitro groups, methyl groups, ethyl groups, isopropyl groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, —OR3, —C(═O)OR3, —N(R4)S(═O)2R5, —S(═O)2NR3R4, —N(R4)C(═O)OR3, —CR4═NOR3, —CH2ON═C(CN)2, NR4C(═O)R5, the group G1 or a group G1 optionally substituted with a substitutent J1, wherein the group G1 is selected from phenyl groups or pyridyl groups, and the substitutent J1 is selected from halogens, cyano groups, nitro groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;the Z is selected from hydrogen, methyl groups or benzyl groups;the K is selected from oxygen;the R3 is selected from hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxycarbonyl groups, the group G2 or the group G2 optionally substituted with the substitutent J2, wherein the group G2 is selected from phenyl groups and pyridyl groups, and the substitutent J2 is selected from halogens, cyano groups, nitro groups or trifluoromethyl groups;the R4 and the R5 are independently selected from hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups, trifluoromethoxy groups, methoxycarbonyl groups, the group G3 or the group G3 optionally substituted with the substitutent J3, wherein the group G3 is selected from phenyl groups and pyridyl groups, and the substitutent J3 is selected from halogens, cyano groups, nitro groups, methyl groups, ethyl groups, propyl groups, chloromethyl groups, bromomethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;the Q is selected from Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, phenyl groups, pyridyl groups or the group G4 optionally substituted with the substitutent J4, wherein the group G4 is selected from phenyl groups or pyridyl groups, and the substitutent J4 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, trifluoromethoxy groups, methylthio groups, ethylthio groups, trifluoromethylthio groups and trifluoroethylthio groups, and Q1-Q10 are as follows:
  • 12. The preparation method according to claim 11, wherein the W is selected from W1, W2, W3, W4, W16, W18, W59 or W69.
  • 13. An intermediate compound for preparing the malononitrile oxime ether compound represented by a formula (VII), and the intermediate compound has a structure represented by a formula (VI):
  • 14. The intermediate compound according to claim 13. wherein the W is selected from aryl groups or heteroaryl groups, rather than the following groups: the unsubstituted phenyl groups, 4-bromophenyl groups, 4-methoxyphenyl groups, 2-cyanophenyl groups, 3-fluorophenyl groups, 4-nitrophenyl groups, 4-phenylphenyl groups, 4-benzoylphenyl groups, 3-phenoxyphenyl groups and 2-(1,3-dimethoxy-3-oxo-propenyl-2-yl) phenyl groups or benzo-1,2,3-thiadiazole-7-yl groups; preferably, the W is selected from any one of W1-W84:
  • 15. The intermediate compound according to claim 14, wherein the W is selected from W1, W2, W3, W4, W12, W16, W18, W21, W48, W58, W59, W67, W68, W69, W70, W71, W72, W74, W79, W80, W82 or W83; the X1, the X2, the X3, the X4, the X5, the X6, the X7, the X8 and the X9 are independently selected from hydrogen, fluorine, chlorine, bromine, cyano groups, nitro groups, methyl groups, ethyl groups, isopropyl groups, chloromethyl groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, —OR3, —C(═O)OR3, —N(R4)S(═O)2R5, —S(═O)2NR3R4, —N(R4)C(═O)OR3, —CR4═NOR3, —CH2ON═C(CN)2, NR4C(═O)R5, the group G1 or the group G1 optionally substituted with the substitutent J1, wherein the group G1 is selected from phenyl groups or pyridyl groups, and the substitutent J1 is selected from halogens, cyano groups, nitro groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;the Z is selected from hydrogen, methyl groups or benzyl groups;the K is selected from oxygen;the R3 is selected from hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxycarbonyl groups, the group G2 or the group G2 optionally substituted with the substitutent J2, wherein the group G2 is selected from phenyl groups and pyridyl groups, and the substitutent J2 is selected from halogens, cyano groups, nitro groups or trifluoromethyl groups;the R4 and the R5 are each independently selected from hydrogen, methyl groups, ethyl groups, propyl groups, isopropyl groups, cyclopropyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoropropyl groups, heptafluoroisopropyl groups, methoxy groups, trifluoromethoxy groups, methoxycarbonyl groups, the group G3 or the group G3 optionally substituted with the substitutent J3, wherein the group G3 is selected from phenyl groups and pyridyl groups, and the substitutent J3 is selected from halogens, cyano groups, nitro groups, methyl groups, ethyl groups, propyl groups, chloromethyl groups, bromomethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups or trifluoromethoxy groups;the Q is selected from Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 , Q9 and Q10, phenyl groups, pyridyl groups or the group G4 optionally substituted with the substitutent J4, and the group G4 is selected from phenyl groups or pyridyl groups, and the substitutent J4 is selected from halogens, cyano groups, nitro groups, hydroxyl groups, thiol groups, amino groups, chloromethyl, groups, bromomethyl groups, difluoromethyl groups, trifluoromethyl groups, heptafluoroisopropyl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, trifluoromethoxy groups, methylthio groups, ethylthio groups, trifluoromethylthio groups and trifluoroethylthio groups, and Q1-Q10 are as follows:
  • 16. The intermediate compound according to claim 15, wherein the W is selected from W1, W2, W3, W4, W16, W18, W59 or W69.
  • 17. The preparation method according to claim 2, wherein the dehydrating agent is one or more selected from a group consisting of acetic anhydride, bistrichloromethyl carbonate, thionyl chloride, phosphorus oxychloride and phosphorus pentoxide, and preferably, is thionyl chloride and/or phosphorus oxychloride; and the solvent is one or more selected from a group consisting of halogenated alkane compounds, aromatic hydrocarbon compounds, nitrile compounds and DMF, and preferably, is trichloromethane, dichloroethane, acetonitrile, toluene or the DMF.
  • 18. The preparation method according to claim 17, wherein a reaction temperature of the dehydration reaction is 0-150° C., and a reaction time is 0.5-48 h; and preferably, the reaction temperature is 20-80° C.
  • 19. The preparation method according to claim 18, wherein in the preparation process of the intermediate compound, a molar ratio of the first raw material, the second raw material and the catalyst is 1 to (1-5) to (0.05-0.5).
  • 20. The preparation method according to claim 19, wherein a reaction temperature of the preparation process of the intermediate compound is 0-150° C. , and a reaction time is 0.5-48 h; and preferably, the reaction temperature is 20-80° C.
Priority Claims (1)
Number Date Country Kind
201810771581.7 Jul 2018 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2019/091540 6/17/2019 WO 00