METHOD OF PREPARING NUCLEIC ACID MOLECULES

Abstract
Provided is a method of preparing nucleic acid molecules comprising: (a) a step of providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid; (b) tagging the nucleic acid fragments with barcode sequences; (c) identifying the sequence of the nucleic acid fragments tagged by the barcode sequences; and (d) recovering desired nucleic acid fragments among the sequence-identified nucleic acid fragments using the barcode sequences.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to a method of preparing nucleic acid molecules, and more specifically to a method that enables efficient synthesis of long nucleic acid molecules.


BACKGROUND

Typically employed DNA synthesis procedures for scalable DNA construction have the following disadvantages: (a) high cost of oligonucleotides, (b) low assembly efficiency into long DNA sequences, (c) time-consuming cloning, and (d) high cost of target DNA sequence validation. Above all, the major synthesis costs are the costs of oligonucleotides and sequencing. It would thus be desirable to design a protocol for massively parallelizing synthesis products in order to achieve effective, highly scalable DNA synthesis. DNA oligonucleotides derived from DNA microchips have previously been utilized to synthesize scalable low-cost DNA (Tian, J., et al., 2004). However, the low assembly efficiency of chip-derived oligonucleotides hinders target gene construction, and a laborious DNA assembly optimization process is consequently required. The inefficiency of DNA assembly from chip-derived oligonucleotides is largely associated with the incomplete removal of flanking regions of double-stranded (ds)-oligonucleotides prior to their assembly and the uneven concentration of each chip-cleaved oligonucleotide (Kim H., et al., 2011). Furthermore, it was observed that a greater number of oligonucleotides (i.e. higher complexity) in a DNA assembly pool made DNA assembly less efficient (Kim H., et al., 2011; Borovkov A. Y., et al., 2010). As a consequence, only a small sub-pool of oligonucleotides (i.e. <20) are often amplified to ensure high assembly efficiency. There is a need to develop a high-efficiency DNA assembly process using a large number of microchip oligonucleotides present in a pool in order to attain all advantages of ultra-low cost DNA microchip oligonucleotides.


For scalable DNA synthesis, it is preferable to decrease the sequencing cost for target DNA validation. In recent years, costs for high-throughput sequencing technologies have been considerably lowered. Under such circumstances, utilization of high-throughput sequencing technology has great potential for DNA synthesis at ultra-low cost. However, unlike colony-based Sanger sequencing validation, it is difficult to collect the desired DNA from a pool of high-throughput sequenced DNA mixtures. Although recent high-throughput sequencing technologies can be applied to partially addressable spots (for example, clonal spots available from Roche-454, Illumina and SOLiD, and single-molecule spots available from Helicos and PacBio), it is difficult to isolate target DNA due to the difficulty associated with the collection of the desired DNA from high-throughput sequencing plates. In a notable report (Matzas M., et al., 2010), chip-cleaved oligonucleotides were sequenced by 454 sequencing technology, and directly isolated from the 454 sequencing plate using a bead picker pipette. These sequence-validated ‘oligonucleotides’ were subsequently processed and used to assemble 200 bp target DNA fragments. This study demonstrates the possibility of convergence of next-generation sequencing technology and microchip oligonucleotides in terms of DNA synthesis cost reduction. In this study, however, high-throughput sequencing was carried out on chip oligonucleotides rather than on assembled DNA fragments. Accordingly, challenges associated with DNA assembly into larger sequences are still in early stages. Furthermore, an effective error-free oligonucleotide picking process necessitates a highly tuned bead picking robot and an image processing system.


A number of papers and patent publications are referenced and cited throughout the specification. The disclosures of the papers and patent publications are incorporated herein by reference in their entireties in order to more fully describe the state of the art to which the present disclosure pertains and the disclosure of the present disclosure.


SUMMARY

According to one embodiment of the present disclosure, there is provided a method of preparing nucleic acid molecules, including (a) providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid, (b) tagging the nucleic acid fragments with barcode sequences, (c) validating the sequences of the nucleic acid fragments tagged with the barcode sequences, and (d) recovering desired nucleic acid fragments among the sequence-validated nucleic acid fragments using the barcode sequences.


According to a further embodiment of the present disclosure, there is provided a method of preparing nucleic acid molecules, including (a) providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid, (b) assembling the nucleic acid fragments to synthesize intermediates having sizes whose sequences are validatable by a parallel sequencing technology, (c) tagging the intermediates with barcode sequences, (d) validating the sequences of the intermediates tagged with the barcode sequences, (e) recovering desired intermediates among the sequence-validated intermediates using the barcode sequences, and (f) assembling the recovered intermediates to form long nucleic acid molecules.


According to another embodiment of the present disclosure, there is provided a method of preparing nucleic acid molecules, including (a) providing a pool of oligonucleotides containing restriction enzyme digestion sequences and generic flanking sequences, (b) cleaving the restriction enzyme digestion sequence portions to provide a pool of mixtures including the oligonucleotides, each containing the generic flanking sequences at one end, and the oligonucleotides, each containing none of the generic flanking sequences at one end, and (c) assembling the oligonucleotides using the generic flanking sequences to randomly synthesize nucleic acid fragments.


According to yet another embodiment of the present disclosure, a method of preparing nucleic acid molecules, including (a) providing a pool of oligonucleotides, (b) assembling the oligonucleotides to randomly synthesize nucleic acid fragments, (c) connecting base sequences for amplification to the randomly synthesized nucleic acid fragments, and (d) amplifying the nucleic acid fragments with primers bound to the base sequences for amplification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow chart illustrating a method of preparing nucleic acid molecules according to one embodiment of the present disclosure.



FIG. 2 is a flow chart illustrating a random gene synthesis process according to one embodiment of the present disclosure.



FIGS. 3 and 4 illustrate procedures for the synthesis of nucleic acid fragments by random synthesis processes.



FIG. 5 illustrates two procedures for tagging nucleic acid fragments with barcode sequences according to embodiments of the present disclosure.



FIG. 6 illustrates a procedure for recovering desired nucleic acid fragments from a pool of barcode-tagged nucleic acid fragments and assembling the recovered nucleic acid fragments to form long nucleic acid molecules.



FIG. 7 schematically illustrates simultaneous utilization of a number of oligonucleotides for shotgun synthesis to obtain large target DNA molecules.



FIG. 8 shows PCR products produced in individual steps.



FIG. 9 shows computational analysis of 454 sequencing data from shotgun synthesis.





DETAILED DESCRIPTION

Embodiments of the present disclosure will now be described in more detail with reference to the accompanying drawings. These embodiments are provided so that this disclosure will fully convey the scope of the disclosure to those skilled in the art. Accordingly, the present disclosure may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. In the drawings, the dimensions, such as widths, lengths and thicknesses, of elements may be exaggerated for convenience. It will be understood that when a first element is referred to as being “connected” or “attached” to a second element, the first element can be directly connected or attached to the second element or a third element may also be interposed between the first and second elements.



FIG. 1 is a flow chart illustrating a method of preparing nucleic acid molecules according to one embodiment of the present disclosure. Referring to FIG. 1, in step S110, nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid are provided. The nucleic acid fragments may be naturally occurring or artificially synthesized ones. Preferably, the nucleic acid fragments are derived from DNA microchips providing several million kinds of base sequences at low costs or from a pool of synthetic oligonucleotides. The pool of synthetic oligonucleotides may be prepared by methods well known in the art. For example, the pool of synthetic oligonucleotides may be prepared from resin-based oligonucleotides but is not limited thereto. Preferably, the nucleic acid fragments are derived from DNA microchips.


When it is intended to synthesize large target nucleic acid molecules, the nucleic acid fragments may be ones that are free of sequence errors such as insertion, deletion, transition and transversion.


The nucleic acid fragments provided in step S110 may be directly extracted from a pool of oligonucleotides. Alternatively, the nucleic acid fragments may be prepared by amplifying and assembling oligonucleotides so as to have lengths above a predetermined level. When it is intended to synthesize long target nucleic acid molecules, the nucleic acid fragments may be made by various processes, including a hierarchical gene synthesis process (Journal of Biotechnology 151 (2011) 319-324) or a random gene synthesis process, which will be described below.


In the present specification, random gene synthesis is also referred to as “shotgun synthesis”, and nucleic acid fragments made by such a shotgun synthesis method are also referred to as “shotgun products.”


Shotgun sequencing is a process in which analyte DNA is randomly fragmented, sequencing adaptors are connected to the nucleic acid fragments, followed by high-throughput sequencing analysis. Shotgun sequencing includes arranging the individual fragments and identifying the complete sequence of the original analyte DNA using a computer program. Shotgun synthesis proceeds in the exact reverse order to that of the shotgun sequencing. Oligonucleotides constituting a portion of the sequence of nucleic acid molecules to be synthesized are constructed and assembled randomly to make nucleic acid fragments, which are analyzed by high-throughput sequencing. Desired nucleic acid fragments are recovered among the analyzed nucleic acid fragments and are used to make the final nucleic acid molecules.


According to one embodiment of the present disclosure, the nucleic acid fragments provided in step S110 may be shotgun products prepared by a shotgun synthesis method. Oligonucleotides designed to contain generic flanking sequences may be used to make the shotgun products.



FIG. 2 is a flow chart illustrating a random gene synthesis process according to one embodiment of the present disclosure. Referring to FIG. 2, in step S210, a pool of oligonucleotides, each containing restriction enzyme digestion sequences and generic flanking sequences at at least one end, is provided. In step S220, the restriction enzyme digestion sequence portions are cleaved to provide a pool of mixtures including the oligonucleotides, each containing the generic flanking sequences at one end, and the oligonucleotides, each containing none of the generic flanking sequences at one end. In step S230, the oligonucleotides in the mixture are assembled using the generic flanking sequences to randomly synthesize nucleic acid fragments.


In step S210, the generic flanking sequence may exist at one or both ends of the oligonucleotide. For example, the oligonucleotides used in the random gene synthesis (shotgun synthesis) process may contain, from the 5′ to 3′ direction, 5′-end generic flanking sequences, the oligonucleotide sequences constituting the target nucleic acid, and 3′-end generic flanking sequences.


The 5′-end generic flanking sequences and 3′-end generic flanking sequences existing at the ends of the oligonucleotides are priming regions where the amount of the oligonucleotide derived from DNA chips is amplified, and are used as annealing regions of primer sets for the production of a sufficient amount of the oligonucleotides.


The oligonucleotides may contain restriction enzyme digestion sequences. The nucleic acid fragments contain 5′-restriction enzyme digestion sequences with the 5′-end generic flanking sequences, and 3′-restriction enzyme digestion sequences with the 3′-end generic flanking sequences. The 5′-restriction enzyme digestion sequences and the 3′-restriction enzyme digestion sequences in the oligonucleotides may be identical to or different from each other.


The oligonucleotides are 50-500 base pairs (bp), more preferably 100-300 bp, even more preferably 120-200 bp, most preferably about 150 bp in length.


According to one embodiment of the present disclosure, the oligonucleotides may contain portions or all of the sequence of the target nucleic acid. When the oligonucleotides contain portions of the sequence of the target nucleic acid, the target oligonucleotides with varying sizes are sequentially assembled to synthesize the target nucleic acid molecules containing all of the sequence.


The pool of the oligonucleotides may be one that is cleaved from DNA microchips. Alternatively, the pool of the oligonucleotides may be a mixture of oligonucleotides synthesized on a solid. The cleaved oligonucleotides may be amplified to ensure an amount necessary for long gene synthesis. This amplification may be perform by polymerase chain reaction (PCR) using the generic flanking sequences.


Next, the generic flanking sequences are cleaved using a restriction enzyme recognizing the restriction enzyme digestion sequences in the amplified oligonucleotides. The pool of the cleaved oligonucleotides may take the form of a mixture including the oligonucleotides, each containing none of the generic flanking sequences because the restriction enzyme digestion sequences at both ends are completely cleaved, and the oligonucleotides, each containing the generic flanking sequences remaining at one end because only the restriction enzyme digestion sequences at one end are cleaved.


The oligonucleotides of the mixtures can be assembled by polymerase chain reaction assembly (PCA) using the generic flanking sequences. At this time, the oligonucleotides are sequentially assembled to make fragments with varying lengths. Such fragments may be randomly assembled to each other. Thus, the small or large fragments may be randomly assembled at various locations in the PCR solution to synthesize longer fragments containing all or portions of the sequence of the target nucleic acid molecules. This assembly may proceed until the oligonucleotides, each containing the generic flanking sequence at one end, overlap each other to make nucleic acid fragments containing the generic flanking sequences at both ends.


The oligonucleotides of step S210 are elaborately designed to form desired shotgun products. Several oligonucleotides may be assembled in such a manner that they overlap each other through some complementary sequences of the oligonucleotide sequences. The oligonucleotides are designed for random assembly to form shotgun products. For example, if a shotgun product (e.g., ˜400 bp) containing the 5′-end regions of the target nucleic acid molecules consists of 5 target oligonucleotides, it may be formed through sequential assembly among the following oligonucleotides cleaved using restriction enzymes: from the 5′ to 3′ direction, to form a 5′-end region, a first oligonucleotide containing a 5′-end generic flanking sequence and a portion of the sequence of the target nucleic acid molecules and from which the restriction enzyme digestion sequences are partially cleaved; a second oligonucleotide including a region (e.g., 20-50 bp long) overlapping the 3′-end region of the first oligonucleotide; a third oligonucleotide including a region overlapping the 3′-end region of the second oligonucleotide; a fourth oligonucleotide including a region overlapping the 3′-end region of the third oligonucleotide; and a fifth oligonucleotide containing a sequence including a region overlapping the 3′-end region of the fourth oligonucleotide and a 3′-end generic flanking sequence. FIGS. 3 and 4 illustrate procedures for the synthesis of nucleic acid fragments by random synthesis processes.


In a modified embodiment, the nucleic acid fragments may be prepared by the following method.


First, a pool of oligonucleotides is provided. Next, raw oligonucleotides without the addition of generic flanking sequences, etc. are assembled to randomly synthesize nucleic acid fragments, unlike the previous embodiment. Base sequences for amplification are connected to the randomly synthesized nucleic acid fragment, and then the nucleic acid fragments are amplified with primers bound to the base sequences for amplification to obtain amplified nucleic acid fragments.


As described above, the preparation of nucleic acid molecules by random synthesis processes is advantageous in that several kinds of libraries of nucleic acid fragments can be prepared simultaneously.


According to one embodiment of the present disclosure, the nucleic acid fragments of step S110 may include the complete sequence of a target nucleic acid. For the synthesis of error-free long DNA, the sequences of the nucleic acid fragments may be validated using a parallel sequencing system. When the performance of the parallel sequencing system to validate the sequences of the nucleic acid fragments is taken into consideration, the nucleic acid fragments are preferably 20-3,000 bp, more preferably 200-1,000 bp, more preferably 300-500 bp, even more preferably 350-450 bp, most preferably 380-420 bp in length. Despite this preferred numerical range, an improvement in the performance of parallel sequencing systems for the analysis of several thousand by long DNA can extend the size of the nucleic acid fragments to several thousand by long DNA.


The term “nucleotide” as used herein refers to a single- or double-stranded deoxyribonucleotide or ribonucleotide and includes naturally occurring nucleotide analogs unless stated otherwise (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).


The term “oligonucleotide” as used herein refers to an oligomer or polymer of nucleotides or an analog thereof. According to one embodiment of the present disclosure, the gene amplification is carried out by PCR. According to one embodiment of the present disclosure, the primers (for example, the generic flanking sequences) are used in gene amplification reactions.


The term “amplification reactions” as used herein refers to reactions for amplifying target nucleic acid sequences. Various amplification reactions were reported in the art and include, but are not limited to, polymerase chain reaction (PCR) (U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,800,159), reverse transcription polymerase chain reaction (RT-PCR) (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), the methods of Miller, H. I. (WO 89/06700) and Davey, C. et al. (EP 329,822), multiplex PCR (McPherson and Moller, 2000), ligase chain reaction (LCR) (17, 18), Gap-LCR (WO 90/01069), repair chain reaction (EP 439,182), transcription-mediated amplification (TMA) (19) (WO88/10315), self sustained sequence replication (20) (WO 90/06995), selective amplification of target polynucleotide sequences (U.S. Pat. No. 6,410,276), consensus sequence primed polymerase chain reaction (CP-PCR) (U.S. Pat. No. 4,437,975), arbitrarily primed polymerase chain reaction (APPCR) (U.S. Pat. Nos. 5,413,909 and 5,861,245), nucleic acid sequence based amplification (NASBA) (U.S. Pat. Nos. 5,130,238, 5,409,818, 5,554,517, and 6,063,603), and strand displacement amplification (21, 22). Other possible amplification methods are described in U.S. Pat. Nos. 5,242,794, 5,494,810, and 4,988,617, and U.S. patent application Ser. No. 09/854,317.


In a most preferred embodiment of the present disclosure, the amplification procedure is carried out in accordance with PCR disclosed in U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,800,159.


PCR is one of the most well-known nucleic acid amplification methods and many modifications and applications thereof have been developed. For example, traditional PCR procedures have been modified to develop touchdown PCR, hot start PCR, nested PCR, and booster PCR with improved PCR specificity or sensitivity. In addition, multiplex PCR, real-time PCR, differential display PCR (DD-PCR), rapid amplification of cDNA ends (RACE), inverse polymerase chain reaction (IPCR), vectorette PCR and thermal asymmetric interlaced PCR (TAIL-PCR) have been developed for specific applications. Details of PCR can be found in McPherson, M. J., and Moller, S. G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000), the teachings of which are incorporated herein by reference. Examples of preferred target nucleic acid molecules that can be used in the present disclosure include, but are not particularly limited to, DNA (gDNA and cDNA) and RNA. DNA is more preferred. Examples of target nucleic acids suitable for use in the present disclosure include nucleic acids from prokaryotic cells, eukaryotic cells (e.g., protozoans, parasites, bacteria, yeasts, higher plants, lower animals, and higher animals, including mammals and humans), viruses (e.g., herpes virus, HIV, influenza virus, Epstein-Barr virus, hepatitis virus, and poliovirus), and viroids.


The primers used in the present disclosure are hybridized or annealed to sites of the template to form double-stranded structures. Suitable conditions of nucleic acid hybridization for the formation of such double stranded structures are described in Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001) and Haymes, B. D., et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985).


A variety of DNA polymerases can be used for amplification in the present disclosure and include “Klenow” fragment of E. coli DNA polymerase I, thermostable DNA polymerases, and bacteriophage T7 DNA polymerase. Preferred are thermostable DNA polymerases that can be obtained from a variety of bacterial species, including DNA polymerases and Phusion polymerases of Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis, Pyrococcus furiosus (Pfu), Thermus antranikianii, Thermus caldophilus, Thermus chliarophilus, Thermus flavus, Thermus igniterrae, Thermus lacteus, Thermus oshimai, Thermus ruber, Thermus rubens, Thermus scotoductus, Thermus silvanus, Thermus species Z05, Thermus species sps 17, Thermus thermophilus, Thermotoga maritima, Thermotoga neapolitana and Thermosipho africanus. Most preferably, Pyrococcus furiosus (Pfu) or Phusion high-fidelity DNA polymerase is used.


When the polymerization reaction is carried out, it is preferred to provide excessive amounts of the components necessary for amplification to a reaction vessel. The excessive amounts of the components necessary for amplification refer to amounts of the components in which the amplification reaction is not substantially limited by the concentrations of the components. It is desirable to provide, to the reaction mixture, cofactors such as Mg2+ and dATP, dCTP, dGTP and dTTP in amounts sufficient to reach a desired degree of amplification. All enzymes used in the amplification reaction may be active under the same reaction conditions. Indeed, a buffer allows all enzymes to reach their optimum reaction conditions. Thus, the use of a buffer enables the amplification of a single reactant without any change in reaction conditions such as the addition of other reactants.


In the present disclosure, annealing is carried out under stringent conditions that allow for specific binding between the target nucleotide sequences (e.g., the generic flanking sequences of the target oligonucleotides) and the primers. The stringent annealing conditions are sequence-dependent and vary depending on ambient environmental parameters. The oligonucleotide pool thus amplified can be used to make primary amplification products. The primary amplification products can be used to prepare secondary amplification products, which can be assembled into larger target nucleic acid molecules (e.g., ≧10 kb).


The term “primer” as used herein refers to an oligonucleotide that can act as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product complementary to a nucleic acid strand (a template) is induced, i.e., in the presence of nucleotides and a polymerase, such as DNA polymerase, and under appropriate temperature and pH conditions. Preferably, the primer is deoxyribonucleotide and a single strand. The primers used in the present disclosure may include naturally occurring dNMP (i.e., dAMP, dGMP, dCMP and dTMP), modified nucleotides, and non-naturally occurring nucleotides. Other examples of the primers include ribonucleotides.


The primers should be sufficiently long to prime the synthesis of extension products in the presence of a polymerase (such as DNA polymerase). The length of the primers may vary depending on many factors, e.g., temperature, application, and sources of the primers. The primers are typically 15-30 nucleotides long. Short primer molecules generally necessitate a lower temperature to form sufficiently stable hybridization composites with templates.


