Method of preparing nucleic acid molecules

Information

  • Patent Grant
  • 10358642
  • Patent Number
    10,358,642
  • Date Filed
    Tuesday, April 19, 2016
    8 years ago
  • Date Issued
    Tuesday, July 23, 2019
    5 years ago
Abstract
Disclosed is a method of preparing nucleic acid molecules, including: providing a pool of oligonucleotides, each containing restriction enzyme digestion sequences and generic flanking sequences; cleaving the restriction enzyme digestion sequence portions to provide a pool of mixtures comprising the oligonucleotides, each containing the generic flanking sequences at one end, and the oligonucleotides, each containing none of the generic flanking sequences at one end, and; assembling the oligonucleotides using the generic flanking sequences to randomly synthesize nucleic acid fragments.
Description
BACKGROUND

Typically employed DNA synthesis procedures for scalable DNA construction have the following disadvantages: (a) high cost of oligonucleotides, (b) low assembly efficiency into long DNA sequences, (c) time-consuming cloning, and (d) high cost of target DNA sequence validation. Above all, the major synthesis costs are the costs of oligonucleotides and sequencing. It would thus be desirable to design a protocol for massively parallelizing synthesis products in order to achieve effective, highly scalable DNA synthesis. DNA oligonucleotides derived from DNA microchips have previously been utilized to synthesize scalable low-cost DNA (Tian, J., et al., 2004). However, the low assembly efficiency of chip-derived oligonucleotides hinders target gene construction, and a laborious DNA assembly optimization process is consequently required. The inefficiency of DNA assembly from chip-derived oligonucleotides is largely associated with the incomplete removal of flanking regions of double-stranded (ds)-oligonucleotides prior to their assembly and the uneven concentration of each chip-cleaved oligonucleotide (Kim H., et al., 2011). Furthermore, it was observed that a greater number of oligonucleotides (i.e. higher complexity) in a DNA assembly pool made DNA assembly less efficient (Kim H., et al., 2011; Borovkov A. Y., et al., 2010). As a consequence, only a small sub-pool of oligonucleotides (i.e. <20) are often amplified to ensure high assembly efficiency. There is a need to develop a high-efficiency DNA assembly process using a large number of microchip oligonucleotides present in a pool in order to attain all advantages of ultra-low cost DNA microchip oligonucleotides.


For scalable DNA synthesis, it is preferable to decrease the sequencing cost for target DNA validation. In recent years, costs for high-throughput sequencing technologies have been considerably lowered. Under such circumstances, utilization of high-throughput sequencing technology has great potential for DNA synthesis at ultra-low cost. However, unlike colony-based Sanger sequencing validation, it is difficult to collect the desired DNA from a pool of high-throughput sequenced DNA mixtures. Although recent high-throughput sequencing technologies can be applied to partially addressable spots (for example, clonal spots available from Roche-454, Illumina and SOLiD, and single-molecule spots available from Helicos and PacBio), it is difficult to isolate target DNA due to the difficulty associated with the collection of the desired DNA from high-throughput sequencing plates. In a notable report (Matzas M., et al., 2010), chip-cleaved oligonucleotides were sequenced by 454 sequencing technology, and directly isolated from the 454 sequencing plate using a bead picker pipette. These sequence-validated ‘oligonucleotides’ were subsequently processed and used to assemble 200 bp target DNA fragments. This study demonstrates the possibility of convergence of next-generation sequencing technology and microchip oligonucleotides in terms of DNA synthesis cost reduction. In this study, however, high-throughput sequencing was carried out on chip oligonucleotides rather than on assembled DNA fragments. Accordingly, challenges associated with DNA assembly into larger sequences are still in early stages. Furthermore, an effective error-free oligonucleotide picking process necessitates a highly tuned bead picking robot and an image processing system.


A number of papers and patent publications are referenced and cited throughout the specification. The disclosures of the papers and patent publications are incorporated herein by reference in their entireties in order to more fully describe the state of the art to which the present disclosure pertains and the disclosure of the present disclosure.


SUMMARY

According to one embodiment of the present disclosure, there is provided a method of preparing nucleic acid molecules, including (a) providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid, (b) tagging the nucleic acid fragments with barcode sequences, (c) validating the sequences of the nucleic acid fragments tagged with the barcode sequences, and (d) recovering desired nucleic acid fragments among the sequence-validated nucleic acid fragments using the barcode sequences.