The term “annealing” or “priming” as used herein refers to the apposition of an oligodeoxynucleotide or nucleic acid to a template nucleic acid. The apposition enables the polymerase to polymerize nucleotides into a nucleic acid molecule complementary to the template nucleic acid or a portion thereof. The term “hybridization” as used herein refers to a process in which two single-stranded nucleic acids form a duplex structure by pairing of complementary base sequences. The hybridization may occur when complementarity between single-stranded nucleic acid sequences is perfectly matched or even when partially mismatching bases are present. The degree of complementarity necessary for hybridization may vary depending on hybridization reaction conditions, particularly temperature.


The term “complementary” as used herein means a level of complementarity sufficient to selectively hybridize with the nucleotide sequence under certain particular hybridization or annealing conditions, and is intended to include both substantially complementary and perfectly complementary, preferably perfectly complementary.


Referring back to FIG. 1, in step S120, the nucleic acid fragments are tagged with barcode sequences. The barcode sequences are introduced into the nucleic acid fragments to recover error-free fragments or other desired fragments among the nucleic acid fragments provided in the previous step or to selectively amplify and assemble them in order to synthesize target nucleic acid molecules. The barcode sequences may be added to the generic flanking sequences present at the ends of the nucleic acid fragments.


The kinds of the barcode sequences are not particularly limited so long as they can be added to distinguish the nucleic acid fragments from each other. The number of the kinds of the barcode sequences is preferably greater than that of the nucleic acid fragments to distinguish the individual nucleic acid fragments. For example, the barcode sequences may be mixtures of two or more kinds of randomly or intentionally designed oligonucleotides.


According to one embodiment of the present disclosure, poly-N degenerate-barcode sequences among the barcode sequences may use poly-N degenerate DNA or may also use sequences barcoded with two or more different sequences randomly made using a computer program well known in the art.


The tagging with the barcode sequences is not particularly limited and may be performed by a method selected from the group consisting of PCR, emulsion PCR and ligation. For example, assembly of the barcode sequences to shotgun synthesized DNA fragments by PCR or ligation of double-stranded (ds) DNA including poly-N degenerate-barcode sequences may be used for the tagging.



FIG. 5 illustrates two procedures for tagging nucleic acid fragments with barcode sequences according to embodiments of the present disclosure. (a) and (b) of FIG. 5 illustrate barcode tagging procedures by PCR and by ligation, respectively.


In step S130, the sequences of the nucleic acid fragments tagged with the barcode sequences are validated. Parallel sequencing is preferably used to validate the sequences of the tagged nucleic acid fragments. As a result, the sequences of the tagged nucleic acid fragments, together with the tagging barcode sequences, can be validated.


According to one embodiment of the present disclosure, the parallel sequencing or high-throughput sequencing is carried out by a suitable method well known in the art, for example, using a Roche-454 sequencing system or a high-throughput sequencing system with a read length of 100 bp or more.


According to one embodiment of the present disclosure, sequencing adaptor sequences may be further added to the barcode sequences. Sequences containing the barcode sequences added to the nucleic acid fragments are herein referred to as “barcode primers” for convenience.


The term “adaptor sequences” as used herein refers to sequences that enable high-throughput sequencing analysis of the nucleic acid fragments. For example, the adaptor sequences includes all commercially available sequences for 454-sequencing used in the present disclosure. Examples of preferred adaptor sequences include, but are not limited to, adaptor sequences of Roche-454 sequencing platforms and adaptor sequences of other next-generation sequencing technologies.


The term “generic flanking sequences” as used herein refers to base sequences that are added to both ends of the oligonucleotides to selectively amplify particular oligonucleotides among the pool of oligonucleotides. The base sequences added to the 5′-ends of different oligonucleotides necessary for assembly into target nucleic acid molecules are identical to each other, and the base sequences added to the 3′-ends of different oligonucleotides are identical to each other.


According to one embodiment of the present disclosure, an amplification procedure using the primers bound to the adaptor sequences may be performed using the tagged nucleic acid fragments as templates for sequence validation.


The barcode sequences are not limited to particular lengths and are, for example, 5-300 bp, preferably 10-100 bp, more preferably 12-40 bp, even more preferably 15-30 bp in length taking into consideration the sequencing performance on the entire sequences including the nucleic acid fragments. This numerical range may vary with the advance of sequencing technologies. For example, when the poly-N degenerate-barcode sequences are 20 bp long, 420 kinds of the barcode sequences are possible.


The barcode primers may contain, for example, from the 5′ to 3′ direction, 454-adaptor sequences, poly-N degenerate-barcode sequences, restriction enzyme digestion sequences, and generic flanking sequences. The primers for amplification may be designed to bind to the 454-adaptor sequences.


The sequence validation enables identification of error-free nucleic acid fragments among the nucleic acid fragments and the barcode sequences added thereto.


On the other hand, the restriction enzyme digestion sequences contained in the barcode primers serve to remove the sequencing adaptor sequences of the nucleic acid fragments. The reason for this removal is because the presence of the adaptor sequences hinders subsequent assembly of the nucleic acid fragments because of attached beads in sequencing analysis.


In step S140, desired nucleic acid fragments are recovered among the sequence-validated nucleic acid fragments using the barcode sequences. The validation of the sequences of the desired nucleic acid fragments and the tagging barcode sequences by sequencing in the previous step enables recovery of the desired nucleic acid fragments using the barcode sequences. Specifically, the recovery step may be carried out by selectively amplifying the desired nucleic acid fragments with primers corresponding to the barcode sequences and recovering the amplified nucleic acid fragments. Alternatively, the recovery step may be carried out by selectively hybridizing the desired nucleic acid fragments with oligonucleotides corresponding to the barcode sequences and recovering the hybridized nucleic acid fragments. For example, the desired nucleic acid fragments may be error-free nucleic acid fragments.


The desired nucleic acid fragments may be recovered using a computer program. Specifically, the sequences of the nucleic acid fragments are imaginarily assembled using a computer program and are compared with the complete sequence of desired target nucleic acid molecules. Thereafter, primers synthesized based on the most optimized information on sequences flanking DNA fragments or primers hybridizing therewith can be used to recover the desired nucleic acid fragments.


According to one embodiment of the present disclosure, the computer program may be any of those known in the art. Examples of more preferred computer programs include in-house Python programs and programs constructed using Perl, C, C++ or other programming languages.


According to one embodiment of the present disclosure, the computer program is used to synthesize sequences complementary to the selected barcode sequences into oligos. Next, only error-free fragments capable of optimizing the synthesis of target DNA are recovered among the nucleic acid fragments (i.e. mixtures of erroneous fragments and error-free fragments) by amplification (PCR) or hybridization using the synthesized barcode oligos. Examples of methods for the recovery of error-free fragments using the synthesized barcode sequences include, but are not limited to, DNA capture methods using microchips and hybridization methods for recovering desired error-free fragments by attaching desired barcode sequences to biotinylated beads or magnetic beads, in addition to PCR.


According to one embodiment of the present disclosure, when the nucleic acid fragments are provided by shotgun assembly, the length of the error-free barcoded nucleic acid fragments may be 200 bp or more. When a next-generation sequencing system capable of analyzing DNA with 1,000 bp or more is used, the error-free barcoded nucleic acid fragments may be 1,000 bp or more in length. More preferably, the error-free barcoded nucleic acid fragments are from about 200 bp to about 10 kb or more in length.


In step S150, recovered nucleic acid fragments can be assembled to form long nucleic acid molecules.


According to one embodiment of the present disclosure, the target nucleic acid molecules prepared by the present disclosure include, but are not limited to, target genes, target gene clusters, target genomes, and natural or synthetic nucleic acid molecules.


The term “target gene cluster” or “target genome” as used herein refers to a cluster or genome that includes at least two genes encoding a desired target (gene). The cluster or genome may include cluster or genome regions capable of generating two or more gene products (e.g., genome regions including one or more multiple splicing products of the same gene).


According to one embodiment of the present disclosure, a target gene cluster or target genome that can be synthesized by the method of the present disclosure may have a length of about 10 kb or longer. For example, the target gene cluster or target genome may include a penicillin biosynthetic gene cluster DNA sequence (11,376 bp) from Penicillium chrysogenum, and the penicillin biosynthetic gene cluster may include pcbAB, pcbC, and penDE genes.


The term “natural or synthetic nucleic acid molecules” as used herein is intended to include DNA (gDNA and cDNA) and RNA molecules, and nucleotides as basic units of the nucleic acid molecules include not only natural nucleotides but also analogues having modified sugar or base moieties (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).



FIG. 6 illustrates a procedure for recovering the desired nucleic acid fragments from the pool of the barcode-tagged nucleic acid fragments and assembling the recovered nucleic acid fragments to form long nucleic acid molecules. According to one embodiment of the present disclosure, the nucleic acid molecules may be prepared by a method including the following steps.


Nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid are provided (step (a)). The size of the nucleic acid fragments provided in step (a) may be from 20 to 300 bp.


The nucleic acid fragments are assembled to synthesize intermediates having sizes whose sequences can be validated by a parallel sequencing technology (step (b)). The size of the intermediates is not particularly limited and may be, for example, from 50 to 3,000 bp. The intermediates may be increased to a desired size with the advance of parallel sequencing technologies such as next-generation sequencing technology. The intermediates may be synthesized by various synthesis processes, including hierarchical synthesis or random synthesis (shotgun synthesis).


The intermediates are tagged with barcode sequences (step (c)). Preferably, sequencing adaptor sequences are added to the barcode sequences for sequence validation.


The sequences of the intermediates tagged with the barcode sequences are validated (step (d)). The sequence validation of the intermediates tagged in step (d) may be performed by a parallel sequencing technology. The method may further include amplifying the tagged nucleic acid fragments using the sequencing adaptor sequences between steps (c) and (d).


Desired intermediates are recovered among the sequence-validated intermediates using the barcode sequences (step (e)). The desired intermediates may have error-free sequences.


The recovered intermediates are assembled to form long nucleic acid molecules (step (f)). The size of the long nucleic acid molecules may be 1,000 bp or more.



FIG. 7 schematically illustrates simultaneous utilization of a number of oligonucleotides for shotgun synthesis to obtain large target DNA molecules. Shotgun synthesis using about 200 oligonucleotides may cause random fragments with varying sizes of 100 bp (monomeric forms of oligonucleotides) to 1,000 bp. The assembly fragments in the form of intermediates are effectively barcoded by degenerate primers for high-throughput sequencing. The sequence-validated fragments are used in the subsequent assembly process.


Referring to FIG. 7, first, oligonucleotides are prepared from chips. The oligonucleotides are designed to have flanking sequences with Type IIS restriction enzyme sites (EarI or BtsI), and are synthesized on a DNA microarray. After oligonucleotides are cleaved from the chips, PCR amplification is carried out to increase the concentration of the oligonucleotides. The amplified oligonucleotides are cleaved using Type IIS restriction enzymes to remove the flanking sequences. Because the efficiency of the restriction enzymes is less than 100%, there are still uncut flanking sequences. Shotgun DNA assembly PCR using the remaining uncut flanking sequences is carried out to synthesize random fragments of the target genes. The sequences of the synthesized random fragments are analyzed by high-throughput sequencing technology. To this end, the synthesized fragments are tagged with the barcode primers using PCR. The PCR products are sequenced by 454 high-throughput sequencing and analyzed using an in-house Python program to identify error-free gene fragments and connected barcode sequences. To recover the error-free gene fragments, PCR is carried out from the pool of shotgun-assembled target gene fragments using barcode primer sequences. After removing the degenerate barcode sequences and flanking sequences from the recovered fragments by Type IIS restriction enzyme digestion, the error-free shotgun synthesis fragments are finally assembled into the full-length target gene.



FIG. 8 shows PCR products produced in the individual steps. FIG. 8a shows PCR products produced by second round PCR using chip flanking primers. FIG. 8b shows results obtained after electrophoresis of the PCR products cleaved by Type IIS restriction enzyme in 4% agarose gel. The indicated two bands were excised and gel-purified together. FIG. 8c shows smear bands of PCR products assembled randomly using the Pen gene cluster fragments of FIG. 8b, which were amplified by chip flanking primers. The smear bands were excised and gel-purified. FIG. 8d shows PCR products obtained by re-amplification of the bands in the white box of FIG. 8c using chip flanking primers. The bands in the white box were excised and gel-purified. FIG. 8e shows smear bands obtained from PCR using barcode primers. The smear bands in the white box were excised and gel-purified. FIG. 8f shows products obtained by 100-fold dilution of the products obtained from the bands of FIG. 8e and amplification of the diluted products using 454-adaptor primers. If the concentration of the products obtained from the bands of FIG. 8e is excessively high, PCR is not conducted properly. The amplification products were excised, purified, diluted, cloned into TOPO vector, and submitted for Roche-454 sequencing. Daughter fragment 11-d produced by PCR was re-amplified with primers containing degenerate sequences. The resulting PCR amplification products are shown in FIG. 8g.



FIG. 8
h shows three bands obtained by excising the bands shown in FIG. 8g with a Type IIS restriction enzyme. FIG. 8i shows Fragment 11 prepared by assembly of the bands shown in FIG. 8h and other daughter fragments. Fragment 11 is indicated by the arrow. FIG. 8j shows a final gene cluster obtained after assembly of 11 fragments.



FIG. 9 shows computational analysis of 454 sequencing data from shotgun synthesis. FIG. 9a shows the number of 454 sequencing reads versus the length of the gene fragments. The upper and lower lines show the number of total 454 sequencing reads (total reads) and the error-free fragment reads (correct reads), respectively. The most abundant and correct reads have a length of 400 bp (they are typically 300 bp without barcode flanking regions). The inset in FIG. 9a shows that the percentage of error-free gene fragments tends to decrease as the length of the gene fragments increases. FIG. 9b shows computational analysis of two independent experiments (first and second experiments), and graphically aligned error-free gene fragments after the removal of the flanking barcode sequences. The first, second and third arrows on top of the figure represent clusters of genes (adipate-activating, cysteine-activating and valine-activating domains, respectively). The y-axis indicates the number of error-free gene fragments corresponding to various parts of the target gene. The scale bars at the bottom left and top right indicate 100 bp fragments and 1,000 bp base pairs, respectively. FIG. 9c shows the results of hierarchical shotgun synthesis. Optimized and selected gene fragments (˜300 bp) were assembled into 1,000 bp gene fragments, which were then continuously assembled to synthesize the target gene (penicillin synthetic gene cluster (N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase); ˜11.4 kb).


The foregoing embodiments of the present disclosure offer the following advantages.


The method of the present disclosure enables scalable synthesis of large target nucleic acid molecules in a more economical and efficient manner. According to the method of the present disclosure, amplification products containing the sequence of a target nucleic acid are prepared using an elaborately designed target oligonucleotide pool, 300-500 bp error-free shotgun assembly fragments are selectively recovered from the amplification products using barcode sequences, and larger target nucleic acid molecules (e.g., ≧˜10 kb) are synthesized using the error-free shotgun assembly fragments. In addition, the method of the present disclosure enables gene synthesis at lower cost than conventional methods using resin-based oligonucleotides. Therefore, the present disclosure can be applied as a novel method for the synthesis of large target nucleic acid molecules and thus provides very excellent means that can considerably reduce gene synthesis cost.


The present disclosure will be explained in more detail with reference to the following examples. These examples are provided for illustrative purposes only and it will be obvious to those skilled in the art that are not intended to limit the scope of the present disclosure in accordance with the subject matter of the present disclosure.


Examples
Materials

AccuPrep™ gel purification kits for DNA purification and AccuPrep™ plasmid extraction kits for plasmid extraction were purchased from Bioneer (Korea). Pfu polymerase pre-mix and Taq polymerase pre-mix were purchased from Solgent (Korea). Phusion polymerase pre-mix, restriction enzymes [EarI (20,000 U/ml) and BtsI (10,000 U/ml)], NEB buffer 4(10) and competent cells (C-2566) were purchased from New England Biolabs (NEB) (USA). TOP Cloner™ Blunt core kits (6 TOP cloner buffer, sterile water, pTop blunt V2) were purchased from Enzynomics (Korea). Microchip oligonucleotides and primers were purchased from Agilent (USA) and Macrogen (Korea), respectively. Sanger sequencing and Roche-454 sequencing were requested to Macrogene (Korea).


Target Penicillin Biosynthetic Gene Cluster and Oligonucleotide Sequence Design


Penicillin biosynthetic gene cluster (N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase) DNA sequence (11,376 bp) from Penicillium chrysogenum was chosen as a synthetic model. A codon-optimized penicillin biosynthetic gene cluster sequence was designed using the web-based program Optimizer (Puigb, P. et al., 2007). Twenty-four nucleotides (5-GCAGAGTAAAGACCGTGCACTTAT-3 SEQ ID NO: 1) were added to the microchip oligonucleotides.


Each Agilent chip oligonucleotide was 150 nucleotides in length and consisted of flanking sequences and target DNA sequences. Oligonucleotides (114 plus and 114 minus strands) for target DNA sequences were designed in such a way that upon annealing, complementary oligonucleotides contained overlapping regions for assembly. These 228 oligonucleotide sequences were flanked by generic PCR primer sequences.


Processing of Sub-Pools of Agilent Microchip Oligonucleotides


Lyophilized Agilent microchip oligonucleotides were suspended in 100 μl water. A higher concentration of the microchip oligonucleotide subpool (228 oligonucleotides targeting the penicillin biosynthetic gene cluster) was prepared using PCR amplification with flanking primers. The components included in each PCR reaction mixture were 8 μl water, 10 μl 2 Pfu polymerase pre-mix, 0.5 μl cleaved oligonucleotide pool, and 1 μl 10 μM forward and reverse primers. The first PCR reaction was performed as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 20-cycle PCR step, each cycle consisting of 95° C. for 30 s, 55° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. Thereafter, to amplify the oligos, the second PCR reaction was performed on the PCR products amplified by the first PCR reaction. For the PCR, the following reagents were used: 18 μl water, 25 μl 2 Pfu polymerase pre-mix, 3 μl of the first PCR products, and 2 μl 10 μM forward and reverse primers. The second PCR conditions were the same as for the first PCR reaction with the exception of the number of reaction cycles (i.e. 12). After verification of the desired products by 4% agarose gel electrophoresis, restriction enzyme digestion was carried out as follows: when EarI was used, 2.5 μl EarI, 5 μl NEB buffer, 0.5 μl 100×BSA and 50 μl PCR products were mixed, followed by digestion at 37° C. for 3 h; and when BtsI was used, 2.5 μl BtsI, 5 μl NEB buffer, 0.5 μl 100×BSA and 50 μl PCR products were mixed, followed by digestion at 55° C. for 3 h. The restriction digest products were electrophoresed through 4% agarose gels and gel-purified.


Shotgun Assembly


The gel-purified products were assembled using the first round shotgun assembly PCR. For the PCR, the following reagents were used: 20 μl Pfu polymerase pre-mix and 20 μl purified products (the sub-pool of 228 microchip oligonucleotides). The PCR conditions were as follows: a pre-denaturation step at 95° C. for 3 min; (b) a 36-cycle PCR step, each cycle consisting of 95° C. for 30 s, 60° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. After the PCR products were electrophoresed through an agarose gel (1.5%), gel regions (target size=˜350 bp) of 300-500 bp were excised.


Processing of the Shotgun Assembly Products by Barcoding and 454 Sequencing


The detailed procedure is illustrated in FIG. 7. The gel-purified shotgun assembly fragments were amplified using flanking primers for PCR. For the PCR, the following reagents were used: 10 μl water, 25 μl Pfu polymerase pre-mix, 10 μl of the purified shotgun assembly fragments, and 2.5 μl 10 μM forward and reverse primers. The PCR conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 18-cycle PCR step, each cycle consisting of 95° C. for 30 s, 55° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. As a result, bands between 300 and 450 bp were excised and purified using an AccuPrep™ DNA purification kit (Bioneer, Korea).


The fragments were barcoded by a primer pair that consisted of, from the 5′ to 3′ direction, a 454 DNA sequencing-adaptor sequence, a 454 high-throughput sequencing key sequence (e.g., 5-TCAG-3), a 20-mer degenerate primer (i.e. made of poly N sites), an EcoP15I Type IIS restriction enzyme site, and the flanking primer sequences. The EarI or BtsI site was located at the 3′ end of the flanking sequence of the chip oligonucleotides. The EcoP15I site was introduced into the PCR amplification procedure for shotgun assembly of the fragments using the barcoded primers. For the PCR, the following reagents were used: 6 μl water, 20 μl 2 Pfu polymerase pre-mix, 10 μl the assembled gene fragment pool, and 2 μl forward and reverse barcode primers. The PCR conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 18-cycle PCR step, each cycle consisting of 95° C. for 30 s, 55° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. After the PCR products were electrophoresed through an agarose gel (1.5%), the gel was excised to purify assembled fragments (450-600 bp). These gel-purified fragments were diluted 100-fold and the diluted products were then used for a final PCR amplification step involving 454 DNA sequencing-adaptor primers (Macrogene, Korea). For the PCR, the following reagents were used: 17.5 μl water, 25 μl Pfu, 2.5 μl of the 100-fold diluted gel-purified products and 2.5 μl forward and reverse primers. Eight replicate 20 μl PCR reaction products. The PCR reaction conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 25-cycle PCR step, each cycle consisting of 95° C. for 30 s, 71° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. Thereafter, the PCR products were electrophoresed through an agarose gel (1.5%), followed by gel purification (450-500 bp). The eight replicates were pooled prior to 454 sequencing.


Prior to 454 sequencing, cloning of the barcoded target gene fragments was performed, and several colonies were selected and submitted for Sanger sequencing evaluation. Gel-purified and barcoded products were cloned into the TOPO vector using the TOP Cloner™ Blunt core kit (Enzynomics, Korea). Competent cells derived from C2566 (New England Biolabs, USA), an Escherichia coli strain, were then transformed with the cloned products. After overnight growth on agar plates at 37° C., several colonies were chosen for colony PCR using M13F-pUC and M13R-pUC universal primer pairs. After confirmation of the presence of inserted DNA, Sanger sequencing was conducted prior to Roche-454 sequencing. Thereafter, the sequences of the gene fragments and the barcode primer sequences were validated using the Lasergene program (DNAstar, Madison, Wis.). After verification of the sequences, the pool of assembly PCR products was selected for Roche-454 high-throughput sequencing. The sequencing data were analyzed using an in-house Python program, and error-free gene fragments were selected.


Algorithm of In-House Python Program to Analyze the 454 High-Throughput Sequencing


The primary task of the computer program was to select error-free shotgun assembly samples for subsequent assembly. The 454 sequencing read results (454 reads) were aligned to the target penicillin biosynthetic gene cluster sequence using the in-house Python programming language. DNA fragments with desired restriction enzyme sites (i.e. EcoP15I and either, EarI or BtsI sites) at both ends of the read were selected based on the sequencing data with a high quality score (Phred-like consensus quality >30, which corresponded to a base call accuracy >99.9%). Flanking sequences containing the enzyme site were eliminated from the processed gene fragments, and the flanking sequence-removed internal sequences were aligned to the target penicillin biosynthetic gene cluster sequence. When these internal sequences matched perfectly with the reference sequence, the aligned sequences were graphically listed along with their target gene cluster sequence (FIG. 9b). Subsequently, the program determined the optimal set of internal sequences that overlapped by more than 15 bp with other fragments necessary for subsequent assembly.


These selected gene fragments were recombined into the complete target gene (FIG. 9c). The Python scripts used for the analysis are available upon request.


Synthesis of the Target Gene Cluster from the Target Assembly Products


Amplification of the Desired Shotgun Assembly Products and Elimination of the Flanking Sequences from the Shotgun Assembly Products


As described above, an in-house Python program was used to select optimum sets of shotgun assembly products. These overlapping error-free DNA fragments were selectively amplified from shotgun assembly DNA mixtures using selected barcode primer pairs. For the PCR, the following reagents were used: 8 μl water, 10 μl Phusion polymerase pre-mix, 1 μl forward and reverse barcode primers, and 1 μl of the shotgun assembly DNA mixture.


The PCR conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 30-cycle PCR step, each cycle consisting of 95° C. for 30 s, 60° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. The barcode primers are listed in Table 1.












Sequences of degenerate primers used for PCR recovery of error-free fragments
















Primer 
Primer 
Nested PCR
Nested PCR




Restric-
sequence
sequence
Primer sequence
Primer sequence


Fragment

tion
Forward 
Reverse 
Forward 
Reverse 


(Daughter

enzyme 
direction
direction
direction
direction


fragment)
CODE
used
(5′→3′)
(5′→3′)
(5′→3′)
(5′→3′)





1-a
G2JQR9I0
EcoP15I
CTATTTGATGTT
AGCCTTTTCA





7H3VM7
from Btsl
CGTAGTTCCAG 
AAGCGAAAG






reaction 
(SEQ ID NO: 2)
(SEQ ID NO: 3)






pool









1-b
G2JQR9I0
EcoP15I
ATCTATTAGGTC
CATGCAGAGG





7H5WCJ
from Earl
ATAGTAGGCAG 
AAACCATAAA






reaction 
(SEQ ID NO: 4)
(SEQ ID NO: 5)






pool









1-c
G2JQR9I0
Earl
TGCTATTCTTTC
GAATGTTTGT





7H38JU

TGCCTTTTCAG 
TGCGTTTCCA







(SEQ ID NO: 6)
(SEQ ID NO: 7)







1-d
G2JQR9I0
EcoP15I
TCGAGCTCAAT
TTTATGATTGCA





7IKM12
from 
AGTTTTTTCAG 
TTCAGCAGCAG






Earl pool
(SEQ ID NO: 8)
(SEQ ID NO: 9)







1-e
G2JQR9I0
Earl
TTACTCCATTT
ATTCTTTGGCC





6HC8AH

TGCACTCTCAG 
TTTGTTGACAG







(SEQ ID NO: 10)
(SEQ ID NO: 11)







2-a
G2JQR9I0
Nest PCR
TTAGTTTCAACATG
ATGTGTATATTC
GTGAATATCCG
CAGTTCACGTTC



6HCZWA
from Btsl 
TATATACAGCAGC 
GACACTTTCAGC
TCTAGCAAGC 
GTCGCACACCAC 




pool
(SEQ ID NO: 12)
(SEQ ID NO: 13)
(SEQ ID NO: 14)
(SEQ ID NO: 15)





2-b
G2JQR9I0
EcoP15I
CTATTTTCAG
TCCTAAGTTG





6GYZ2I
from Btsl 
TGTGCCTTT
ATGAAACTTT






pool
(SEQ ID NO: 16)
(SEQ ID NO: 17)







2-c
G2JQR9I0
Earl
TATCTGGTA
TAGAACTGGC





6GUX19

GGAGGGGTT
AATGACGCTG







(SEQ ID NO: 18)
(SEQ ID NO: 19)







2-d
G2JQR9I0
Earl
TTCTGTTTGT
TACCGTTTTT





6G2U2M

CTTAAATGCG
AAGATTGCGT







(SEQ ID NO: 20)
(SEQ ID NO: 21)







2-e
G2JQR9I0
EcoP15I
CTGAAATTCA
CTATGGGGT





7IH5UA
from Btsl 
TTTATGTTTG
ACCTTTTTG






pool
(SEQ ID NO: 22)
(SEQ ID NO: 23)







2-f
G2JQR9I0
EcoP15I
ATATTCGAGC
AAGTGATTGT





6G01OD
from Earl 
GTATGTATTA
TTACAGTCTC






pool
(SEQ ID NO: 24)
(SEQ ID NO: 25)







2-g
G2JQR9I0
EcoP15I
TCATTTCGAG
GGGTTCTTTC





7IKZ70
from Earl 
AAAAGGCCGA
CCTTATTTTG






pool
(SEQ ID NO: 26)
(SEQ ID NO: 27)







3-a
G2JQR9I0
Earl
AACGAGGATA
AAGTGTTGAG





6HH7SE

TACAAATATA
AGTGGTATAT







(SEQ ID NO: 28)
(SEQ ID NO: 29)







3-b
G2JQR9I0
Earl
ATGGAGCTTT
AATTGTCTAG





7H5FTG

TATGTGGTTA
TTTCGTTGTT







(SEQ ID NO: 30)
(SEQ ID NO: 31)







3-c
G2JQR9I0
EcoP15I
TGTTGGTTGT
ATACTTGTTTCA





6GWSUY
from Btsl 
TCAATGGAGT
ATTTTGTCCAGC






pool
(SEQ ID NO: 32)
(SEQ ID NO: 33)







4-a
G2JQR9I0
Nest PCR
TATTTTTTTCCA
ATCCTCTGCT
ACCTGCATCCA
GGGAAAGGGT



6GX0BH
from Earl 
ATTTTTTACAGC 
ATTCTGTTGC
GCTGATTGCGC
GGTGTTGTAA




pool
(SEQ ID NO: 34)
(SEQ ID NO: 35)
GTATCCGTCAG
(SEQ ID NO: 37)







CGTCAGCGTTT 








GTCTGTGTCTA








TCTCTGTG








(SEQ ID NO: 36)


















4-b
G2JQR9I0
Nest PCR
CTAATTTGAA
ACATTACCTTT
CATGGAACAA
TCCAGCAGCT















7H7Z2P
from Earl 
TGCAGTCCGT
GGAAAAAACC
AGTGATGCTT 
GGAAGACTT




pool
(SEQ ID NO: 38)
(SEQ ID NO: 39) 
(SEQ ID NO: 40)
(SEQ ID NO: 41)





4-c
G2JQR9I0
Nest PCR
TTAAGTATGAT
CGATATTGTTCA
TCTGCGCTTC
GGCGTAAATC



6HCPB7
from Earl 
TAATGCTGTCA 
TAATATGTCAG
TCTTGGGAA
TTCCAGTTTA




pool
(SEQ ID NO: 42)
(SEQ ID NO: 43)
(SEQ ID NO: 94)
(SEQ ID NO: 95)





4-d
G2JQR9I0
Nest PCR
GTGGTATGC
TATGTGAGTGAT
TGGTGCAGTA
TTTTTCGAAC



6GS219
from Earl 
ACGTTGGTC
CNCCGTTTCAG
GAAGACCGTA 
AGAAGCGGTA




pool
(SEQ ID NO: 46)
(SEQ ID NO: 47) 
(SEQ ID NO: 48)
(SEQ ID NO: 49)





4-e
G2JQR9I0
Nest PCR
ATTACTTAGGG
AGACCTTCAG
CGTTTACCTGA
AGCTGCACT



6HA06O
from Btsl 
TATTGCGTTC
TCTTTGCGAT
TCAAACACAGC 
TTATAGCGG




pool
(SEQ ID NO: 50)
(SEQ ID NO: 53)
(SEQ ID NO: 52)
(SEQ ID NO: 53)





4-f
G2JQR9I0
Nest PCR
ATAGCGTTATTA
ATAGTTATTC
TGCTCTGTTA
TTGCGACCAGA



7IGZCH
from Earl 
ATTTCTGTCAG 
GGCTAGTCCT
AACGAACGCA
AATAGTGGTG 




pool
(SEQ ID NO: 54)
(SEQ ID NO: 55)
(SEQ ID NO: 56)
(SEQ ID NO: 57)





5-a
G2JQR9I0
EcoP15I
TCATAGAGGA
CGGATCGTTT





7ILSL3
from Btsl 
GGTGCTATGG
ATTGACTGTT

  




pool
(SEQ ID NO: 58)
(SEQ ID NO: 59)







5-b
G2JQR9I0
EcoP15I
GATATTTCGC
AGGTAAAGGTTA





7IMJ1B
from Earl 
GGTTCTGTTG
CTTAAACTCAG

  




pool
(SEQ ID NO: 60)
(SEQ ID NO: 61)







5-c
G2JQR9I0
EcoP15I
TAGTCTTTGC
TTGCAAAGA





6GZ26W
from Btsl 
CGGTTTATTA
TTCTACAGA






pool
(SEQ ID NO: 62)
(SEQ ID NO: 63)







5-d
G2JQR9I0
EcoP15I
CTAAACTCTT
AGCTCGTTAT





7IQTYC
from Earl 
TACTTCCTAT
TATGTGGCTT






pool
(SEQ ID NO: 64)
(SEQ ID NO: 65)







5-e
G2JQR9I0
EcoP15I
TTATGAGAAA
TAGAACACTA





7IBIHM
from Earl 
TGTTTCACTG
TCAAATCTAG






pool
(SEQ ID NO: 66)
(SEQ ID NO: 67)







5-f
G2JQR9I0
Earl
TTTGTAATTTGA
TAGGAATCTTTT





7IEGMC

CTCTGATGCAG 
GACTTTTCACAG







(SEQ ID NO: 68)
(SEQ ID NO: 69)







6-a
G2JQR9I0
Nest PCR
TACTGGGAGCAA
TTCGTCTGCTG
CTAACTACGTTT
TTCACGGATTT



7IQ369
from Earl 
ACAATTCTCAG 
TTTTCACTCAG
TCGATCACTTCG  
TGTCGAAGAC 




pool
(SEQ ID NO: 70)
(SEQ ID NO: 71)
(SEQ ID NO: 72)
(SEQ ID NO: 73)





6-b
G2JQR9I0
Nest PCR
GTGGGATGG
TGTATTATGTCC
GCTTTCAGCGAG
CAGGTACAGCT



6HBBGB
from Earl 
AAGCTCCTC
TTTTTGCCAGC
CCGGTCTTCGAC
CACCCAC




pool
(SEQ ID NO: 74)
(SEQ ID NO: 75)
AAAATCCGTGA
(SEQ ID NO: 77)







AACCTTCCACG
  







GTTTGGTTATC








(SEQ ID NO: 76)






6-c
G2JQR9I0
EcoP15I
TGTTGGATAT
CATGGGGATG





7H1GGH
from Earl 
ATAGGGTTAC
ATGTGTACTT






pool
(SEQ ID NO: 78)
(SEQ ID NO: 79)







6-d
G2JQR9I0
EcoP15I
AATTCACTCA
ATTTAGTTGG





7HZ198
from Earl 
GAATAATTTT
AATTAATCTC






pool
(SEQ ID NO: 80)
(SEQ ID NO: 81)







6-e
G2JQR9I0
Earl
CTACTGTTCG
TTGGTGTAAA





7IMS4O

TTCCCAATTA
ACTGGGGGAA







(SEQ ID NO: 82)
(SEQ ID NO: 83)







7-a
G2JQR9I0
EcoP15I
ATGTGTTATA
TGACATGTGT





7H02JG
from Earl 
GAAGTTGTTG
TATCCCTGCT






pool
(SEQ ID NO: 84)
(SEQ ID NO: 85)







7-b
G2JQR9I0
Earl
TTTCAGAAAC
TTATAAGAAG





6HGWSA

TTAAACTTAC
TAATAGGAAT







(SEQ ID NO: 86)
(SEQ ID NO: 87)







7-c
G2JQR9I0
Earl
TATACAATCT
TGGAATACTT





7H8TE4

ATTGGTAATC
TAATCCTTTC







(SEQ ID NO: 88)
(SEQ ID NO: 89)







7-d
G2JQR9I0
EcoP15I
TTACATGCTT
TGTATAGTGT





7H7QRT
from Btsl 
TCGACACATA
GAGGATCTTT






pool
(SEQ ID NO: 90)
(SEQ ID NO: 91)







7-e
G2JQR9I0
EcoP15I
GTTAATTTCT
TAACTCACGC





7IEEEC
from Btsl 
GGGGATACGT
TTTTTATAAG






pool
(SEQ ID NO: 92)
(SEQ ID NO: 93)







7-f
G2JQR9I0
Earl
TTCTTGTCACT
TCTATCGGTT





7IPGUX

CTCTTTATCCA 
TTCGGGTTT







(SEQ ID NO: 94)
(SEQ ID NO: 95)







8-a
G2JQR9I0
Nest PCR
GAAGCACCTGTC
TGATCTTCC
GGTCGTTCTGC
CTGCAGCAGTT



6G6PRN
from Btsl 
TTATTTAACAG 
CGGGTAGGC
GTGTAGATAT 
TCGTAACTTC 




pool
(SEQ ID NO: 96)
(SEQ ID NO: 97)
(SEQ ID NO: 98)
(SEQ ID NO: 99)





8-b
G2JQR9I0
EcoP15I
TCATCCTATT
GCGTTGGAAG





7IRU8F
from Earl 
ACGATGCCCG
CTTTTTATTG






pool
(SEQ ID NO: 100)
(SEQ ID NO: 101)







8-c
G2JQR9I0
EcoP15I
ATTTATAAGG
AAACGDTCCC





7IJA46
from Earl 
ACGGGCCAGC
CGTATTGGTA






pool
(SEQ ID NO: 102)
(SEQ ID NO: 103)







8-d
G2JQR9I0
EcoP15I
TAATCTGATC
TTTTGATTCA





7IBAZE
from Btsl 
GATGCTAGGA
ATCCTCCTAA






pool
(SEQ ID NO: 109)
(SEQ ID NO: 105)







9-a
G2JQR9I0
Earl
TTTCCTATTTC
TTGCGATGGT





7IQ5TF

TTCATTGGCAG 
TTACTTTGAT







(SEQ ID NO: 106)
(SEQ ID NO: 107)







9-b
G2JQR9I0
Earl
ATCATTGCAC
GGAAGGTTTT

  



7IK8X6

TTGTTGTTCG
TTACTGATTT







(SEQ ID NO: 108)
(SEQ ID NO: 109)







9-c
G2JQR9I0
Earl
TTATTCGTGG
ATTTTTCTAG





6HGDLG

ATTGGTGTTC
GTTCTGATTA







(SEQ ID NO: 110)
(SEQ ID NO: 111)







9-d
G2JQR9I0
EcoP15I
TGATTTCACC
CCTCCTTTAT





6G8AYI
from Earl 
ACTAAGTCT
TTCTCGTGC






pool
(SEQ ID NO: 112)
(SEQ ID NO: 113)







9-e
G2JQR9I0
Earl
TAAAGTTATC
TGTAAACCTA





7ITPM8

ATGTGCTACC
TATTCATCTC







(SEQ ID NO: 119)
(SEQ ID NO: 115)







9-f
G2JQR9I0
Nest PCR
GTTCATTGCATA
TTAAAGCCCTTT
CTAACCCGTTC
CGGCTGCTGC



6HH6RD
from Earl 
ATGCTTCTCAG 
ACATCCAGCAGC
TGCAAGGAAG 
TGGCGG




pool
(SEQ ID NO: 116)
(SEQ ID NO: 117)
(SEQ ID NO: 118)
(SEQ ID NO: 119)





9-g
G2JQR9I0
EcoP15I
ATTGATATGT
AATAGGTACC





7IAIBJ
from Earl 
AAGAGATTTC
ATTTTCGTT






pool
(SEQ ID NO: 120)
(SEQ ID NO: 121)







10-a
G2JQR9I0
Nest PCR
GATTACTACATT
CTTTTGGGGG
CGTTTATGG
GCTATCCTTCA



6G19MG
from Earl 
TTTCTCAACAG
GGGTTGGGCC
GAAAGCGC
TGAAAACGTG 




pool
(SEQ ID NO: 122)
(SEQ ID NO: 123)
(SEQ ID NO: 124)
(SEQ ID NO: 125)





10-b
G2JQR9I0
Earl
AATTGGTTAC
CTCATACTGG





7IHPYZ

CTCTATCCCC
GATCCGATTT

  





(SEQ ID NO: 126)
(SEQ ID NO: 127)







10-c
G2JQR9I0
EcoP15I
GCATAAAGCG
CTGTGTCATA





7H9H15
from Earl 
GGAGGCTTCT
GAATAGTGC






pool
(SEQ ID NO: 128)
(SEQ ID NO: 129)







10-d
G2JQR9I0
EcoP15I
TTTCGACCGA
TTTTTTGAC





7IS7M7
from Btsl 
TTTCAGTCTG
GGTAATTA

  




pool
(SEQ ID NO: 130)
(SEQ ID NO: 131)







10-e
G2JQR9I0
Earl
CTTCCTGTG
TTTTACATCA





7H9WDO

GGTTTTCTA
TTCGCGTATT







(SEQ ID NO: 132)
(SEQ ID NO: 133)







10-f
G2JQR9I0
EcoP15I
TTTTTGAGCT
TCAATACAT





7IA5L7
from Earl 
ACGCTTTCGG
TCTACTTT






pool
(SEQ ID NO: 134)
(SEQ ID NO: 135)







11-a
G2JQR9I0
EcoP15I
GTCAGTAGTA
CGATCTAAGA





7IN2PX
from Earl 
TACCGTTCGT
TTGCCTTCCT






pool
(SEQ ID NO: 136)
(SEQ ID NO: 137)







11-b
G2JQR9I0
Earl
TCTCATAATTGG
TTTATGTTTTTG





71E917

GAATTGTACAG 
AATTAGCAGCA







(SEQ ID NO: 138)
(SEQ ID NO: 139)







11-c
G2JQR9I0
Earl
ATCTTTTATG
TTTTTCAACA





71QTJR

TACTTTGTGA
CTTTTAGTGT







(SEQ ID NO: 140)
(SEQ ID NO: 142)







11-d
G2JQR9I0
Earl
TAATTTCCT
TCTTGTTTAT





7IM5CB

GTGCAACT
TTCTTTGGGT







(SEQ ID NO: 142)
(SEQ ID NO: 143)







11-e
G2JQR9I0
Nest PCR
ATGTATCCTCGC
CACCCGGTTTG
GGCATTCTGG
GTCGTAGTACT



6G547R
from Btsl 
TCTTTAACCAG 
ATTATTACTCA
CGATGGAGAT 
CATACAGGCG




pool
(SEQ ID NO: 144)
(SEQ ID NO: 145)
(SEQ ID NO: 146)
(SEQ ID NO: 147)





11-f
G2JQR9I0
Nest PCR
CTAACGCATTG
ACTCCGGATAC
GAATCAGAAAA
TTACTTCCAAC



7HZAYS
from Btsl 
TCAGGTTTCC
CAGTGTAGAAC
CCAGCGTCGCC
GACCGATGTAC




pool
(SEQ ID NO: 148)
(SEQ ID NO: 149)
TGTATGAGTAC
TGAGCCGCC







TACGACGCGTT
(SEQ ID NO: 151)







AGATTCCAC








(SEQ ID NO: 150)
















TABLE 2







Sequences of daughter fragments obtained after PCR recovery









Fragment

Expected


(Daughter

length 


fragment)
Seguence(5′→3′)
(bp)