According to a further embodiment of the present disclosure, there is provided a method of preparing nucleic acid molecules, including (a) providing nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid, (b) assembling the nucleic acid fragments to synthesize intermediates having sizes whose sequences are validatable by a parallel sequencing technology, (c) tagging the intermediates with barcode sequences, (d) validating the sequences of the intermediates tagged with the barcode sequences, (e) recovering desired intermediates among the sequence-validated intermediates using the barcode sequences, and (f) assembling the recovered intermediates to form long nucleic acid molecules.


According to another embodiment of the present disclosure, there is provided a method of preparing nucleic acid molecules, including (a) providing a pool of oligonucleotides containing restriction enzyme digestion sequences and generic flanking sequences, (b) cleaving the restriction enzyme digestion sequence portions to provide a pool of mixtures including the oligonucleotides, each containing the generic flanking sequences at one end, and the oligonucleotides, each containing none of the generic flanking sequences at one end, and (c) assembling the oligonucleotides using the generic flanking sequences to randomly synthesize nucleic acid fragments.


According to yet another embodiment of the present disclosure, a method of preparing nucleic acid molecules, including (a) providing a pool of oligonucleotides, (b) assembling the oligonucleotides to randomly synthesize nucleic acid fragments, (c) connecting base sequences for amplification to the randomly synthesized nucleic acid fragments, and (d) amplifying the nucleic acid fragments with primers bound to the base sequences for amplification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow chart illustrating a method of preparing nucleic acid molecules according to one embodiment of the present disclosure.



FIG. 2 is a flow chart illustrating a random gene synthesis process according to one embodiment of the present disclosure.



FIGS. 3 and 4 illustrate procedures for the synthesis of nucleic acid fragments by random synthesis processes.



FIG. 5 illustrates two procedures for tagging nucleic acid fragments with barcode sequences according to embodiments of the present disclosure.



FIG. 6 illustrates a procedure for recovering desired nucleic acid fragments from a pool of barcode-tagged nucleic acid fragments and assembling the recovered nucleic acid fragments to form long nucleic acid molecules.



FIG. 7 schematically illustrates simultaneous utilization of a number of oligonucleotides for shotgun synthesis to obtain large target DNA molecules.



FIG. 8 shows PCR products produced in individual steps.



FIG. 9 shows computational analysis of 454 sequencing data from shotgun synthesis.





DETAILED DESCRIPTION

Embodiments of the present disclosure will now be described in more detail with reference to the accompanying drawings. These embodiments are provided so that this disclosure will fully convey the scope of the disclosure to those skilled in the art. Accordingly, the present disclosure may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. In the drawings, the dimensions, such as widths, lengths and thicknesses, of elements may be exaggerated for convenience. It will be understood that when a first element is referred to as being “connected” or “attached” to a second element, the first element can be directly connected or attached to the second element or a third element may also be interposed between the first and second elements.



FIG. 1 is a flow chart illustrating a method of preparing nucleic acid molecules according to one embodiment of the present disclosure. Referring to FIG. 1, in step S110, nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid are provided. The nucleic acid fragments may be naturally occurring or artificially synthesized ones. Preferably, the nucleic acid fragments are derived from DNA microchips providing several million kinds of base sequences at low costs or from a pool of synthetic oligonucleotides. The pool of synthetic oligonucleotides may be prepared by methods well known in the art. For example, the pool of synthetic oligonucleotides may be prepared from resin-based oligonucleotides but is not limited thereto. Preferably, the nucleic acid fragments are derived from DNA microchips.


When it is intended to synthesize large target nucleic acid molecules, the nucleic acid fragments may be ones that are free of sequence errors such as insertion, deletion, transition and transversion.


The nucleic acid fragments provided in step S110 may be directly extracted from a pool of oligonucleotides. Alternatively, the nucleic acid fragments may be prepared by amplifying and assembling oligonucleotides so as to have lengths above a predetermined level. When it is intended to synthesize long target nucleic acid molecules, the nucleic acid fragments may be made by various processes, including a hierarchical gene synthesis process (Journal of Biotechnology 151 (2011) 319-324) or a random gene synthesis process, which will be described below.


In the present specification, random gene synthesis is also referred to as “shotgun synthesis”, and nucleic acid fragments made by such a shotgun synthesis method are also referred to as “shotgun products.”


Shotgun sequencing is a process in which analyte DNA is randomly fragmented, sequencing adaptors are connected to the nucleic acid fragments, followed by high-throughput sequencing analysis. Shotgun sequencing includes arranging the individual fragments and identifying the complete sequence of the original analyte DNA using a computer program. Shotgun synthesis proceeds in the exact reverse order to that of the shotgun sequencing. Oligonucleotides constituting a portion of the sequence of nucleic acid molecules to be synthesized are constructed and assembled randomly to make nucleic acid fragments, which are analyzed by high-throughput sequencing. Desired nucleic acid fragments are recovered among the analyzed nucleic acid fragments and are used to make the final nucleic acid molecules.