 1-a
CTATTTGATGTTCGTAGTTCCAGCAGCACCGACTAATGCAGGCTGGCAGTAATGACCCAATTGAAGCCGC
392



CTAACGGGACCACTCCGATCGGCTTCAGCGCCACTACTAGCCTGAACGCTAGCGGCTCTTCCTCGGTTAA




GAATGGTACCATCAAGCCTTCGAATGGTATCTTCAAACCTTCTACTCGTGACACCATGGACCCGTGCTCG




GGCAACGCCGCTGACGGCTCCATTCGCGTACGTTTTCGCGGTGGCATCGAACGTTGGAAAGAGTGTGTAA




ACCAAGTGCCGGAGCGTTGCGACCTGTCTGGTCTGACCACGGACAGCACCCGCTACCAGCTGGCTTCCGA




ACACATGACCCTGCGACCTGCTGAGCCTTTTCAAAGCGAAAG (SEQ ID NO: 152)






 1-b
ATCTATTAGGTCATAGTAGGCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTGGCTTCGGCGACGCGAGCG
402



CGGCTTACCAGGAACGTCTGATGACTGTGCCGGTAGATGTTCATGCTGCGCTCCAGGAGCTGTGCCTGGA




ACGCCGCGTCTCTGTGGGTTCTGTGATCAACTTCAGCGTTCACCAGATGCTGAAGGGTTTTGGCAACGGT




ACTCACACTATCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTT




CCCCTACTATCGTGACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGTGGAGTCTATCGAGGC




TAGAAGACCACACATGGCACCTTTGCTGCTGCATGCAGAGGAAACCATAAAT (SEQ ID NO: 153)






 1-c
TGCTATTCTTTCTGCCTTTTCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTGGCAACGGTACTCACACTA
402



TCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTTCCCCTACTAT




CGTGACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGTGGAGTCTATCGAGGCTGGTCGTGGC




TCCGAAAAGGAATCTGTGACCGCGATTGATTCCGGCTCCTCCCTGGTCAAAATGGGTCTGTTCGATCTGC




TGGTTTCCTTCGTCGATGCGGATGACGCGCGTATCCCTTGCTTCGACTTTCCGCTGGCTGTTATTGTGCG




CAGAAGAGCGACCGCTAAGATGCCCTCTGCTGTGGAAACGCAACAAACATTC (SEQ ID NO: 159)






 1-d
TCGAGCTCAATAGTTTTTTCAGCAGCACCGACTAATGCAGGCTGGCGTGATGACGCGCGTATCCCTTGCT
400



TCGACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTCACCCTTCGCTTCTCGGA




CTGCCTGTTCAACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTT




ATCGGTCGTGTAACTCCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAAT




GGAACAACACCGATGGTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACC




ACTGCGAACACATGACCCTGCGACCTGCTGCTGCTGAATGCAATCATAAA (SEQ ID NO: 155)






 1-e
TTACTCCATTTTGCACTCTCAGCAGCACCGACTAATGCAGGCTGGCATGATGACGCGCGTATCCCTTGCT
389



TCGACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTCACCCTTCGCTTCTCTTC




AACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTG




TAACTCCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACAC




CGATGGTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACCACTACGAACA




CATGACCCTGCGACCTGCTGTCAACAAAGGCCAAAGAAT (SEQ ID NO: 156)






 2-a
TTAGTTTCAACATGTATATACAGCAGCACCGACTAATGCAGGCTGGAGTGCAACGAGGAAACCATTTGTA
401



ATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTGTAACTCCGGTAGCCGATAT




CGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACACCGATGGTGAATATCCGTCT




AGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACGTCACGAAGACAAAATCGCTGTGGTGTGCG




ACGAACGTGAACTGACTTACGGTGAACTCAATGCCCACGGCAACTCCCTGGCGCGTTACCTGCACAGCAT




CACTGCGAACACATGACCCTGCGACCTGCTGAAAGTGTCGAATATACACAT (SEQ ID NO: 157)






 2-6
CTATTTTCAGTGTGCCTTTCAGCAGCACCGACTAATGCAGGCTGGAGTGGTCACGAAGACAAAATCGCTG
400



TGGTGTGCGACGAACGTGAACTGACTTACGGTGAACTCAATGCCCAGGGCAACTCCCTGGCGCGTTACCT




GCGCAGCATTGGTATTCTGCCTGAACAGCTGGTTGCGCTGTTTCTGGACAAATCCGAAAAATTGATCGTA




ACCATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCCTGACGAACGTG




TTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACGCCTCCC




ACTGCGAACACATGACCCTGCGACCTGCTGAAAGTTTCATCAACTTAGGA (SEQ ID NO: 158)






 2-c

custom-character
custom-character
custom-character
custom-character
custom-character
custom-character
custom-character

400




custom-character
custom-character
custom-character
custom-character
custom-character
custom-character





CCTGACGAACGTGTTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATG




TTGAACGCCTCCAGCGTGAAGTAATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGC




GAGCCTTGCGCAGGATTCTTCTAAATTCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAG




CTGGCGTACGTTACTTATACCAAGAAGAGTGACCGCTAAGATGCCCTCTGCTGCAGCGTCATTGCCAGTT




CTA (SEQ ID NO: 159)






 2-d
TTCTGTTTGTCTTAAATGCGCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTAGCGTGAAGTAATCGGTGA
402



TCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCAGGATTCTTCTAAATTCCCT




GCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTACTTATACCAGCGGTACCA




CCGGCTTTCCGAAAGGCATTTTCAAACAGCACACTAACGTTGTTAACTCCATCACAGACCTGTCCGCTCG




TTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGTTTTCGAACCGTTCGTT




CAGAAGAGCCACACATGGCACCTTTGCTGCTGACGCAATCTTAAAAACGGTA (SEQ ID NO: 160)






 2-e
CTGAAATTCATTTATGTTTGCAGCAGCACCGACTAATGCAGGCTGGCAGTGGTTAACTCCATCACAGACC
383



TGTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGTTTTCGA




ACCGTTCGTTCGTCAGACTCTGATGGCCCTGGTGAACGGTCACCTGCTCGCCGTGATTAACGATGTAGAA




AAATATGACGCTGACACCCTCCTCCCATTTATCCGCCGTCACTCTATCACCTATCTGAACGGTACTGCGT




CGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCATCCTCTGCGAACACATCGA




CCCTGCGACCTGCTGCAAAAAGGTACCCCATAG (SEQ ID NO: 161)






 2-f
ATATTCGAGCGTATGTATTACAGCAGCACCGACTAATGCAGGCTGGCGTCTCTATCACCTATCTGAACGG
399



TACTGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCATCCTGGTGGGC




GAGAACCTGACCGAAGCACGTTACCTGGCACTGCGTCAGCGTTTCAAAAATCGTATTCTGAACGAGTACG




GTTTCACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAAAGATACCTC




CCTGGGGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCCAATTGGC




ATGCGAACACATGACCCTGCGACCTGCTGGAGACTGTAAACAATCACTT (SEQ ID NO: 162)






 2-g
TCATTTCGAGAAAAGGCCGACAGCAGGTCGCAGGGTCATGTGTTCGCAGTGGAACGAGTACGGTTTCACC
402



GAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAAAGATACCTCCCTGGGGC




GTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCCAATTGGTGCTACAGG




TGAGCTGCATATTGGCGGCCTGGGTATCTCCAAGGGTTACTTGAATCGTCCGGAACTGACGCCGCACCGC




TTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCTGATGTACAAAACCG




GCACTGTCAGCCTGCATTAGTCGGTGCTGCTGCAAAATAAGGGAAAGAACCC(SEQ ID NO: 163)






 3-a
AACGAGGATATACAAATATACAGCAGCAAAGGTGCCATGTGTGGCTCTTCTTGAATCGTCCGGAACTGAC
402



GCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCTGATG




TACAAAACCGGTGATCTGGCTCGCTGGCTCCCGAACGGTGAAGTTGAATACCTGGGCCGTGCGGATTTCC




AGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATCCGCGCGT




TCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCTGGTA




GAGAAGAGCGACCGCTAAGATGCCCTCTGCTGATATACCACTCTCAACACTT(SEQ ID NO: 169)






 3-b
ATGGAGCTTTTATGTGGTTACAGCAGAGGACATCTTAGCGGTCGCTCTTCTCGGATTTCCAGATCAAACT
402



GCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATCCGCGCGTTCGTACCTCC




CTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCTGGTAGGCTACTACG




TATGCGACTCCGCATCTGTTTCCGAAGCGGATCTGCTGTCCTTCCTGGAGAAGAAGCTGCCGCGTTATAT




GATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTAAAGCCGATCTGCGTGCT




CAGAAGAGCCACACATGGCACCTTTGCTGCTGAACAACGAAACTAGACAATT (SEQ ID NO: 165)






 3-c
TGATTATGGTGGTTGCGGTGCAGCAGCACCGACTAATGCAGGCTGGCAGTGTTCCTGGAGAAGAAGCTGC
402



CGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTAAAGCCGA




TCTGCGTGCTCTGCCGGCGGTTGATATCTCCAACAGCACCGAAGTTCGTTCTGATCTGCGTGGTGATACC




GAAATTGCCCTCGGCGAAATCTGGGCGGACGTGCTGGGCGCGCGTCAGCGTTCGGTTAGCCGTAACGATA




ACTTTTTCCGCCTCGGTGGCCACTCTATCACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGCG




TCACTGCGAACACATGACCCTGCGACCTGCTGCAGAATAACTAAATTAGTAT(SEQ ID NO: 166)






 4-a
TATTTTTTTCCAATTTTTTACAGCAGCACCGACTAATGCAGGCTGGCAACCTGCATCCAGCTGATTGCGC
399



GTATCCGTCAGCGTCAGCGTTTGTCTGTGTCTATCTCTGTGGAAGACGTGTTTGCTACACGCACTCTTGA




GCGTATGGCCGACCTGTTGCAAAACAAACAGCAAGAGAAATGCGACAAACCACACGAAGCACCGACTGAA




CTGCTTGAAGAAAACGCTGCGACTGATAACATCTACCTGGCGAACAGCCTGCAGCAAGGTTTCGTCTACC




ATTACCTGAAAAGCATGGAACAAAGTGATGCTTATGTAATGCAGAGCGTTCTGCGTTACAACACCACCCT




TTCCCGGATCTGTTCCAGCGTGCCTGGAAACACGCGCAGCCTGCGAACACATGACCCTGCGACCTGCTGG




CAACAGAATAGCAGAGGAT (SEQ ID NO: 167)






 4-b
CTAATTTGAATGCAGTCCGTCAGCAGCACCGACTAATGCAGGCTGGCAGTAAGCATGGAACAAAGTGATG
413



CTTATGTAATGCAGAGCGTTCTGCGTTACAACACCACCCTTTCCCCGGATCTGTTCCAGCGTGCCTGGAA




ACACGCGCAGCAAAGCTTCCCGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTG




GGATCAGGACCCGCCTCTGGACTGGCGTTTCCTCTACTTCACTGATGTGGTGGCAGGTGCAGATCCCCGT




TNTCAGTCGGGCGAACCAGTGACAGCTGGGTATCTTCGTTGATGCCTCAGCGCTCAGTTCGGACAGCTGA




CGCAGAAGGTACACTGCGAACACATGACCCTTCGACCTGCTTGGTTTTTTCCAAAGGTAATGT (SEQ 




ID NO: 168)






 4-c
TTAAGTATGATTAATGCTGTCAGCAGCACCGACTAATGCAGGCTGGCGTGCAAAGCTTCCCGGCTCTGCG
399



TCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCCTCTGGACTGGCGTTTC




CTCTACTTCACTGATGTGGCGGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCACCAGGACC




TCACCGAGCGTTTTAAACTGGATGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCG




TTTCACTTGTCTGTTCTCTTGTCACCCGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAACC




CTGCGAACACATGACCCTGCGACCTGCTGACATATTATGAACAATATCG (SEQ ID NO: 169)






 4-d
GTGGTATGCACGTTGGTCCTCAGCAGCACCGACTAATGCAGGCTGGCAGTCCAAAGCTTCCCGGCTCTGC
401



GTCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCCTCTGGACTGGCGTTT




CCTCTACTTCACTGATGTGGCGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCGCCAGGACC




TCACCGAGCGTTTTAAACTGGATGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCG




TTTCACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAAA




CNCTGCGAACACATGACCCTGCGACCTGCTGAAACGGEGATCACTCACATA (SEQ ID NO: 170)






 4-e
ATTACTTAGGGTATTGCGTTCAGCAGCACCGACTAATGCAGGCTGGCAGGCGTTTACCTGATCAAACACA
401



GCGAAAACCGTTTCACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCT




GTTCGAAAAAGTACACGAAACATACCTGCAACTGCTGCACGGCGATAACCTGACCTCCTCTATGGATGAT




CCATACACCCGTACCCAACGCTACCTGCATGCGCACCGCGAAGATCACCTCGACTTTTGGGCTGGCGTGG




TGCAGAAAATCAACGAACGTTGCGATATGAATGCTCTGTTAAACGAACGCAGCCGCTATAAAGTGCAGCT




CACTGCGAACACATGACCCTGCGACCTGCTGATCGCAAAGACTGAAGGTCT (SEQ ID NO: 171)






 4-f
ATAGCGTTATTAATTTCTGTCAGCAGAGGGCATCTTAGGGGTCGCTCTTCTAAGATCACCTCGACTTTTG
401



GGCTGGCGTGGTGCAGAAAATCAACGAACGTTGCGATATGATGCTCTGTTAAACGAACGCAGCCGCTATA




AAGTGCAGCTGGCCGACTACGATCAGGTACAGGAACAGCGTCAGCTGACGATCGCTCTGAGCGGTGACGC




GTGGCTGGCGGATCTGCGCCAGACATGCAGTGCGCAGGGCATCACGCTGCACTCTATCCTGCAATTTGTA




TGGCATGCAGTTCTGCATGCCTACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCA




AGAAGCGCCACACATGGCACCTTTGCTGCTGAGGACTAGCCGAATAACTAT (SEQ ID NO: 172)






 5-a
TCATAGAGGAGGTGCTATGGCAGCAGGTCGCAGGGTCATGTGTTCGCAGTGCTACGGTGGCGGTACTCAC
390



ACTATCACTGGCACCACTATTTCTGGTCGCAACCTCCCGATCCTGGGTATCGAGCGTGCGGTAGGCCCGT




ACATTAACACCCTGCCGTTAGTGTTGGACCATTCTACTTTTAAAGACAAGACGATCATGGAAGCTATTGA




AGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGCACAAAACC




GACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAATCCAGCC




TGCATTAGTCGGTGCTGCTGAACAGTCAATAAACGATCCG (SEQ ID NO: 173)






 5-b
GATATTTCGCGGTTCTGTTGCAGCAGCACCGACTAATGCAGGCTGGCAGTAGCTATTGAAGACGTCCAAG
401



CGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGCACAAAACCGACCTGAAACA




TGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAATCCCGTACTCTGGAGCAC




CAAACTGAACTGGGTTACTCCATCGAGGGTGGTACCGAAAAACTGAACTATCCGCTGGCGGTGATTGCTC




GTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAACTGTTTGAAGAGGTGAT




CACTGCGAACACATGACCCTGCGACCTGCTGAGTTTAAGTAACCTTTACCT (SEQ ID NO: 174)






 5-c
TAGTCTTTGCCGGTTTATTACAGCAGCACCGACTAATGCAGGCTGGCAGTGAACTGAACTATCCGCTGGC
400



GGTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAACTGTTT




GAAGAGGTGATGATCAGCGAGCTTCTCCATATGGTACAGGATACCCTGATGCAGGTTGCACGCGGGCTCA




ACGAACCTGTGGGCTCCCTGGAATACCTGTCTTCCATCCAGTTAGAGCAGCTGGCAGCGTGGAACGCCAC




CGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCAAAAGCCGGATAAA




ACACTGCGAACACATGACCCTGCGACCTGCTGTCTGTAGAATCTTTGCAA (SEQ ID NO: 175)






 5-d
CTAAACTCTTTACTTCCTATCAGCAGAGGGAATCTTAGCGGTCGCTCTTCTTTAGAGCAGCTGGCAGCGT
402



GGAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCAAAA




GCCGGATAAAATTGCAGTCGTGTACGAAGAAACCTCTCTGACCTATCGCGAGCTGAACGAACGTGCCAAT




CGCATGGCGCACCAGCTGCGTTCCGACGTTTCTCCGAACCCGAACGAAGTGATCGCGCTGGTTATGGACA




AGAGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCC




GAGAAGATCCACACATGGCACCTTTGCTGCTGAAGCCACATAATAACGAGCT (SEQ ID NO: 176)






 5-e
TTATGAGAAATGTTTCACTGCAGCAGAGGGCATCTTAGCGGTCGCGGACAAGAGTGAACACATGATCGTA
372



AATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCCGGGCTACCCGAATGACCGTA




TTCAGTATATCCTCGAGGACACTCAGGCGTTGGCTGTTATCGCAGATTCTTGTTACCTGCCTCGTATCAA




AGGTATGGCCGCGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCT




GTGTCAAACCCGTCGCCGCTGTCTCGTAGCACCGACCTGGCAGAAGAGCCACACATGGCACCTTTGCTGC




TGCTAGATTTGATAGTGTTCTA (SEQ ID NO: 177)






 5-f
TTTGTAATTTGACTCTGATGCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTCGTCTGGTACGCTGCTCTA
403



CCCGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCTGTGTCAAACCCGTCGCCGCTGTCTCGTAGC




ACCGACCTGGCATACATCATCTACACCTCTGGCACCACCGGCCGCCCGAAAGGCGTGACTGTGGAGCATC




ACGGTGTGGTGAACCTGCAGGTATCCCTGAGCAAAGTTTTTGGTCTGCGTGACACCGACGACGAAGTCAT




CCTGTCTTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGCAG




AAGAAGAGCCACACAAGGCACCTTTGCTGCTGTGAAAAGTCAAAAGATTCCTA (SEQ ID NO: 178)






 6-a
TACTGGGAGCAAACAATTCTCAGCAGCACCGACTAATGCAGGCTGGCAGTAGGTCTGCGTGACACCGACG
400



ACGAAGTCATCCTGTCTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTG




AACGGGCAGACGCTGCTGGTTCTGAACGATGGTATGCGTGGTGACAAAGAACGCCTGTACCGCTACATCG




AAAAGAACCGTGTAACTTATCTGTCTGGTACTCCATCTGTGGTGTCTATGTATGAGTTCAGCCGTTTCAA




AGACCACCTGCGCCGCGTCGATTGCGTCGGTGAAGCTTTCAGCGAGCCGGTCTTCGACAAAATCCGTGAA




CACTACGAACACATGACCCAGCGACCTGCTGAGTGAAAACAGCAGACGAA (SEQ ID NO: 179)






 6-b
GTGGGATGGAAGCTCCTCGACAGCAGAGGGCATCTTAGCGGTCGCTCTCTACCTTCCACGGTTTGGTTAT
399



CAATGGTTATGGCCCAACTGAAGTTAGCATCACTACCCATAAGCGTTTATACCCTTTCCCAGAGCGCCGC




ATGGATAAGTCGATCGGCCAGCAGGTCCACAACTCTACTAGCTACGTACTGAATGAAGATATGAAGCGTA




CCCCGATCGGTGCTGTGGGTGAGCTGTACCTGGGCGGTGAAGGTGTTGTCCGCGGTTATCATAATCGTGC




GGTGTTACCGCCGAGCGCTTCATCCCGAACCCGTTCCAGTCTGAGGAAGATAAACGTGAAGGCCGTAACA




GAAGAACCACACATGGCACCTTTGCTGCTGGCAAAAAGGACATAATACA (SEQ ID NO: 180)






 6-c
TTGTTGGATATATAGGGTTACAAAAGAGGGCATCTTAGCGGTCGCTCTTCTCGATCGGCCAGCAGGTCCA
402



CAACTCTACTAGCTACGTACTGAATGAAGATATGAAGCGTACCCCGATCGGTGCTGTGGGTGAGCTGTAC




CTGGGCGGTGAAGGTGTTGTCCGCGGTTATCATAATCGTGCGGATGTTACCGCCGAGCGCTTCATCCCGA




ACCCGTTCCAGTCTGAGGAAGATAAACGTGAAGGCCGTAACAGTCGCCTGTACAAGACGGGTGATCTGGT




TCGCTGGATCCCGGGTAGCTCCGGCGAAGTCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTCGC




GAGAAGAACCACACATGGCACCTTTGCTGCTGAAGTACACATCATCCCCATG (SEQ ID NO: 181)






 6-d
AATTCACTCAGAATAATTTTCAGCAGCAAAGGTGCCTTGTGTGGCTCTCTCGGCGAAGTCGAATACCTGG
401



GTCGCAATGACTTCCAGGTTAAGATTCGCGGCCTCCGTATCGAGCTGGGTGAAATCGAAGCGATCCTGAG




CAGCTACCACGGCATTAAACAGAGCGTAGTGATCGCAAAAGACTGCCGTGAGGGGGCACAGAAATTCCTG




GTCGGCTATTACGTTGCAGACGCTGCCCTGCCGTCCGCAGCGATCCGTCGTTTCATGCAGTCGCGCCTCC




CGGGTTACATGGTTCCGTCCCGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCCGTCCGGGAAGCTGGA




AGAAGAGCGACCGCTAAGATGCCCTCTGCTGGAGATTAATTCCAACTAAAT (SEQ ID NO: 182)






 6-e
CTACTGTTCGTTCCCAATTACAGCAGAGGGCATCTTAGCGGTCGCTCTTCTCGTCTGATCCTGGTTTCTA
402



AATTCCCTGTTACTCCGTCCGGGAAGCTGGACACCAAAGCACTGCCGCCGGCGGAGGAAGAAAGCGAAAT




CGACGTTGTTCCACCGCGCTCCGAAATTGAGCGTTCTCTCTGCGACATCTGGGCTGAACTGCTGGAAATG




CACCCGGAAGAAATCGGCATTTACTCTGACTTCTTCTCCTTGGGCGGCGACAGCCTGAAATCTACTAAGT




TATCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGT




TAGAAGAGCCACACATGGCACCTTTGCTGCTGTTCCCCCAGTTTTACACCAA (SEQ ID NO: 183)






 7-a
ATGTGTTATAGAAGTTGTTGCAGCAGAGGGCATCTTAGCGGTCCTAAGTTATCCTTCATGATCCATGAGT
371



CCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTGAAGCTCAAACTCACCTGAT




CTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACACCCAGATGATCCCGGTT




TCCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACG




CGGCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTAGAAGAGCCACACATGGCACCTGTGCTGCT




GAGCAGGGATAACACATGTCA (SEQ ID NO: 184)






 7-b
TTTCAGAAACTTAAACTTACCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTGAAGCTCAAACTCACCTGA
402



TCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACACCCAGATGATCCCGGT




TTCCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGAC




GCGGCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTCGTGGCAACCTGGCAC




GTCACGAAGCACTGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCTGCAGAAAGTACTGAA




TAGAAGAGCCACACATGGCACCTTTGCTGCTGATTCCTATTACTTCTTATAA (SEQ ID NO: 185)






 7-c
TATACAATCTATTGGTAATCCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTAGGAACGTCTGCTGTTCAT
402



TCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACGCGGCTTTCGAACTGCCAGGTTCTGTGGAC




GCGAGCCTGCTGGAACAGGCCCTTCGTGGCAACCTGGCACGTCACGAAGCACTGCGCACCCTGCTGGTTA




AAGATCACGCCACTGGTATTTACCTGCAGAAAGTACTGAGTCCGGACGAAGCGCAAGGTATGTTTTCTGT




TAATGTAGATACTGCTAAACAGGTTGAACGTCTGGATCAGGAAATTGCTTCTCTGTCTCAGCACGTCTTC




CAGAAGAGCCACACATGGCACCTTTGCTGCTGGAAAGGATTAAAGTATTCCA (SEQ ID NO: 186)






 7-d
TTACATGCTTTCGACACATACAGCAGGTCGCAGGGTCATGTGTTCGCAGTGGGTTGAACGTCTGGATCAG
402



GAAATTGCTTCTCTGTCTCAGCACGTCTTCCGCCTGGACGACGAACTGCCGTGGGAGGCGCGCATCCTGA




AACTGGAATCTGGCGGTCTGTACCTGATCTTGGCCTTCCACCACACCTGCTTCGATGCATGGAGCCTGAA




AGTTTTCGAACAGGAGCTGCGCGCGCTGTACGCAGCGCTTCAGAAAACGAAATCTGCAGCGAACTTACCG




GCATTAAAAGCACAGTATAAGGAATACGCTCTGTACCACCGCCGCCAGCTTAGCGGCGACCGCATGCGTA




ACACAGCCAGCCTGCATTAGTCGGTGCTGCTGAAAGATCCTCACACTATACA (SEQ ID NO: 187)






 7-e
GTTAATTTCTGGGGATACGTCAGCAGAGGGCATCTTAGCGGTCGTTCTTCTGAATACGCTCTGTACCACC
401



GCCGCCAGCTTAGCGGCGACCGCATGCGTAACCTGTCCGATTTCTGGTTACGTAAACTGATCGGTCTGGA




ACCACTGCAGCTGATCACCGATCGTCCGCGTCCGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATC




GAACTGTCCAAGAAAGAGACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTG




TACTGGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCC




AAGAAGACCACACATGTCACCTTTGCTGCTGCTTATAAAAAGCGTGAGTTA (SEQ ID NO: 188)






 7-f
TACCTGTGATCTGCGTCGTACAGCAGAGGGCATCTTAGCGGTCGCTCTTCTTGATCACCGATCGTCCGCG
402



TCCGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATCGAACTGTCCAAGAAAGAGACCGAAAACCTG




CGCGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTGTACTGGTATCTGTTTACTGTGTCATGCTGG




CAAGCTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCCAGTATCACACCGTACGCACCCGCAGTTCCA




GTCTGTTATCGGCTTTTTCGTTAACCTGGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGT




TAGAAGAGCCACACATGGCACCTTTGCTGCTGTCTTCATCGATAAATACAAA (SEQ ID NO: 189)






 8-a
GAAGCACCTGTCTTATTTAACAGCAGCACCGACTAATGCAGGCTGGCATGAAAACGTTGTAAGTCTTCCT
397



TATATGTTCTGGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCACCAGAGCGATGTTAGCGTGGGC




ATCCCAGTATCACACCGTACGCACCCGCAGTTCCAGTCTGTTATCGGCTTTTTCGTTAACCTGGTCGTTC




TGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGTTTAATCCGTCGCGTCATGAAAGAACTGGTTGACGC




GCAGCTGCACCAGGATATGCCGTTCCAGGAAGTTACGAAACTGCTGCAGGTGGATAACGATCCTAGCACT




GCGAACACATGACCCTGCGACCTGCTGAAGCCTACCCGGGAAGATCA (SEQ ID NO: 190)






 8-b
TCATCCTATTACGATGCCCGCAGCAGCAAAGGTGCCATGTGTGGCTCTTTATGCCGTTCCAGGAAGTTAC
400



GAAACTGCTGCAGGTGGATAACGATCCTAGCCGTCACCCGTTGGTTCAGAACGTATTTAACTTTGAGTCT




CGCGCGAACGGTGAACACGATGCCCGCTCTGAAGACGAGGGCTCTCTTGCATTCAATCAGTACCGTCCGG




TTCAGCCGGTTGACAGCGTGGCCAAATTCGATCTGAACGCCACCGTCACCGAACTGGAATCCGGTCTGCG




TGTTAATTTCAACTACGCGACCAGCTTATTCAATAAATCCACCATCCAGGGCTTCCTGCACACATATGAA




AGAAGAGGACCGCTAAGATGCCCTCTGCTGCAATAAAAAGCTTCCAACGC (SEQ ID NO: 191)






 8-c
ATTTATAAGGACGGGCCAGCCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTCCAGCTTATTCAATAAATC
400



CACCATCCAGGGCTTCCTGCACACATATGAATACCTTCTGCGTCAGCTGTCCGAACTGAGCGCTGAAGGC




ATCAACGAAGATACCCAGCTGTCACTGGTTCGCCCGACTGAGAACGGGGATCTGCACCTGCCACTGGCCC




AGTCTCCGCTCGCGACCACTGCAGAAGAACAGAAAGTTGCTTCCCTGAACCAGGCTTTCGAACGTGAAGC




CTTCCTGGCGGCGGAAAAAATCGCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACCTGAACGGT




CAGAAACCACACATGGCACCTTTGCTGCTGTACCAATACGGGGANCGTTT (SEQ ID NO: 192)






 8-d
TAATCTGATCGATGCTAGGACAGCAGGTCGCAGGGTCATGTGTTCGTAGTGCGCCGTTGTTCAAGGGGAC
402



CGCGCTCTGTCGTATGCCGACCTGAACGGTCAGGCTAATCAACTGGCGCGTTATATCCAGTCCGTCTCCT




GCATCGGTGCCGACGACGGCATCGCCCTGATGCTGGAAAAGAGCATCGATACTATCATCTGCATTCTGGC




AATCTGGAAAGCAGGCGCCGCGTATGTGCCGCTGGATCCGACCTACCCACCAGGCCGTGTACAACTGATC




CTGGAGGAAATCAAAGCGAAAGCTGTGCTGGTACACTCTTCCCACGCCTCTAAATGTGAACGTCACGGTG




CCACTGCCAGCCTGCATTAGTCGGTGCTGCTGTTAGGAGGATTGAATCAAAA (SEQ ID NO: 193)






 9-a
TAGCCCTTTTCGTATTTGCATCAGCAGCAAAGGTGCCATGTGTGGCTCTTTCCTACCCACCAGGCCGTGT
400



ACAACTGATCCTGGATGAAATCAAAGCGAAACTGTGCTGGTACACTCTTCCACGCCTCTAAATGTGAACG




TCACGGTGCCAAAGTCATTGCAGTAGACTCTCCGGCTATTGAAACGGCAGTGAGCCAGCAGTCTGCAGCT




GATCTGCCGACCATTGCTAGCCTGGGTAATCTGGCATATATCATCTTTACTAGCGGCACTTCTGGCAAAC




CGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCGTGAGCGTTACTTCGA




GAAGAGCGACCGCTAAGATGCCCTCTGCTGTAGACTGAGTTGAACAACTA (SEQ ID NO: 194)






 9-b
ATCATTGCACTTGTTGTTCGCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTATCATCTTTACTAGCGGCA
402



CTTCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCGTGA




GCGTTACTTCGGTCGTGATTGTACCAAACATCACGGTGTTCTGTTCCTGAGCAACTACGTTTTCGACTTC




TCCGTAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGTTTGTGG




CGGATGACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCTGCT




TAGAAGAGCGACCGCTAAGATGCCCTCTGCTGAAATCAGTAAAAAACCTTCC (SEQ ID NO: 195)






 9-c
TTATTCGTGGATTGGTGTTCCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTTTCGACTTCTCCGTAGAAC
402



AGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGTTTGTGGCGGATGACGA




ATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCTGCTTCAAAAAATC




GATCTGGCACGTCTGGATCACCTGCAGGTTGTAACCGCGGCGGGTGAGGAACTCCACGCGACCCAGTACG




AAAAAATGCGTCGTCGTTTTAACGGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACGGTGTACAA




CAGAAGAACCACACATGGCACCTTTGCTGCTGTAATCAGAACCTAGAAAAAT (SEQ ID NO: 196)






 9-d
TGATTTCACCACTAAGTCTCAGCAGGTCGCAGGGTCATGTGTTCGCAGTGACGGTCCAATCTACAACGCT
399



TATGGTGTTACCGAGACAACGGTGTACAACATCATCGCTGAATTCACCACCAACTCCATCTTCGAAAACG




CATTACGCGAAGTCCTGCCGGGCACCCGTGCGTACGTTCTGAACGCGGCGCTGCAGCCGGTTCCATTCGA




CGCTGTGGGTGAACTGTATCTGGCCGGCGATAGCGTAACCCGTGGTTACCTGAACCAGCCGTTGCTGACC




GATCAGCGTTTCATCCCTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGT




CACGCCAGCCTGCATTAGTCGGTGCTGCTGGCACGAGAAATAAAGGAGG (SEQ ID NO: 197)






 9-e
TAAAGTTATCATGTGCTACCCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTACAAAACCGGCGACCTGGT
401



TCGCTCTCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGGCGACCTGCAGATTAAA




ATGCGTGGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCCCCGGGCGTACGCGAAG




GTGCGGTTGTGGCTAAATATGAAAACAACGACACGTATAGCCGTACTGCACATTCCTTAGTCGGTTATTA




TACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCGCGTCTGCCGACCTAT




AAGAAGAGGACCGCTAAGATGCCCTCTGCTGGAGATGAATATAGGTTTACA (SEQ ID NO: 198)






 9-f
GTTCATTGCATAATGCTTCTCAGCAGCACCGACTAATGCAGGCTGGAGTGTTCCATTCGACGCTGTGGGT
399



GAACTGTATCTGGCCGGCGATAGCGTAACCCGTGGTTACCTGAACCAGCCGTTGCTGACCGATCAGCGTT




TCATAACTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGTACAAAACCGG




CGACCTGGTTCGCTCTCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGGCGACCTG




CAGATTAAAATGCGTGGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCCCGGGCGC




ATGCGAACACATGACCCTGCGACCTGCTGCTGGATGTAAAGGGNTTTAA (SEQ ID NO: 199)






 9-g
ATTGATATGTAAGAGATTTCCAGCAGCAAAGGTGCCATGTGTGGCTCTTATCGTACTGCACATTCCTTAG
401



TCGGTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCGCGTCT




GCCGACCTATATGGTGCCTTCTCACCTGTGCTGCCTGGAAGGTGCTCTGCCAGTCACTATTAACGGTAAA




CTGGACGTTCGTCGTCTGCCTGAAATTATCAACGACAGTGCGCAATCCTCATATTCCCCGCCGCGCAACA




TTATCGAAGCGAAAATGTGCCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGA




CAGAAGAGCGACCGCTAAGATGCCCTCTGCTGAACGAAAATGGTACCTATT (SEQ ID NO: 200)






10-a
GATTACTACATTTTTCTCAACAGCAGCACCGACTAATGCAGGCTGGCAGTGAACGGTAAACTGGACGTTC
398



GTCGTCTGCCTGAAATTATCAACGACAGTGCGAATCCTCATATTCCCCGCCGCGCAACATTATCGAAGCG




AAAATGTGCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACCTCTTCAAGCT




GGGGGGGGATTCTATCACCAGTCTGCACCTCGTCGCACAGATTCACAATCAGGTGGGCTGTAAGATTACC




GTGCGCGATATTTTCGAACACCGTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGCGATC




ATGCGAACACATGACCCTGCGACCTGCTGGCCCAACCCCCCCCAAAAG (SEQ ID NO: 201)






10-b
AATTGGTTACCTCTATCCCCCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTACCGTACCGCGCGTGCTCT
402



CCACGATCACGTTTTCATGAAGGATAGCGATCGCTCTAACGTCACCCAGTTCCGTACCGAGCAGGGGCCG




GTCATTGGCGAAGCTCCGCTGCTGCCGATCCAGGATTGGTTCTTGAGCAAAGCTCTGCAGCACCCTATGT




ACTGGAACCACACGTTCTACGTACGTACCCCGGAACTGGACGTTGATTCCCTGAGTGCGGCCGTTCGTGA




CCTGCAGCAGTACCACGACGTTTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCTTTGTACAGTCCTTT




GAGAAGAGCGACCGCTAAGATGCCCTCTGCTGAAATCGGATCCCAGTATGAG (SEQ ID NO: 202)






10-c
GCATAAAGCGGGAGGCTTCTCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTTTTCCGCATGCGCCTGAAA
401



CGCGAAGAAGTTGGCTTTGTACAGTCCTTTGCCGAAGACTTTTCCCCGGCGCAGCTGCGTGTACTGAACG




TGAAGGACGTGGATGGTAGCGCGGCGGTTAACGAAATCCTGGACGGTTGGCAAAGCGGCTTCAACCTGGA




AAACGGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTTTTCT




GTACACCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGTA




AAGAAGAACCACACATGGCACCTTTGCTGCTGGCACTATTCTATGACACAG (SEQ ID NO: 203)






10-d
TTTCGACCGATTTCAGTCTGCAGCAGGTCGCAGGGTTATGTGTTCGCAGTGCAACCTGGAAAACGGTCCG
399



ATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTTTTCTGTACACCACA




TGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGTAACGGTTCCCT




GGGTTCCAAAGGTTCTTCATTTCGCCAATGGGCCGAGGCAATCCAAAACTACAAAGCGAGCGACTCGGAA




CGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTCCACTGGTT




CCACTACCAGCCTGCATTAGTCGGTGCTGCTGTAATTACCGTCAAAAAA (SEQ ID NO: 204)






10-e
CTTCCTGTGGGTTTTCTACAGCAGCAAAGGTGCCATGTGTGGCTCTTCTTCCAAAACTACAAAGCGAGCG
400



ACTCGGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTC




CACTGGTTCTCGCGTACGTCTCTCCCGTTCTCTGTCTCCTGAAAAAACTGCTTCTCTGATCCAGGGTGGC




ATCGATCGTCAGGATGTAAGCGTATACGATTCTCTGCTGACTTCTGTTGGCCTGGCTTTGCAACACATCG




CGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGACCAGACCCTGGATGA




GAAGAGCGACCGCTAAGATGCCCTCTGCTGAATACGCGAATGATGTAAAA (SEQ ID NO: 205)






10-1
TTTTTGAGCTACGCTTTCGGCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTACTTCTGTTGGCCTGGCTT
399



TGCAACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGACCA




GACCCTGGATGTTTCTCGTACGATGGGCTGGTTCACTACCATGTATCCGTTCGAAATCCCGCGTCTGTCG




ACGGAAAACATCGTGCAGGGTGTTGTTGCTGTAAGTGAACGCTTCCGCCAAGTTCCGGCTCGCGGTGTTG




AGTTATGGTACTCTGTACGGTTACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGC




TGGAAGGACCGCTAAGATGCCCTCTGCTGCTGAAAGTAGAATGTATTGA (SEQ ID NO: 206)






11-a
GTCAGTAGTATACCGTTCGTCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTACACCCAGCACCCTCTGCC
401



GCAGGTTACTGTTAACTACCTGGGCCAGCTGGCTCGTAAACAGAGCAAGCCGAAAGAATGGGTTCTGGCA




GTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAAGGACCGTTCGAGCTCCGCAG




TGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACTCGGCTTGGTCTTTGGAAGA




ATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGACGGTCGTGCATCCCAGCAG




AAGAAAGCCACACATGGCACCTTTGCTGCTGAGGAAGGCAATCTTAGATCG (SEQ ID NO: 207)






11-9
TTCTGCAGAACGTTTTTGTAACAGCAGCAAAGGTGCCATGTGTGGCTCTTCTGCTCGTAAACAGAGCAAG
403



CCGAAAGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATA




AGGACCGTTCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGA




CTCGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTG




GACGGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCCAT




ACAGAAGAGTGACCGCTAAGATGCCCTCTGCTGGATGGGCCATAATACCGTCG (SEQ ID NO: 208)






11-c
ATCTTTTATGTACTTTGTGACAGCAGAGGGCATCTTAGCGGTCGCTCTTCTGATGTGGACTCGGCTTGGT
402



CTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGACGGTCGTGC




ATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCCATACTTCGAATAT




CTGGAACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAATCTTACT




TCAACAACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCACTCCAA




AAGAAGAGCCACACATGGCACCTTTGCTGCTGACACTAAAAGTGTTGAAAAA (SEQ ID NO: 209)






11-d
TAATTTCCTGTGCAACTCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTTTCGAATATCTGGAACCGCCGC
398



GCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAATCTTACTTCAACAACATCGT




CAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCACTCCAAACGTCTGCGCACC




TTCGAGGAACTGGCTGAAATGTATCTGGACCAGGTACGCGGCATCCAACCGCACGGTCCATACCACTTCA




TCGGCTGGAGCTTCGGGGGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTTGCGAGCGACGAAAAAGA




AGAGCGACCGCTAAGATGCCCTCTGCTGACCCAAAGAAATAAACAAGA (SEQ ID NO: 210)






11-e
ATGTATCCTCGCTCTTTAACCAGCATCACCGACTAATGCAGGCTGGCAGTGGCATTCTGGCGATGGAGAT
379



GTCCCGTCGTCTGGTTGCGAGCGACGAAAAATTGGTTTCTGGGTATTATCGACACCTATTTCAACGTACG




TGGTGCCACTCGCACCATTGGCCTTGGTGATACTGAAATCCTGGATCCGATCCACCACATCTATAACCCG




GACCCGGCAAACTTTCAGCGTCTGCCGTCTGCCACCGACCGTATCGTCCTGTTTAAGGCCATGCGTCCGA




ATAATAAATATGAATCAGAAACCAGCGTCGCCTGTATGAGTACTACGACACTGCGAACACATGACCCTGC




GACCTGCTGAGTAATAATCAAACCGGGTG (SEQ ID NO: 211)






11-1
CTAACGCATTGTCAGGTTTCCAGCAGCACCGACTAATGCAGGCTGGCAGTGCGTATCGTCCTGTTTAAGG
392



CCATGCGTCCGAATAATAAATATGAATCAGAAAACCAGCGTCGCCCTACGACGCGTTAGATTCCACGGAC




TGGACCGCATGTTACCAGGCGATCCCTACCTCCTCATGGTCGCGCCTGCGCACGATCCACACCTTCCCGG




GTTCGGAAATCCACAACCGCTGGTCCCGTTGCGTTCGTCTGAGCCGTAACACCAGCCTTGCCATCGACCC




GTCTCTGGCAGCTCAGTACATCGGTCGTTGGAAGTAAGCAGAGTAAAGACCGTGCACTTATCACTGGAAC




ACATGACCCTGCGACCTGCTGTTCTACACTGGTATCCGGAGT (SEQ ID NO: 212)









The desired PCR amplification products were electrophoresed through an agarose gel to excise bands of the desired size, and DNA was purified using a gel purification kit (AccuPrep™, Bioneer, Korea). For the construction of ˜1,000 bp DNA sequence, 3-8 gel-purified gene fragments were pooled. For each pool, restriction enzyme digestion was carried out as follows: when EarI or EcoP15I was used, 2 μl EarI or EcoP15I, 5 μl NEB buffer, 0.5 μl 100×BSA, 10 μl water, and 30 μl purified (and pooled) DNA fragments were mixed, followed by digestion at 37° C. for 3 h (for EcoP15I, 10 ATP was further added); and when BtsI was used, 2 μl BtsI, 5 μl NEB buffer, 0.5 μl 100×BSA, 10 μl water, and 30 μl PCR products were mixed, followed by digestion at 55° C. for 3 h. The restriction digest products were electrophoresed through 1.5% agarose gels to obtain expected bands (daughter fragments, 300 bp; FIG. 8h). The expected DNA fragment sequences after digestion (products obtained after Type IIS restriction enzyme digestion or error-correction PCR) are listed in Table 3.