According to one embodiment of the present disclosure, the nucleic acid fragments provided in step S110 may be shotgun products prepared by a shotgun synthesis method. Oligonucleotides designed to contain generic flanking sequences may be used to make the shotgun products.



FIG. 2 is a flow chart illustrating a random gene synthesis process according to one embodiment of the present disclosure. Referring to FIG. 2, in step S210, a pool of oligonucleotides, each containing restriction enzyme digestion sequences and generic flanking sequences at least one end, is provided. In step S220, the restriction enzyme digestion sequence portions are cleaved to provide a pool of mixtures including the oligonucleotides, each containing the generic flanking sequences at one end, and the oligonucleotides, each containing none of the generic flanking sequences at one end. In step S230, the oligonucleotides in the mixture are assembled using the generic flanking sequences to randomly synthesize nucleic acid fragments.


In step S210, the generic flanking sequence may exist at one or both ends of the oligonucleotide. For example, the oligonucleotides used in the random gene synthesis (shotgun synthesis) process may contain, from the 5′ to 3′ direction, 5′-end generic flanking sequences, the oligonucleotide sequences constituting the target nucleic acid, and 3′-end generic flanking sequences.


The 5′-end generic flanking sequences and 3′-end generic flanking sequences existing at the ends of the oligonucleotides are priming regions where the amount of the oligonucleotide derived from DNA chips is amplified, and are used as annealing regions of primer sets for the production of a sufficient amount of the oligonucleotides.


The oligonucleotides may contain restriction enzyme digestion sequences. The nucleic acid fragments contain 5′-restriction enzyme digestion sequences with the 5′-end generic flanking sequences, and 3′-restriction enzyme digestion sequences with the 3′-end generic flanking sequences. The 5′-restriction enzyme digestion sequences and the 3′-restriction enzyme digestion sequences in the oligonucleotides may be identical to or different from each other.


The oligonucleotides are 50-500 base pairs (bp), more preferably 100-300 bp, even more preferably 120-200 bp, most preferably about 150 bp in length.


According to one embodiment of the present disclosure, the oligonucleotides may contain portions or all of the sequence of the target nucleic acid. When the oligonucleotides contain portions of the sequence of the target nucleic acid, the target oligonucleotides with varying sizes are sequentially assembled to synthesize the target nucleic acid molecules containing all of the sequence.


The pool of the oligonucleotides may be one that is cleaved from DNA microchips. Alternatively, the pool of the oligonucleotides may be a mixture of oligonucleotides synthesized on a solid. The cleaved oligonucleotides may be amplified to ensure an amount necessary for long gene synthesis. This amplification may be perform by polymerase chain reaction (PCR) using the generic flanking sequences.


Next, the generic flanking sequences are cleaved using a restriction enzyme recognizing the restriction enzyme digestion sequences in the amplified oligonucleotides. The pool of the cleaved oligonucleotides may take the form of a mixture including the oligonucleotides, each containing none of the generic flanking sequences because the restriction enzyme digestion sequences at both ends are completely cleaved, and the oligonucleotides, each containing the generic flanking sequences remaining at one end because only the restriction enzyme digestion sequences at one end are cleaved.


The oligonucleotides of the mixtures can be assembled by polymerase chain reaction assembly (PCA) using the generic flanking sequences. At this time, the oligonucleotides are sequentially assembled to make fragments with varying lengths. Such fragments may be randomly assembled to each other. Thus, the small or large fragments may be randomly assembled at various locations in the PCR solution to synthesize longer fragments containing all or portions of the sequence of the target nucleic acid molecules. This assembly may proceed until the oligonucleotides, each containing the generic flanking sequence at one end, overlap each other to make nucleic acid fragments containing the generic flanking sequences at both ends.


The oligonucleotides of step S210 are elaborately designed to form desired shotgun products. Several oligonucleotides may be assembled in such a manner that they overlap each other through some complementary sequences of the oligonucleotide sequences. The oligonucleotides are designed for random assembly to form shotgun products. For example, if a shotgun product (e.g., ˜400 bp) containing the 5′-end regions of the target nucleic acid molecules consists of 5 target oligonucleotides, it may be formed through sequential assembly among the following oligonucleotides cleaved using restriction enzymes: from the 5′ to 3′ direction, to form a 5′-end region, a first oligonucleotide containing a 5′-end generic flanking sequence and a portion of the sequence of the target nucleic acid molecules and from which the restriction enzyme digestion sequences are partially cleaved; a second oligonucleotide including a region (e.g., 20-50 bp long) overlapping the 3′-end region of the first oligonucleotide; a third oligonucleotide including a region overlapping the 3′-end region of the second oligonucleotide; a fourth oligonucleotide including a region overlapping the 3′-end region of the third oligonucleotide; and a fifth oligonucleotide containing a sequence including a region overlapping the 3′-end region of the fourth oligonucleotide and a 3′-end generic flanking sequence. FIGS. 3 and 4 illustrate procedures for the synthesis of nucleic acid fragments by random synthesis processes.