TABLE 3







Sequences of daughter fragments obtained after Type IIS 


restriction enzyme digestion or nested PCR









Fragment

Expected


(Daughter

Length


fragment)
Seguence(5′→3′)
(Bp)





1-a
ATGACCCAATTGAAGCCGCCTAACGGGACCACTCCGATCGGCTTCAGCGCCACTACTAGCCTGAACGCTAGCG
298



GCTCTTCCTCGGTTAAGAATGGTACCATCAAGCCTTCGAATGGTATCTTCAAACCTTCTACTCGTGACACCAT




GGACCCGTGCTCGGGCAACGCCGCTGACGGCTCCATTCGCGTACGTTTTCGCGGTGGCATCGAACGTTGGAAA




GAGTGTGTAAACCAAGTGCCGGAGCGTTGCGACCTGTCTGGTCTGACCACGGACAGCACCCGCTACCAGCTGG




CTTCGA (SEQ ID NO: 213)






1-b
CTGTCTGGTCTGACCACGGACAGCACCCGCTACCAGCTGGCTTCGACCGGCTTCGGCGACGCGAGCGCGGCTT
298



ACCAGGAACGTCTGATGACTGTGCCGGTAGATGTTCATGCTGCGCTCCAGGAGCTGTGCCTGGAACGCCGCGT




CTCTGTGGGTTCTGTGATCAACTTCAGCGTTCACCAGATGCTGAAGGGTTTTGGCAACGGTACTCACACTATC




ACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTTCCCCTACTATCGTGA




CCCATG (SEQ ID NO: 219)






1-c
AACGGTACTCACACTATCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCG
297



TTTCCCCTACTATCGTGACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGTGGAGTCTATCGAGGC




TGGTCGTGGCTCCGAAAAGGAATCTGTGACCGCGATTGATTCCGGCTCCTCCCTGGTCAAAATGGGTCTGTTC




GATCTGCTGGTTTCCTTCGTCGATGCGGATGACGCGCGTATCCCTTGCTTCGACTTTCCGCTGGCTGTTATTG




TGCGC (SEQ ID NO: 215)






1-d
TGACGCGCGTATCCCTTGCTTCGACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTC
166



ACCCTTCGCTTCTCGGACTGCCTGTTCAACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGT




TGGCTGAGGCAGTTATCGGT (SEQ ID NO: 216)






1-e
ACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTGTAAC
178



TCCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACACCGATGGT




GAATATCCGTCTAGCAAGCGTCTGCACCACCT (SEQ ID NO: 217)






2-a
GTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACGTCACGAAGACAAAATCGC
98



TGTGGTGTGCGACGAACGTGAACTG (SEQ ID NO: 218)






2-b
TCACGAAGACAAAATCGCTGTGGTGTGCGACGAACGTGAACTGACTTACGGTGAACTCAATGCCCAGGGCAAC
297



TCCCTGGCGCGTTACCTGCGCAGCATTGGTATTCTGCCTGAACAGCTGGTTGCGCTGTTTCTGGACAAATCCG




AAAAATTGATCGTAACCATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCC




TGACGAACGTGTTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAA




CGCCT (SEQ ID NO: 219)






2-c
TGATCGTAACCATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCCTGACGA
297



ACGTGTTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACGCCTC




CAGCGTGAAGTAATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCAGG




ATTCTTCTAAATTCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTACTTA




TACCA (SEQ ID NO: 220)






2-d
AGCGTGAAGTAATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCAGGA
297



TTCTTCTAAATTCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTACTTAT




ACCAGCGGTACCACCGGCTTTCCGAAAGGCATTTTCAAACAGCACACTAACGTTGTTAACTCCATCACAGACC




TGTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGTTTTCGAACC




GTTCG (SEQ ID NO: 221)






2-e
GTTAACTCCATCACAGACCTGTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCA
281



GTGCTTGCGTTTTCGAACCGTTCGTTCGTCAGACTCTGATGGCCCTGGTGAACGGTCACCTGCTCGCCGTGAT




TAACGATGTAGAAAAATATGACGCTGACACCCTCCTCCCATTTATCCGCCGTCACTCTATCACCTATCTGAAC




GGTACTGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCAT 




(SEQ ID NO: 222)






2-f
CTATCACCTATCTGAACGGTACTGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCG
295



TATCATCCTGGTGGGCGAGAACCTGACCGAAGCACGTTACCTGGCACTGCGTCAGCGTTTCAAAAATCGTATT




CTGAACGAGTACGGTTTCACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCA




AAGATACCTCCCTGGGGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCC




AAT (SEQ ID NO: 223)






2-g
ACGAGTACGGTTTCACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAAAGA
297



TACCTCCCTGGGGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCCAATT




GGTGCTACAGGTGAGCTGCATATTGGCGGCCTGGGTATCTCCAAGGGTTACTTGAATCGTCCGGAACTGACGC




CGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCTGATGTACAA




AACCG (SEQ ID NO: 224)






3-a
ATCGTCCGGAACTGACGCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTAT
297



CAACTCTCTGATGTACAAAACCGGTGATCTGGCTCGCTGGCTCCCGAACGGTGAAGTTGAATACCTGGGCCGT




GCGGATTTCCAGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATC




CGCGCGTTCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCT




GGTAG (SEQ ID NO: 225)






3-b
CGGATTTCCAGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATCC
297



GCGCGTTCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCTG




GTAGGCTACTACGTATGCGACTCCGCATCTGTTTCCGAAGCGGATCTGCTGTCCTTCCTGGAGAAGAAGCTGC




CGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTAAAGCCGATCT




GCGTG (SEQ ID NO: 226)






3-c
TTCCTGGAGAAGAAGCTGCCGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACG
298



TCAACGGTAAAGCCGATCTGCGTGCTCTGCCGGCGGTTGATATCTCCAACAGCACCGAAGTTCGTTCTGATCT




GCGTGGTGATACCGAAATTGCCCTCGGCGAAATCTGGGCGGACGTGCTGGGCGCGCGTCAGCGTTCGGTTAGC




CGTAACGATAACTTTTTCCGCCTCGGTGGCCACTCTATCACCTGCATCCAGCTGATTGCGCGTATCCGTCAGC




GTCAGC (SEQ ID NO: 227)






4-a
ACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGCGTTTGTCTGTGTCTATCTCTGTGGAAGACGTGT
307



TTGCTACACGCACTCTTGAGCGTATGGCCGACCTGTTGCAAAACAAACAGCAAGAGAAATGCGACAAACCACA




CGAAGCACCGACTGAACTGCTTGAAGAAAACGCTGCGACTGATAACATCTACCTGGCGAACAGCCTGCAGCAA




GGTTTCGTCTACCATTACCTGAAAAGCATGGAACAAAGTGATGCTTATGTAATGCAGAGCGTTCTGCGTTACA




ACACCACCCTTTCCC (SEQ ID NO: 228)






4-b
CATGGAACAAAGTGATGCTTATGTAATGCAGAGCGTTCTGCGTTACAACACCACCCTTTCCCCGGATCTGTTC
159



CAGCGTGCCTGGAAACACGCGCAGCAAAGCTTCCCGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGAAGTCT




TCCAGCTGCTGGA (SEQ ID NO: 229)






4-c
AAAGCTTCCCGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCC
150



TCTGGACTGGCGTTTCCTCTACTTCACTGATGTGGCGGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTA




CGCC (SEQ ID NO: 230)






4-d
CTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCGCCAGGACCTCACCGAGCGTTTTAAACTGGATGT
188



GGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCGTTTCACTTGTCTGTTCTCTTGTCACCAC




GCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAAA (SEQ ID NO: 231)






4-e
CGTTTACCTGATCAAACACAGCGAAAACCGTTTCACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACGGC
300



TGGTCCTTACCGCTTCTGTTCGAAAAAGTACACGAAACATACCTGCAACTGCTGCACGGCGATAACCTGACCT




CCTCTATGGATGATCCATACACCCGTACCCAACGCTACCTGCATGCGCACCGCGAAGATCACCTCGACTTTTG




GGCTGGCGTGGTGCAGAAAATCAACGAACGTTGCGATATGAATGCTCTGTTAAACGAACGCAGCCGCTATAAA




GTGCAGCT (SEQ ID NO: 232)






4-f
TGCTCTGTTAAACGAACGCAGCCGCTATAAAGTGCAGCTGGCCGACTACGATCAGGTACAGGAACAGCGTCAG
240



CTGACGATCGCTCTGAGCGGTGACGCGTGGCTGGCGGATCTGCGCCAGACATGCAGTGCGCAGGGCATCACGC




TGCACTCTATCCTGCAATTTGTATGGCATGCAGTTCTGCATGCCTACGGTGGCGGTACTCACACTATCACTGG




CACCACTATTTCTGGTCGCAA (SEQ ID NO: 233)






5-a
ACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCAACCTCCCGATCCTGGGTATCGAGCG
282



TGCGGTAGGCCCGTACATTAACACCCTGCCGTTAGTGTTGGACCATTCTACTTTTAAAGACAAGACGATCATG




GAAGCTATTGAAGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGC




ACAAAACCGACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACC 




(SEQ ID NO: 234)






5-b
GCTATTGAAGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGCACA
298



AAACCGACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAATCCCG




TACTCTGGAGCACCAAACTGAACTGGGTTACTCCATCGAGGGTGGTACCGAAAAACTGAACTATCCGCTGGCG




GTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAACTGTTTGAAG




AGGTGA (SEQ ID NO: 235)






5-c
AACTGAACTATCCGCTGGCGGTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTA
298



TGCGAGCGAACTGTTTGAAGAGGTGATGATCAGCGAGCTTCTCCATATGGTACAGGATACCCTGATGCAGGTT




GCACGCGGGCTCAACGAACCTGTGGGCTCCCTGGAATACCTGTCTTCCATCCAGTTAGAGCAGCTGGCAGCGT




GGAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCAAAAGCC




GGATAA (SEQ ID NO: 236)






5-d
TTAGAGCAGCTGGCAGCGTGGAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGA
298



ACGAAGCATCTCAAAAGCCGGATAAAATTGCAGTCGTGTACGAAGAAACCTCTCTGACCTATCGCGAGCTGAA




CGAACGTGCCAATCGCATGGCGCACCAGCTGCGTTCCGACGTTTCTCCGAACCCGAACGAAGTGATCGCGCTG




GTTATGGACAAGAGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGA




TCGATC (SEQ ID NO: 237)






5-e
GAGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCCGGGC
268



TACCCGAATGACCGTATTCAGTATATCCTCGAGGACACTCAGGCGTTGGCTGTTATCGCAGATTCTTGTTACC




TGCCTCGTATCAAAGGTATGGCCGCGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACCCAGACAG




CAAATGGTCTGTGTCAAACCCGTCGCCGCTGTCTCGTAGCACCGACCTG (SEQ ID NO: 238)






5-f
CGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCTGTGTCAAACCCGTC
297



GCCGCTGTCTCGTAGCACCGACCTGGCATACATCATCTACACCTCTGGCACCACCGGCCGCCCGAAAGGCGTG




ACTGTGGAGCATCACGGTGTGGTGAACCTGCAGGTATCCCTGAGCAAAGTTTTTGGTCTGCGTGACACCGACG




ACGAAGTCATCCTGTCTTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAA




CGGGC (SEQ ID NO: 239)






6-a
CTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGCAGACGCTGCTGGTTCT
260



GAACGATGGTATGCGTGGTGACAAAGAACGCCTGTACCGCTACATCGAAAAGAACCGTGTAACTTATCTGTCT




GGTACTCCATCTGTGGTGTCTATGTATGAGTTCAGCCGTTTCAAAGACCACCTGCGCCGCGTCGATTGCGTCG




GTGAAGCTTTCAGCGAGCCGGTCTTCGACAAAATCCGTGAA (SEQ ID NO: 240)






6-b
ACCTTCCACGGTTTGGTTATCAATGGTTATGGCCCAACTGAAGTTAGCATCACTACCCATAAGCGTTTATACC
192



CTTTCCCAGAGCGCCGCATGGATAAGTCGATCGGCCAGCAGGTCCACAACTCTACTAGCTACGTACTGAATGA




AGATATGAAGCGTACCCCGATCGGTGCTGTGGGTGAGCTGTACCTG (SEQ ID NO: 241)






6-c
TGAATGAAGATATGAAGCGTACCCCGATCGGTGCTGTGGGTGAGCTGTACCTGGGCGGTGAAGGTGTTGTCCG
259



CGGTTATCATAATCGTGCGGATGTTACCGCCGAGCGCTTCATCCCGAACCCGTTCCAGTCTGAGGAAGATAAA




CGTGAAGGCCGTAACAGTCGCCTGTACAAGACGGGTGATCTGGTTCGCTGGATCCCGGGTAGCTCCGGCGAAG




TCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTCG (SEQ ID NO: 242)






6-d
CGAAGTCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTCGCGGCCTCCGTATCGAGCTGGGTGAAATC
297



GAAGCGATCCTGAGCAGCTACCACGGCATTAAACAGAGCGTAGTGATCGCAAAAGACTGCCGTGAGGGGGCAC




AGAAATTCCTGGTCGGCTATTACGTTGCAGACGCTGCCCTGCCGTCCGCAGCGATCCGTCGTTTCATGCAGTC




GCGCCTCCCGGGTTACATGGTTCCGTCCCGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCCGTCCGGGAAG




CTGGA (SEQ ID NO: 243)






6-e
CGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCCGTCCGGGAAGCTGGACACCAAAGCACTGCCGCCGGCGG
297



AGGAAGAAAGCGAAATCGACGTTGTTCCACCGCGCTCCGAAATTGAGCGTTCTCTCTGCGACATCTGGGCTGA




ACTGCTGGAAATGCACCCGGAAGAAATCGGCATTTACTCTGACTTCTTCTCCTTGGGCGGCGACAGCCTGAAA




TCTACTAAGTTATCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATC




GCACA (SEQ ID NO: 244)






7-a
TCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTGAAG
150



CTCAAACTCACCTGATCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACACCCA




GATG (SEQ ID NO: 245)






7-b
GAAGCTCAAACTCACCTGATCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACA
297



CCCAGATGATCCCGGTTTCCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGC




TTACAACATTGACGCGGCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTCGTGGC




AACCTGGCACGTCACGAAGCACTGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCTGCAGAAAG




TACTG (SEQ ID NO: 246)






7-c
AGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACGCGGCTTTCGAACT
297



GCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTCGTGGCAACCTGGCACGTCACGAAGCACTGCGC




ACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCTGCAGAAAGTACTGAGTCCGGACGAAGCGCAAGGTA




TGTTTTCTGTTAATGTAGATACTGCTAAACAGGTTGAACGTCTGGATCAGGAAATTGCTTCTCTGTCTCAGCA




CGTCT (SEQ ID NO: 247)






7-d
TTGAACGTCTGGATCAGGAAATTGCTTCTCTGTCTCAGCACGTCTTCCGCCTGGACGACGAACTGCCGTGGGA
298



GGCGCGCATCCTGAAACTGGAATCTGGCGGTCTGTACCTGATCTTGGCCTTCCACCACACCTGCTTCGATGCA




TGGAGCCTGAAAGTTTTCGAACAGGAGCTGCGCGCGCTGTACGCAGCGCTTCAGAAAACGAAATCTGCAGCGA




ACTTACCGGCATTAAAAGCACAGTATAAGGAATACGCTCTGTACCACCGCCGCCAGCTTAGCGGCGACCGCAT




GCGTAA (SEQ ID NO: 248)






7-e
AATACGCTCTGTACCACCGCCGCCAGCTTAGCGGCGACCGCATGCGTAACCTGTCCGATTTCTGGTTACGTAA
295



ACTGATCGGTCTGGAACCACTGCAGCTGATCACCGATCGTCCGCGTCCGGTTCAGTTCAAATACGACGGTGAC




GATCTGAGCATCGAACTGTCCAAGAAAGAGACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAAGTCTTCCT




TATATGTTGTACTGGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGTTAGCGTGGG




CAT (SEQ ID NO: 249)






7-f
TGATCACCGATCGTCCGCGTCCGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATCGAACTGTCCAAGAA
297



AGAGACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTGTACTGGTATCTGTTTAC




TGTGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCCAGTATCACACCGTACGCACC




CGCAGTTCCAGTCTGTTATCGGCTTTTTCGTTAACCTGGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTAT




TTGCG (SEQ ID NO: 250)






8-a
GGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGTTTAATCCGTCGCGTCATGAAAGAACTGGTT
127



GACGCGCAGCTGCACCAGGATATGCCGTTCCAGGAAGTTACGAAACTGCTGCAG (SEQ ID NO: 251)






8-b
GCCGTTCCAGGAAGTTACGAAACTGCTGCAGGTGGATAACGATCCTAGCCGTCACCCGTTGGTTCAGAACGTA
298



TTTAACTTTGAGTCTCGCGCGAACGGTGAACACGATGCCCGCTCTGAAGACGAGGGCTCTCTTGCATTCAATC




AGTACCGTCCGGTTCAGCCGGTTGACAGCGTGGCCAAATTCGATCTGAACGCCACCGTCACCGAACTGGAATC




CGGTCTGCGTGTTAATTTCAACTACGCGACCAGCTTATTCAATAAATCCACCATCCAGGGCTTCCTGCACACA




TATGAA (SEQ ID NO: 252)






8-c
CCAGCTTATTCAATAAATCCACCATCCAGGGCTTCCTGCACACATATGAATACCTTCTGCGTCAGCTGTCCGA
296



ACTGAGCGCTGAAGGCATCAACGAAGATACCCAGCTGTCACTGGTTCGCCCGACTGAGAACGGGGATCTGCAC




CTGCCACTGGCCCAGTCTCCGCTCGCGACCACTGCAGAAGAACAGAAAGTTGCTTCCCTGAACCAGGCTTTCG




AACGTGAAGCCTTCCTGGCGGCGGAAAAAATCGCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACCT




GAAC (SEQ ID NO: 253)






8-d
GCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACCTGAACGGTCAGGCTAATCAACTGGCGCGTTATA
299



TCCAGTCCGTCTCCTGCATCGGTGCCGACGACGGCATCGCCCTGATGCTGGAAAAGAGCATCGATACTATCAT




CTGCATTCTGGCAATCTGGAAAGCAGGCGCCGCGTATGTGCCGCTGGATCCGACCTACCCACCAGGCCGTGTA




CAACTGATCCTGGAGGAAATCAAAGCGAAAGCTGTGCTGGTACACTCTTCCCACGCCTCTAAATGTGAACGTC




ACGGTGC (SEQ ID NO: 254)






9-a
CCTCTAAATGTGAACGTCACGGTGCCAAAGTCATTGCAGTAGACTCTCCGGCTATTGAAACGGCAGTGAGCCA
225



GCAGTCTGCAGCTGATCTGCCGACCATTGCTAGCCTGGGTAATCTGGCATATATCATCTTTACTAGCGGCACT




TCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCGTGAGCGTT




ACTTCG (SEQ ID NO: 255)






9-b
ATCTTTACTAGCGGCACTTCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCG
297



ACGCCCTGCGTGAGCGTTACTTCGGTCGTGATTGTACCAAACATCACGGTGTTCTGTTCCTGAGCAACTACGT




TTTCGACTTCTCCGTAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAG




TTTGTGGCGGATGACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCC




TGCTT (SEQ ID NO: 256)






9-c
TTCGACTTCTCCGTAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGT
297



TTGTGGCGGATGACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCT




GCTTCAAAAAATCGATCTGGCACGTCTGGATCACCTGCAGGTTGTAACCGCGGCGGGTGAGGAACTCCACGCG




ACCCAGTACGAAAAAATGCGTCGTCGTTTTAACGGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACGG




TGTAC (SEQ ID NO: 257)






9-d
GGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACGGTGTACAACATCATCGCTGAATTCACCACCAACT
298



CCATCTTCGAAAACGCATTACGCGAAGTCCTGCCGGGCACCCGTGCGTACGTTCTGAACGCGGCGCTGCAGCC




GGTTCCATTCGACGCTGTGGGTGAACTGTATCTGGCCGGCGATAGCGTAACCCGTGGTTACCTGAACCAGCCG




TTGCTGACCGATCAGCGTTTCATCCCTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTC




GTCTGT (SEQ ID NO: 258)






9-e
AAACCGGCGACCTGGTTCGCTCTCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGGCGA
297



CCTGCAGATTAAAATGCGTGGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCCCCGGGC




GTACGCGAAGGTGCGGTTGTGGCTAAATATGAAAACAACGACACGTATAGCCGTACTGCACATTCCTTAGTCG




GTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCGCGTCTGCCGAC




CTATA (SEQ ID NO: 259)






9-f
CTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGTACAAAACCGGCGACCTGGT
104



TCGCTCTCGCTTCAACCGCCAGCAGCAGCCG (SEQ ID NO: 260)






9-g
TACTGCACATTCCTTAGTCGGTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTC
298



ATGAAAGCGCGTCTGCCGACCTATATGGTGCCTTCTCACCTGTGCTGCCTGGAAGGTGCTCTGCCAGTCACTA




TTAACGGTAAACTGGACGTTCGTCGTCTGCCTGAAATTATCAACGACAGTGCGCAATCCTCATATTCCCCGCC




GCGCAACATTATCGAAGCGAAAATGTGCCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGAC




GATGAC (SEQ ID NO: 261)






10-a 
CGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACCTCTTCAAGCTGGGGGGGGATT
198



CTATCACCAGTCTGCACCTCGTCGCACAGATTCACAATCAGGTGGGCTGTAAGATTACCGTGCGCGATATTTT




CGAACACCGTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGC (SEQ ID NO: 262)






10-b 
GTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGCGATCGCTCTAACGTCACCCAGTTCCGTAC
297



CGAGCAGGGGCCGGTCATTGGCGAAGCTCCGCTGCTGCCGATCCAGGATTGGTTCTTGAGCAAAGCTCTGCAG




CACCCTATGTACTGGAACCACACGTTCTACGTACGTACCCCGGAACTGGACGTTGATTCCCTGAGTGCGGCCG




TTCGTGACCTGCAGCAGTACCACGACGTTTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCTTTGTACAGTC




CTTTG (SEQ ID NO: 263)






10-c 
TTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCTTTGTACAGTCCTTTGCCGAAGACTTTTCCCCGGCGCAG
298



CTGCGTGTACTGAACGTGAAGGACGTGGATGGTAGCGCGGCGGTTAACGAAATCCTGGACGGTTGGCAAAGCG




GCTTCAACCTGGAAAACGGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGT




GTGGTTTTCTGTACACCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTG




TACCGT (SEQ ID NO: 264)






10-d 
ACCTGGAAAACGGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTT
298



TTCTGTACACCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGT




AACGGTTCCCTGGGTTCCAAAGGTTCTTCATTTCGCCAATGGGCCGAGGCAATCCAAAACTACAAAGCGAGCG




ACTCGGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTCCAC




TGGTTC (SEQ ID NO: 265)






10-e 
AAAACTACAAAGCGAGCGACTCGGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAG
297



CGCGCTGCCGACCTCCACTGGTTCTCGCGTACGTCTCTCCCGTTCTCTGTCTCCTGAAAAAACTGCTTCTCTG




ATCCAGGGTGGCATCGATCGTCAGGATGTAAGCGTATACGATTCTCTGCTGACTTCTGTTGGCCTGGCTTTGC




AACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGACCAGACCCT




GGATG (SEQ ID NO: 266)






10-f 
TTCTGTTGGCCTGGCTTTGCAACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGC
298



GAAGAAGTTGACCAGACCCTGGATGTTTCTCGTACGATGGGCTGGTTCACTACCATGTATCCGTTCGAAATCC




CGCGTCTGTCGACGGAAAACATCGTGCAGGGTGTTGTTGCTGTAAGTGAACGCTTCCGCCAAGTTCCGGCTCG




CGGTGTTGGTTATGGTACTCTGTACGGTTACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGC




CAGCTG (SEQ ID NO: 267)






11-a 
ACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGCTGGCTCGTAAACAGAGCAAGCCGAA
297



AGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAAGGACCGT




TCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACTCGGCTTGGT




CTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGACGGTCGTGCATC




CCAGC (SEQ ID NO: 268)






11-b 
CGTAAACAGAGCAAGCCGAAAGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCT
297



CCCCGGAGGATAAGGACCGTTCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCAT




CGATGTGGACTCGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAA




ATCCTGGACGGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCC




CATAC (SEQ ID NO: 269)






11-c 
GATGTGGACTCGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAA
297



TCCTGGACGGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCC




ATACTTCGAATATCTGGAACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCG




GAATCTTACTTCAACAACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGC




ACTCC (SEQ ID NO: 270)






11-d 
GAATATCTGGAACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAATCTT
296



ACTTCAACAACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCACTCCAA




ACGTCTGCGCACCTTCGAGGAACTGGCTGAAATGTATCTGGACCAGGTACGCGGCATCCAACCGCACGGTCCA




TACCACTTCATCGGCTGGAGCTTCGGGGGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTTGCGAGCGACG




AAAA (SEQ ID NO: 271)






11-e 
GGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTTGCGAGCGACGAAAAAATTGGTTTTCTGGGTATTATCG
282



ACACCTATTTCAACGTACGTGGTGCCACTCGCACCATTGGCCTTGGTGATACTGAAATCCTGGATCCGATCCA




CCACATCTATAACCCGGACCCGGCAAACTTTCAGCGTCTGCCGTCTGCCACCGACCGTATCGTCCTGTTTAAG




GCCATGCGTCCGAATAATAAATATGAATCAGAAAACCAGCGTCGCCTGTATGAGTACTACGAC 




(SEQ ID NO: 272)






11-f 
CTACGACGCGTTAGATTCCACGGACTGGACCGCATGTTACCAGGCGATCCCTACCTCCTCATGGTCGCGCCTG
202



CGCACGATCCACACCTTCCCGGGTTCGGAAATCCACAACCGCTGGTCCCGTTGCGTTCGTCTGAGCCGTAACA




CCAGCCTTGCCATCGACCCGTCTCTGGCGGCTCAGTACATCGGTCGTTGGAAGTAA (SEQ ID NO. 273)









Nested PCR for 1 Kb DNA Synthesis Using Flanking Sequence Removed Shotgun Assembly Products


The flanking sequence removed shotgun assembly products were assembled to make 11 gene cluster fragments (645-1,325 bp). The target DNA sequences are listed in Table 4.









TABLE 4







Sequences of 11 gene cluster fragments prepared by 


the methods of the present disclosure











Expected




length


Fragment
Targeted seguence after restriction enzyme or nested PCR (5′→3′)
(bp)





 1
ATGACCCAATTGAAGCCGCCTAACGGGACCACTCCGATCGGCTTCAGCGCCACTACTAGCCTGAACGCTAGCG
 980



GCTCTTCCTCGGTTAAGAATGGTACCATCAAGCCTTCGAATGGTATCTTCAAACCTTCTACTCGTGACACCAT




GGACCCGTGCTCGGGCAACGCCGCTGACGGCTCCATTCGCGTACGTTTTCGCGGTGGCATCGAACGTTGGAAA




GAGTGTGTAAACCAAGTGCCGGAGCGTTGCGACCTGTCTGGTCTGACCACGGACAGCACCCGCTACCAGCTGG




CTTCGACCGGCTTCGGCGACGCGAGCGCGGCTTACCAGGAACGTCTGATGACTGTGCCGGTAGATGTTCATGC




TGCGCTCCAGGAGCTGTGCCTGGAACGCCGCGTCTCTGTGGGTTCTGTGATCAACTTCAGCGTTCACCAGATG




CTGAAGGGTTTTGGCAACGGTACTCACACTATCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCT




CTCCGTCTTGGGTCGTTTCCCCTACTATCGTGACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGT




GGAGTCTATCGAGGCTGGTCGTGGCTCCGAAAAGGAATCTGTGACCGCGATTGATTCCGGCTCCTCCCTGGTC




AAAATGGGTCTGTTCGATCTGCTGGTTTCCTTCGTCGATGCGGATGACGCGCGTATCCCTTGCTTCGACTTTC




CGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTCACCCTTCGCTTCTCGGACTGCCTGTTCAA




CGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTGTAACT




CCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACACCGATGGTG




AATATCCGTCTAGCAAGCGTCTGCACCACCT (SEQ ID NO: 274)






 2
GTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACGTCACGAAGACAAAATCGC
1203



TGTGGTGTGCGACGAACGTGAACTGACTTACGGTGAACTCAATGCCCAGGGCAACTCCCTGGCGCGTTACCTG




CGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACGCCTCCAGCGTGAAGTA




ATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCAGGATTCTTCTAAAT




TCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTACTTATACCAGCGGTAC




CACCGGCTTTCCGAAAGGCATTTTCAAACAGCACACTAACGTTGTTAACTCCATCACAGACCTGTCCGCTCGT




TACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGTTTTCGAACCGTTCGTTCGTC




AGACTCTGATGGCCCTGGTGAACGGTCACCTGCTCGCCGTGATTAACGATGTAGAAAAATATGACGCTGACAC




CCTCCTCCCATTTATCCGCCGTCACTCTATCACCTATCTGAACGGTACTGCGTCGGTTCTCCAAGAGTATGAC




TTCTCTGACTGTCCGAGCCTGAACCGTATCATCCTGGTGGGCGAGAACCTGACCGAAGCACGTTACCTGGCAC




TGCGTCAGCGTTTCAAAAATCGTATTCTGAACGAGTACGGTTTCACCGAGTCTGCGTTCGTGACTGCGCTGAA




AATTTTCGATCCGGAAAGCACCCGCAAAGATACCTCCCTGGGGCGTCCGGTGCGCAATGTTAAATGCTATATC




TTGAACCCTAGCCTGAAACGCGTGCCAATTGGTGCTACAGGTGAGCTGCATATTGGCGGCCTGGGTATCTCCA




AGGGTTACTTGAATCGTCCGGAACTGACGCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAA




ACAGCTGGGTATCAACTCTCTGATGTACAAAACCG (SEQ ID NO: 275)






 3
ATCGTCCGGAACTGACGCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTAT
 645



CAACTCTCTGATGTACAAAACCGGTGATCTGGCTCGCTGGCTCCCGAACGGTGAAGTTGAATACCTGGGCCGT




GCGGATTTCCAGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATC




CGCGCGTTCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCT




GGTAGGCTACTACGTATGCGACTCCGCATCTGTTTCCGAAGCGGATCTGCTGTCCTTCCTGGAGAAGAAGCTG




CCGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTAAAGCCGATC




TGCGTGCTCTGCCGGCGGTTGATATCTCCAACAGCACCGAAGTTCGTTCTGATCTGCGTGGTGATACCGAAAT




TGCCCTCGGCGAAATCTGGGCGGACGTGCTGGGCGCGCGTCAGCGTTCGGTTAGCCGTAACGATAACTTTTTC




CGCCTCGGTGGCCACTCTATCACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGC 




(SEQ ID NO: 276)






 4
ACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGCGTTTGTCTGTGTCTATCTCTGTGGAAGACGTGT
1043



TTGCTACACGCACTCTTGAGCGTATGGCCGACCTGTTGCAAAACAAACAGCAAGAGAAATGCGACAAACCACA




CGAAGCACCGACTGAACTGCTTGAAGAAAACGCTGCGACTGATAACATCTACCTGGCGAACAGCCTGCAGCAA




GGTTTCGTCTACCATTACCTGAAAAGCATGGAACAAAGTGATGCTTATGTAATGCAGAGCGTTCTGCGTTACA




ACACCACCCTTTCCCCGGATCTGTTCCAGCGTGCCTGGAAACACGCGCAGCAAAGCTTCCCGGCTCTGCGTCT




GCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCCTCTGGACTGGCGTTTCCTCTAC




TTCACTGATGTGGCGGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCGCCAGGACCTCACCGAGC




GTTTTAAACTGGATGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCGTTTCACTTGTCT




GTTCTCTTGTCACCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAAAGTACACGAAACATAC




CTGCAACTGCTGCACGGCGATAACCTGACCTCCTCTATGGATGATCCATACACCCGTACCCAACGCTACCTGC




ATGCGCACCGCGAAGATCACCTCGACTTTTGGGCTGGCGTGGTGCAGAAAATCAACGAACGTTGCGATATGAA




TGCTCTGTTAAACGAACGCAGCCGCTATAAAGTGCAGCTGGCCGACTACGATCAGGTACAGGAACAGCGTCAG




CTGACGATCGCTCTGAGCGGTGACGCGTGGCTGGCGGATCTGCGCCAGACATGCAGTGCGCAGGGCATCACGC




TGCACTCTATCCTGCAATTTGTATGGCATGCAGTTCTGCATGCCTACGGTGGCGGTACTCACACTATCACTGG




CACCACTATTTCTGGTCGCAA (SEQ ID NO: 277)






 5
ACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCAACCTCCCGATCCTGGGTATCGAGCG
1245



TGCGGTAGGCCCGTACATTAACACCCTGCCGTTAGTGTTGGACCATTCTACTTTTAAAGACAAGACGATCATG




GAAGCTATTGAAGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGC




ACAAAACCGACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAATC




CCGTACTCTGGAGCACCAAACTGAACTGGGTTACTCCATCGAGGGTGGTACCGAAAAACTGAACTATCCGCTG




GCGGTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAACTGTTTG




AAGAGGTGATGATCAGCGAGCTTCTCCATATGGTACAGGATACCCTGATGCAGGTTGCACGCGGGCTCAACGA




ACCTGTGGGCTCCCTGGAATACCTGTCTTCCATCCAGTTAGAGCAGCTGGCAGCGTGGAACGCCACCGAAGCG




GAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCAAAAGCCGGATAAAATTGCAGTCG




TGTACGAAGAAACCTCTCTGACCTATCGCGAGCTGAACGAACGTGCCAATCGCATGGCGCACCAGCTGCGTTC




CGACGTTTCTCCGAACCCGAACGAAGTGATCGCGCTGGTTATGGACAAGAGTGAACACATGATCGTAAATATC




TTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCCGGGCTACCCGAATGACCGTATTCAGTATA




TCCTCGAGGACACTCAGGCGTTGGCTGTTATCGCAGATTCTTGTTACCTGCCTCGTATCAAAGGTATGGCCGC




GTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCTGTGTCAAACCCGTCG




CCGCTGTCTCGTAGCACCGACCTGGCATACATCATCTACACCTCTGGCACCACCGGCCGCCCGAAAGGCGTGA




CTGTGGAGCATCACGGTGTGGTGAACCTGCAGGTATCCCTGAGCAAAGTTTTTGGTCTGCGTGACACCGACGA




CGAAGTCATCCTGTCTTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAAC




GGGC (SEQ ID NO: 278)






 6
CTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGCAGACGCTGCTGGTTCT
1157



GAACGATGGTATGCGTGGTGACAAAGAACGCCTGTACCGCTACATCGAAAAGAACCGTGTAACTTATCTGTCT




GGTACTCCATCTGTGGTGTCTATGTATGAGTTCAGCCGTTTCAAAGACCACCTGCGCCGCGTCGATTGCGTCG




GTGAAGCTTTCAGCGAGCCGGTCTTCGACAAAATCCGTGAAACCTTCCACGGTTTGGTTATCAATGGTTATGG




CCCAACTGAAGTTAGCATCACTACCCATAAGCGTTTATACCCTTTCCCAGAGCGCCGCATGGATAAGTCGATC




GGCCAGCAGGTCCACAACTCTACTAGCTACGTACTGAATGAAGATATGAAGCGTACCCCGATCGGTGCTGTGG




GTGAGCTGTACCTGGGCGGTGAAGGTGTTGTCCGCGGTTATCATAATCGTGCGGATGTTACCGCCGAGCGCTT




CATCCCGAACCCGTTCCAGTCTGAGGAAGATAAACGTGAAGGCCGTAACAGTCGCCTGTACAAGACGGGTGAT




CTGGTTCGCTGGATCCCGGGTAGCTCCGGCGAAGTCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTC




GCGGCCTCCGTATCGAGCTGGGTGAAATCGAAGCGATCCTGAGCAGCTACCACGGCATTAAACAGAGCGTAGT




GATCGCAAAAGACTGCCGTGAGGGGGCACAGAAATTCCTGGTCGGCTATTACGTTGCAGACGCTGCCCTGCCG




TCCGCAGCGATCCGTCGTTTCATGCAGTCGCGCCTCCCGGGTTACATGGTTCCGTCCCGTCTGATCCTGGTTT




CTAAATTCCCTGTTACTCCGTCCGGGAAGCTGGACACCAAAGCACTGCCGCCGGCGGAGGAAGAAAGCGAAAT




CGACGTTGTTCCACCGCGCTCCGAAATTGAGCGTTCTCTCTGCGACATCTGGGCTGAACTGCTGGAAATGCAC




CCGGAAGAAATCGGCATTTACTCTGACTTCTTCTCCTTGGGCGGCGACAGCCTGAAATCTACTAAGTTATCCT




TCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACA 




(SEQ ID NO: 279)






 7
TCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTGAAG
1066



CTCAAACTCACCTGATCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACACCCA




GATGATCCCGGTTTCCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTAC




AACATTGACGCGGCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTCGTGGCAACC




TGGCACGTCACGAAGCACTGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCTGCAGAAAGTACT




GAGTCCGGACGAAGCGCAAGGTATGTTTTCTGTTAATGTAGATACTGCTAAACAGGTTGAACGTCTGGATCAG




GAAATTGCTTCTCTGTCTCAGCACGTCTTCCGCCTGGACGACGAACTGCCGTGGGAGGCGCGCATCCTGAAAC




TGGAATCTGGCGGTCTGTACCTGATCTTGGCCTTCCACCACACCTGCTTCGATGCATGGAGCCTGAAAGTTTT




CGAACAGGAGCTGCGCGCGCTGTACGCAGCGCTTCAGAAAACGAAATCTGCAGCGAACTTACCGGCATTAAAA




GCACAGTATAAGGAATACGCTCTGTACCACCGCCGCCAGCTTAGCGGCGACCGCATGCGTAACCTGTCCGATT




TCTGGTTACGTAAACTGATCGGTCTGGAACCACTGCAGCTGATCACCGATCGTCCGCGTCCGGTTCAGTTCAA




ATACGACGGTGACGATCTGAGCATCGAACTGTCCAAGAAAGAGACCGAAAACCTGCGCGGCGTTGCAAAACGT




TGTAAGTCTTCCTTATATGTTGTACTGGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCAACCAGAGCG




ATGTTAGCGTGGGCATCCCAGTATCACACCGTACGCACCCGCAGTTCCAGTCTGTTATCGGCTTTTTCGTTAA




CCTGGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCG (SEQ ID NO: 280)






 8
GGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGTTTAATCCGTCGCGTCATGAAAGAACTGGTT
 894



GACGCGCAGCTGCACCAGGATATGCCGTTCCAGGAAGTTACGAAACTGCTGCAGGTGGATAACGATCCTAGCC




GTCACCCGTTGGTTCAGAACGTATTTAACTTTGAGTCTCGCGCGAACGGTGAACACGATGCCCGCTCTGAAGA




CGAGGGCTCTCTTGCATTCAATCAGTACCGTCCGGTTCAGCCGGTTGACAGCGTGGCCAAATTCGATCTGAAC




GCCACCGTCACCGAACTGGAATCCGGTCTGCGTGTTAATTTCAACTACGCGACCAGCTTATTCAATAAATCCA




CCATCCAGGGCTTCCTGCACACATATGAATACCTTCTGCGTCAGCTGTCCGAACTGAGCGCTGAAGGCATCAA




CGAAGATACCCAGCTGTCACTGGTTCGCCCGACTGAGAACGGGGATCTGCACCTGCCACTGGCCCAGTCTCCG




CTCGCGACCACTGCAGAAGAACAGAAAGTTGCTTCCCTGAACCAGGCTTTCGAACGTGAAGCCTTCCTGGCGG




CGGAAAAAATCGCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACCTGAACGGTCAGGCTAATCAACT




GGCGCGTTATATCCAGTCCGTCTCCTGCATCGGTGCCGACGACGGCATCGCCCTGATGCTGGAAAAGAGCATC




GATACTATCATCTGCATTCTGGCAATCTGGAAAGCAGGCGCCGCGTATGTGCCGCTGGATCCGACCTACCCAC




CAGGCCGTGTACAACTGATCCTGGAGGAAATCAAAGCGAAAGCTGTGCTGGTACACTCTTCCCACGCCTCTAA




ATGTGAACGTCACGGTGC (SEQ ID NO: 281)