In a modified embodiment, the nucleic acid fragments may be prepared by the following method.


First, a pool of oligonucleotides is provided. Next, raw oligonucleotides without the addition of generic flanking sequences, etc. are assembled to randomly synthesize nucleic acid fragments, unlike the previous embodiment. Base sequences for amplification are connected to the randomly synthesized nucleic acid fragment, and then the nucleic acid fragments are amplified with primers bound to the base sequences for amplification to obtain amplified nucleic acid fragments.


As described above, the preparation of nucleic acid molecules by random synthesis processes is advantageous in that several kinds of libraries of nucleic acid fragments can be prepared simultaneously.


According to one embodiment of the present disclosure, the nucleic acid fragments of step S110 may include the complete sequence of a target nucleic acid. For the synthesis of error-free long DNA, the sequences of the nucleic acid fragments may be validated using a parallel sequencing system. When the performance of the parallel sequencing system to validate the sequences of the nucleic acid fragments is taken into consideration, the nucleic acid fragments are preferably 20-3,000 bp, more preferably 200-1,000 bp, more preferably 300-500 bp, even more preferably 350-450 bp, most preferably 380-420 bp in length. Despite this preferred numerical range, an improvement in the performance of parallel sequencing systems for the analysis of several thousand by long DNA can extend the size of the nucleic acid fragments to several thousand by long DNA.


The term “nucleotide” as used herein refers to a single- or double-stranded deoxyribonucleotide or ribonucleotide and includes naturally occurring nucleotide analogs unless stated otherwise (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).


The term “oligonucleotide” as used herein refers to an oligomer or polymer of nucleotides or an analog thereof. According to one embodiment of the present disclosure, the gene amplification is carried out by PCR. According to one embodiment of the present disclosure, the primers (for example, the generic flanking sequences) are used in gene amplification reactions.


The term “amplification reactions” as used herein refers to reactions for amplifying target nucleic acid sequences. Various amplification reactions were reported in the art and include, but are not limited to, polymerase chain reaction (PCR) (U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,800,159), reverse transcription polymerase chain reaction (RT-PCR) (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), the methods of Miller, H. I. (WO 89/06700) and Davey, C. et al. (EP 329,822), multiplex PCR (McPherson and Moller, 2000), ligase chain reaction (LCR) (17, 18), Gap-LCR (WO 90/01069), repair chain reaction (EP 439,182), transcription-mediated amplification (TMA) (19) (WO88/10315), self sustained sequence replication (20) (WO 90/06995), selective amplification of target polynucleotide sequences (U.S. Pat. No. 6,410,276), consensus sequence primed polymerase chain reaction (CP-PCR) (U.S. Pat. No. 4,437,975), arbitrarily primed polymerase chain reaction (APPCR) (U.S. Pat. Nos. 5,413,909 and 5,861,245), nucleic acid sequence based amplification (NASBA) (U.S. Pat. Nos. 5,130,238, 5,409,818, 5,554,517, and 6,063,603), and strand displacement amplification (21, 22). Other possible amplification methods are described in U.S. Pat. Nos. 5,242,794, 5,494,810, and 4,988,617, and U.S. patent application Ser. No. 09/854,317.


In a most preferred embodiment of the present disclosure, the amplification procedure is carried out in accordance with PCR disclosed in U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,800,159.


PCR is one of the most well-known nucleic acid amplification methods and many modifications and applications thereof have been developed. For example, traditional PCR procedures have been modified to develop touchdown PCR, hot start PCR, nested PCR, and booster PCR with improved PCR specificity or sensitivity. In addition, multiplex PCR, real-time PCR, differential display PCR (DD-PCR), rapid amplification of cDNA ends (RACE), inverse polymerase chain reaction (IPCR), vectorette PCR and thermal asymmetric interlaced PCR (TAIL-PCR) have been developed for specific applications. Details of PCR can be found in McPherson, M. J., and Moller, S. G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000), the teachings of which are incorporated herein by reference. Examples of preferred target nucleic acid molecules that can be used in the present disclosure include, but are not particularly limited to, DNA (gDNA and cDNA) and RNA. DNA is more preferred. Examples of target nucleic acids suitable for use in the present disclosure include nucleic acids from prokaryotic cells, eukaryotic cells (e.g., protozoans, parasites, bacteria, yeasts, higher plants, lower animals, and higher animals, including mammals and humans), viruses (e.g., herpes virus, HIV, influenza virus, Epstein-Barr virus, hepatitis virus, and poliovirus), and viroids.