 9
CCTCTAAATGTGAACGTCACGGTGCCAAAGTCATTGCAGTAGACTCTCCGGCTATTGAAACGGCAGTGAGCCA
1325



GCAGTCTGCAGCTGATCTGCCGACCATTGCTAGCCTGGGTAATCTGGCATATATCATCTTTACTAGCGGCACT




TCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCGTGAGCGTT




ACTTCGGTCGTGATTGTACCAAACATCACGGTGTTCTGTTCCTGAGCAACTACGTTTTCGACTTCTCCGTAGA




ACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGTTTGTGGCGGATGACGAA




TTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCTGCTTCAAAAAATCGATC




TGGCACGTCTGGATCACCTGCAGGTTGTAACCGCGGCGGGTGAGGAACTCCACGCGACCCAGTACGAAAAAAT




GCGTCGTCGTTTTAACGGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACGGTGTACAACATCATCGCT




GAATTCACCACCAACTCCATCTTCGAAAACGCATTACGCGAAGTCCTGCCGGGCACCCGTGCGTACGTTCTGA




ACGCGGCGCTGCAGCCGGTTCCATTCGACGCTGTGGGTGAACTGTATCTGGCCGGCGATAGCGTAACCCGTGG




TTACCTGAACCAGCCGTTGCTGACCGATCAGCGTTTCATCCCTAACCCGTTCTGCAAGGAAGAAGACATCGCG




ATGGGTCGTTTCGCTCGTCTGTACAAAACCGGCGACCTGGTTCGCTCTCGCTTCAACCGCCAGCAGCAGCCGC




AGCTGGAATACCTGGGCCGTGGCGACCTGCAGATTAAAATGCGTGGTTACCGCATTGAAATTAGCGAAGTACA




GAACGTGCTGACCTCCTCCCCGGGCGTACGCGAAGGTGCGGTTGTGGCTAAATATGAAAACAACGACACGTAT




AGCCGTACTGCACATTCCTTAGTCGGTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCA




CCTTCATGAAAGCGCGTCTGCCGACCTATATGGTGCCTTCTCACCTGTGCTGCCTGGAAGGTGCTCTGCCAGT




CACTATTAACGGTAAACTGGACGTTCGTCGTCTGCCTGAAATTATCAACGACAGTGCGCAATCCTCATATTCC




CCGCCGCGCAACATTATCGAAGCGAAAATGTGCCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTA




CCCACGATGAC (SEQ ID NO: 282)






10
CGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACCTCTTCAAGCTGGGGGGGGATT
1251



CTATCACCAGTCTGCACCTCGTCGCACAGATTCACAATCAGGTGGGCTGTAAGATTACCGTGCGCGATATTTT




CGAACACCGTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGCGATCGCTCTAACGTCACCCAG




TTCCGTACCGAGCAGGGGCCGGTCATTGGCGAAGCTCCGCTGCTGCCGATCCAGGATTGGTTCTTGAGCAAAG




CTCTGCAGCACCCTATGTACTGGAACCACACGTTCTACGTACGTACCCCGGAACTGGACGTTGATTCCCTGAG




TGCGGCCGTTCGTGACCTGCAGCAGTACCACGACGTTTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCTTT




GTACAGTCCTTTGCCGAAGACTTTTCCCCGGCGCAGCTGCGTGTACTGAACGTGAAGGACGTGGATGGTAGCG




CGGCGGTTAACGAAATCCTGGACGGTTGGCAAAGCGGCTTCAACCTGGAAAACGGTCCGATCGGCTCGATCGG




TTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTTTTCTGTACACCACATGGCCATTGACACTGTT




TCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGTAACGGTTCCCTGGGTTCCAAAGGTTCTTCAT




TTCGCCAATGGGCCGAGGCAATCCAAAACTACAAAGCGAGCGACTCGGAACGTAACCATTGGAACAAGCTGGT




TATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTCCACTGGTTCTCGCGTACGTCTCTCCCGTTCTCTG




TCTCCTGAAAAAACTGCTTCTCTGATCCAGGGTGGCATCGATCGTCAGGATGTAAGCGTATACGATTCTCTGC




TGACTTCTGTTGGCCTGGCTTTGCAACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGG




CCGCGAAGAAGTTGACCAGACCCTGGATGTTTCTCGTACGATGGGCTGGTTCACTACCATGTATCCGTTCGAA




ATCCCGCGTCTGTCGACGGAAAACATCGTGCAGGGTGTTGTTGCTGTAAGTGAACGCTTCCGCCAAGTTCCGG




CTCGCGGTGTTGGTTATGGTACTCTGTACGGTTACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCT




GGGCCAGCTG (SEQ ID NO: 283)






11
ACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGCTGGCTCGTAAACAGAGCAAGCCGAA
1076



AGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAAGGACCGT




TCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACTCGGCTTGGT




CTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGACGGTCGTGCATC




CCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCCATACTTCGAATATCTGGAA




CCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAATCTTACTTCAACAACA




TCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCACTCCAAACGTCTGCGCAC




CTTCGAGGAACTGGCTGAAATGTATCTGGACCAGGTACGCGGCATCCAACCGCACGGTCCATACCACTTCATC




GGCTGGAGCTTCGGGGGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTTGCGAGCGACGAAAAAATTGGTT




TTCTGGGTATTATCGACACCTATTTCAACGTACGTGGTGCCACTCGCACCATTGGCCTTGGTGATACTGAAAT




CCTGGATCCGATCCACCACATCTATAACCCGGACCCGGCAAACTTTCAGCGTCTGCCGTCTGCCACCGACCGT




ATCGTCCTGTTTAAGGCCATGCGTCCGAATAATAAATATGAATCAGAAAACCAGCGTCGCCTGTATGAGTACT




ACGACGCGTTAGATTCCACGGACTGGACCGCATGTTACCAGGCGATCCCTACCTCCTCATGGTCGCGCCTGCG




CACGATCCACACCTTCCCGGGTTCGGAAATCCACAACCGCTGGTCCCGTTGCGTTCGTCTGAGCCGTAACACC




AGCCTTGCCATCGACCCGTCTCTGGCGGCTCAGTACATCGGTCGTTGGAAGTAA (SEQ ID NO: 284)









The 11 gene cluster fragments were constructed using 3 μl water, 10 μl Phusion polymerase pre-mix (NEB, MA), 1 μl forward and reverse primers, and 5 μl of flanking sequence-cleaved shotgun assembly DNA fragments (FIG. 8i). The ˜1 kb DNA fragments were cloned into the TOPO vector using the TOP Cloner™ Blunt core kit (Enzynomics, Korea) and submitted for Sanger sequencing. A few colonies were chosen for colony PCR using M13 primer pairs (M13F-pUC and M13R-pUC universal primer pair). The Lasergene program (DNAstar, Madison, Wis.) was used to analyze the DNA sequence data.


Nested PCR Assembly of an 11.4 Kb Gene Cluster Using Flanking Sequence Removed Shotgun Assembly Products


A nested PCR method was used to assemble eleven ˜1 kb fragments into the full-length target penicillin biosynthetic gene cluster.


The PCR was performed using eleven ˜1 kb fragments (each 1 μl) and 15 μl of Phusion polymerase pre-mix (NEB, MA) in the absence of primers as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 10-cycle PCR step, each cycle consisting of 95° C. for 30 s, 70° C. for 30 s, and 72° C. for 3 min 30 s; and (c) a final elongation step at 72° C. for 5 min.


1 μl primer pairs containing restriction enzyme sites (BglII or NotI) were added to the mixture (˜1 kb fragments (each 1 μl) and 15 μl of Phusion polymerase pre-mix) and 25 more PCR cycles were performed. The PCR products were used for cloning.


After gel-electrophoresis, bands of the desired size were excised and DNA was purified. The products were cloned into a pBK3 vector (Kim, H., et al., 2010) using BglII and NotI restriction enzymes, and C2566 E. coli competent cells were transformed with the vector. After overnight growth at 37° C., a few colonies were screened for pBK3 vector containing the desired DNA insert size using colony PCR. Several colonies were grown in LB media for plasmid extraction using an AccuPrep™ plasmid extraction kit (Bioneer, Korea). The extracted plasmid was submitted for sequencing. Sequencing data were analyzed using the Lasergene program (DNAstar, Madison, Wis., USA).


Results and Discussion


The shotgun DNA synthesis technology was developed to overcome the challenges of high-throughput DNA construction. 228 oligonucleotides were designed to construct a penicillin biosynthetic gene cluster [N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase, 11,376 bp]. Chip oligonucleotides were designed to contain generic flanking sequences and cleaved from a 55K Agilent DNA microchip. Selective amplification was carried out using flanking sequences and amplification primer sequences were removed using the Type IIS restriction enzymes to obtain a sub-pool of chip oligonucleotides (FIGS. 8a and 8b).


The key point for the success of the method of the present disclosure is based on the hypothesis that a pool of oligonucleotides can be shotgun assembled in one pot to produce heterogeneous assembly products, and that each one of these products can be identified by high-throughput sequencing. Thus, oligonucleotides, at least one end of which had been cleaved, were used for shotgun DNA synthesis. As expected, highly heterogeneous DNA fragments ranging in size from 100 bp to 1,000 bp were produced (FIG. 8c). DNA corresponding to the 300-500 bp region were isolated from the highly heterogeneous DNA fragments by agarose gel electrophoresis. The sizes of the DNA fragments were determined taking into consideration the limit (400-500 bp) of current 454 high-throughput sequencing read length.


The present inventors then focused on developing a method to identify random fragment compositions using high-throughput sequencing technology, as well as a method to obtain sequence-validated error-free fragments from the pool of DNA fragments (FIG. 7). In the attainment of the object stated above, DNA fragments tagged with barcodes were gel-purified through amplification with barcode primer sequences (FIG. 8). The present inventors assumed that the DNA fragments would contain generic flanking sequences at both ends of the fragments for the following reasons. The efficiency of the flanking sequence cleavage of the amplified chip oligonucleotides never reaches 100%. As a consequence, flanking sequences remaining uncut at both ends of chip oligonucleotides cause termination of the DNA assembly process. This termination creates intermediates containing generic flanking sequences at both ends. This pre-termination has been considered a critical drawback in developing chip DNA synthesis technology. However, the present inventors expected that the flanking sequences contained in the fragments could be greatly helpful in tagging the randomly assembled products with the sequence containing degenerate barcode sequences by PCR amplification using primers (connecting the flanking sequences contained in the fragments and the degenerate barcode sequences).


The tagging barcode primer sequences consisted of three parts containing the original primer sequences used for the amplification of DNA chip: (a) generic primer sequences used in designing oligonucleotides, (b) 20 bp degenerate-barcode sequences, and (c) 454 primer sequences. The barcode sequence-attached shotgun assembly fragments were further amplified using the 454 primer sequences to increase the concentration of the barcoded assembly products.


It was found that through 454 sequencing analysis of the shotgun assembly fragments, 3% of the DNA fragments (˜400 bp) were error-free (FIG. 9a). An in-house Python computer program was developed to determine error-free sequences for use in the subsequent assembly process (FIGS. 9a and 9b). Briefly, the program scans the flanking sequences containing Type IIS enzyme regions in the sequencing data to align the internal sequences to the target reference sequence. When the internal sequences (<300 bp) match perfectly with the reference sequence, the program determines the optimal set of internal sequences that overlap by 20-50 bp with other fragments, which is then applied to the next round of the assembly process (FIG. 8g).


This analysis using the Python program resulted in error-free shotgun assembled DNA fragments (˜300 bp) covering 88% of the 11,376 bp target sequence. For the remaining ˜12% DNA sequences, the error containing sequences were analyzed to determine which sequences could be re-amplified using primers. 61 pairs of PCR barcode primers were selected from a pool of random assembly products.


The desired shotgun assembly fragments were selectively amplified from the DNA mixtures using degenerate-barcode primer sequences. Based on the gel data (˜400 bp), 77% (47 out of 61) of selective amplification reactions resulted in the desired sequences. The non-amplified target sequences were re-evaluated through the Python program. As a result, alternative oligonucleotide sequences were ordered. The alternative primer sequences could be utilized to obtain 100% sequences, which could be used for target DNA synthesis. The sequences (˜10%) were TOPO cloned for Sanger DNA sequencing to evaluate their effectiveness. About 99.98% of the Sanger sequencing-evaluated sequences matched with the target reference sequence.


Amplicons using selected DNA include flanking sequences containing Type IIS restriction enzyme recognition sequences used in the processing procedure of chip oligonucleotides. Accordingly, prior to assembly of the amplified error-free fragments into the target DNA, the barcode sequences of the amplified fragments were cleaved with Type II restriction enzymes (Type IIS restriction enzyme, EarI, BtsI or EcoP 15I) (FIG. 7). For the second round of DNA assembly, 3-7 flanking sequence-cleaved fragments (each ˜300 bp) were pooled and 11 fragments (each ˜1 kb long) were constructed by nested PCR (FIG. 8i). As illustrated in FIG. 7, 5-end and 3-end primer sets of the 11 gene fragments, each of which contained the same base sequence as the target gene fragment, were used for DNA assembly. The chemically synthesized 1 kb DNA fragments were TOPO cloned and submitted for Sanger sequencing to validate their sequences. In summary, 1-3 colonies were chosen from each of the 11 constructs for sequencing, and as a result, nine of the constructs were confirmed to contain at least one desired DNA sequence (16 out of 21 colonies were error-free with an error rate of 0.022% (i.e. 5 errors per 22,903 bp). Final nested PCR assembly was performed using the 11 sequence-validated DNA fragments (FIG. 8j) to construct the penicillin biosynthetic gene cluster, and the products were cloned for sequencing. As a result of the sequencing, the desired penicillin gene cluster was successfully obtained (no error per 11,400 bp).


It is worth to further discuss various points in order to illustrate the creative features of the present disclosure. First, the shotgun synthesis of the present disclosure can provide a solution to the intrinsic challenges associated with low DNA assembly efficiency. DNA assembly processes occur less efficiently due to the increased number of oligonucleotides in a sub-pool (causing a low oligonucleotide concentration) and the presence of partially cleaved flanking sequences in the oligonucleotides. For example, highly heterogeneous by-products of ˜100-500 bp corresponding to small-sized DNA fragments were observed continuously during assembly of target gene clusters. In contrast, the shotgun DNA synthesis of the present disclosure enables the use of highly heterogeneous by-products in subsequent DNA assembly processes and therefore has advantages over conventional gene synthesis methods.


Second, a method of identifying and isolating error-free DNA fragments from a number of random shotgun assembly products was successfully developed. Barcoded primer sequences of the synthetic DNA sequence were validated by high-throughput sequencing. The barcode sequences could be utilized in selective PCR amplification of desired DNA molecules from a pool of the DNA molecules. After removal of the amplification primer sequences from the selectively amplified target DNA fragments, the fragments were hierarchically used in the assembly of the target sequence. In addition, it is evident that when the size of the target DNA molecules is sufficient to be sequenced at one time by the next-generation sequencing technology, the products obtained in the first round of the shotgun synthesis can be directly used.


Third, a cost estimate for DNA synthesis using Agilent chip-oligonucleotides and high-throughput sequencing is provided below. The two major costs associated with synthesis of large DNA are the costs of oligonucleotides and sequencing. The synthesis cost of chip oligonucleotides is expected to be $0.00085/nt, which is 100 times cheaper than resin-based oligonucleotides (Kim et al., 2011). In addition, 454 sequencing reads were computationally analyzed for sequencing cost-analysis. As a result, it was confirmed that 3% of the 300 bp DNA fragments produced in the first round of shotgun synthesis were error-free. The sequencing reading was performed using ⅛ lane of Roche-454 sequencing, which costs about $1,500. That is, the cost of synthesizing the 10 kb gene cluster was close to $3,000 (the cost of synthesizing oligonucleotides=$ 0.00085/nt*2*228*150 nt=$60; and the cost of various primers=$0.1/nt*200*20 nt=$400; the cost of Sanger sequencing=$3*100 reaction=$300; Roche-454 sequencing cost=$1,500; the cost of various purification kits and enzymes=$800). The cost of DNA synthesis by the synthesis method of the present disclosure is at least five times lower than the current price ($0.5/bp) charged by DNA synthesis companies. The concern that the present inventors have with this approach is the uneven coverage of the DNA assembly fragments. From the repeated assembly experiments, the present inventors found that the coverage of certain regions from the DNA assembly processes was dependent on the DNA sequences. It would be ideal to develop a shotgun assembly process that provides more uniform coverage.


Although the particulars of the present disclosure has been described in detail, it will be obvious to those skilled in the art that such particulars are merely preferred embodiments and are not intended to limit the scope of the present disclosure. Therefore, the true scope of the present disclosure is defined by the appended claims and their equivalents.


REFERENCES



  • Tian, J., et al., Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 432, 1050-1054 (2004).

  • Kim H., et al., Hierarchical gene synthesis using DNA microchip oligonucleotides. J. Biotech., 151, 319-324 (2011).

  • Kim, H., et al., A Fluorescence Selection Method for Accurate Large-Gene Synthesis. Chembiochem, 11(17): 2448-2452 (2010).

  • John Eid, et al., Real-Time DNA Sequencing from Single Polymerase Molecules. Science, 323, 133(2009).

  • Puigb, P., et al.: 2007 OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 35:W126-W131 (2007)

  • Ben Yehezkel, T., et al., De novo DNA synthesis using single molecule PCR. Nucleic Acids Res., 36, e107 (2008).

  • Zhang, K., et al., Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol., 24, 680-686 (2006).

  • Hutchison, C. A., et al., Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. USA, 102, 17332-17336 (2005).

  • Borovkov A. Y., et al., High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucleic Acids Research. 1-10 (2010).

  • Kosuri S., et al., Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature biotechnology. 28, 1295-1299 (2010).

  • Matzas M., et al., High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature biotechnology. 28, 1291-1294 (2010).


Claims
  • 1. A method of preparing nucleic acid molecules, comprising (a) providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid,(b) tagging the nucleic acid fragments with barcode sequences,(c) validating the sequences of the nucleic acid fragments tagged with the barcode sequences, and(d) recovering desired nucleic acid fragments among the sequence-validated nucleic acid fragments using the barcode sequences.
  • 2. The method according to claim 1, further comprising (e) assembling the recovered nucleic acid fragments to form long nucleic acid molecules.
  • 3. The method according to claim 1, wherein step (a) comprises (a-1) providing a pool of oligonucleotides, each containing restriction enzyme digestion sequences and generic flanking sequences at at least one end,(a-2) cleaving the restriction enzyme digestion sequence portions to provide a pool of mixtures comprising the oligonucleotides, each containing the generic flanking sequences at one end, and the oligonucleotides, each containing none of the generic flanking sequences at one end, and(a-3) assembling the oligonucleotides in the mixture using the generic flanking sequences to randomly synthesize nucleic acid fragments.
  • 4. The method according to claim 3, wherein each of the longer nucleic acid fragments randomly synthesized in (a-3) contains the generic flanking sequences at at least one end.
  • 5. The method according to claim 1, further comprising amplifying the nucleic acid fragments provided in step (a) when the nucleic acid fragments are derived from a DNA microarray.
  • 6. The method according to claim 1, wherein the nucleic acid fragments provided in step (a) have a size of 20 to 3,000 bp.
  • 7. The method according to claim 1, wherein the barcode sequences are mixtures of two or more kinds of randomly or intentionally designed oligonucleotides.
  • 8. The method according to claim 1, wherein the barcode sequences are 5 to 300 bp in length.
  • 9. The method according to claim 1, wherein the tagging with the barcode sequences is performed by a method selected from the group consisting of PCR, emulsion PCR, and ligation.
  • 10. The method according to claim 1, wherein sequencing adaptor sequences are added to the barcode sequences.
  • 11. The method according to claim 1, wherein the sequences of the tagged nucleic acid fragments are validated by parallel sequencing.
  • 12. The method according to claim 1, wherein step (d) is carried out by selectively amplifying the desired nucleic acid fragments with primers corresponding to the barcode sequences and recovering the amplified nucleic acid fragments.
  • 13. The method according to claim 1, wherein step (d) is carried out by selectively hybridizing the desired nucleic acid fragments with oligonucleotides corresponding to the barcode sequences and recovering the hybridized nucleic acid fragments.
  • 14. A method of preparing nucleic acid molecules, comprising (a) providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid,(b) assembling the nucleic acid fragments to synthesize intermediates having sizes whose sequences are validatable by a parallel sequencing technology,(c) tagging the intermediates with barcode sequences,(d) validating the sequences of the intermediates tagged with the barcode sequences,(e) recovering desired intermediates among the sequence-validated intermediates using the barcode sequences, and(f) assembling the recovered intermediates to form long nucleic acid molecules.
  • 15. The method according to claim 14, wherein the nucleic acid fragments provided in step (a) have a size of 20 to 300 bp.
  • 16. The method according to claim 14, wherein sequencing adaptor sequences are added to the barcode sequences.
  • 17. The method according to claim 16, further comprising amplifying the tagged nucleic acid fragments using the sequencing adaptor sequences between steps (c) and (d).
  • 18. The method according to claim 14, wherein the sequences of the intermediates tagged in step (d) are validated by a parallel sequencing technology.
  • 19. The method according to claim 14, wherein, in step (e), the desired intermediates have error-free sequences.
  • 20. The method according to claim 14, wherein the intermediates are from 50 to 3,000 bp in size.
  • 21. The method according to claim 14, wherein the long nucleic acid molecules are 1,000 bp or more in size.
Priority Claims (1)
Number Date Country Kind
10-2011-0076408 Aug 2011 KR national
CROSS REFERENCE TO PRIOR APPLICATIONS

This application is a National Stage Application of PCT International Patent Application No. PCT/KR2012/006147 filed on Aug. 1, 2012, under 35 U.S.C. §371, which claims priority to Korean Patent Application No. 10-2011-0076408 filed on Aug. 1, 2011, which are all hereby incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/KR2012/006147 8/1/2012 WO 00 1/29/2014