The primers used in the present disclosure are hybridized or annealed to sites of the template to form double-stranded structures. Suitable conditions of nucleic acid hybridization for the formation of such double stranded structures are described in Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001) and Haymes, B. D., et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985).


A variety of DNA polymerases can be used for amplification in the present disclosure and include “Klenow” fragment of E. coli DNA polymerase I, thermostable DNA polymerases, and bacteriophage T7 DNA polymerase. Preferred are thermostable DNA polymerases that can be obtained from a variety of bacterial species, including DNA polymerases and Phusion polymerases of Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis, Pyrococcus furiosus (Pfu), Thermus antranikianii, Thermus caldophilus, Thermus chliarophilus, Thermus flavus, Thermus igniterrae, Thermus lacteus, Thermus oshimai, Thermus ruber, Thermus rubens, Thermus scotoductus, Thermus silvanus, Thermus species Z05, Thermus species sps 17, Thermus thermophilus, Thermotoga maritima, Thermotoga neapolitana and Thermosipho africanus. Most preferably, Pyrococcus furiosus (Pfu) or Phusion high-fidelity DNA polymerase is used.


When the polymerization reaction is carried out, it is preferred to provide excessive amounts of the components necessary for amplification to a reaction vessel. The excessive amounts of the components necessary for amplification refer to amounts of the components in which the amplification reaction is not substantially limited by the concentrations of the components. It is desirable to provide, to the reaction mixture, cofactors such as Mg2+ and dATP, dCTP, dGTP and dTTP in amounts sufficient to reach a desired degree of amplification. All enzymes used in the amplification reaction may be active under the same reaction conditions. Indeed, a buffer allows all enzymes to reach their optimum reaction conditions. Thus, the use of a buffer enables the amplification of a single reactant without any change in reaction conditions such as the addition of other reactants.


In the present disclosure, annealing is carried out under stringent conditions that allow for specific binding between the target nucleotide sequences (e.g., the generic flanking sequences of the target oligonucleotides) and the primers. The stringent annealing conditions are sequence-dependent and vary depending on ambient environmental parameters. The oligonucleotide pool thus amplified can be used to make primary amplification products. The primary amplification products can be used to prepare secondary amplification products, which can be assembled into larger target nucleic acid molecules (e.g., ≥10 kb).


The term “primer” as used herein refers to an oligonucleotide that can act as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product complementary to a nucleic acid strand (a template) is induced, i.e., in the presence of nucleotides and a polymerase, such as DNA polymerase, and under appropriate temperature and pH conditions. Preferably, the primer is deoxyribonucleotide and a single strand. The primers used in the present disclosure may include naturally occurring dNMP (i.e., dAMP, dGMP, dCMP and dTMP), modified nucleotides, and non-naturally occurring nucleotides. Other examples of the primers include ribonucleotides.


The primers should be sufficiently long to prime the synthesis of extension products in the presence of a polymerase (such as DNA polymerase). The length of the primers may vary depending on many factors, e.g., temperature, application, and sources of the primers. The primers are typically 15-30 nucleotides long. Short primer molecules generally necessitate a lower temperature to form sufficiently stable hybridization composites with templates.


The term “annealing” or “priming” as used herein refers to the apposition of an oligodeoxynucleotide or nucleic acid to a template nucleic acid. The apposition enables the polymerase to polymerize nucleotides into a nucleic acid molecule complementary to the template nucleic acid or a portion thereof. The term “hybridization” as used herein refers to a process in which two single-stranded nucleic acids form a duplex structure by pairing of complementary base sequences. The hybridization may occur when complementarity between single-stranded nucleic acid sequences is perfectly matched or even when partially mismatching bases are present. The degree of complementarity necessary for hybridization may vary depending on hybridization reaction conditions, particularly temperature.


The term “complementary” as used herein means a level of complementarity sufficient to selectively hybridize with the nucleotide sequence under certain particular hybridization or annealing conditions, and is intended to include both substantially complementary and perfectly complementary, preferably perfectly complementary.


Referring back to FIG. 1, in step S120, the nucleic acid fragments are tagged with barcode sequences. The barcode sequences are introduced into the nucleic acid fragments to recover error-free fragments or other desired fragments among the nucleic acid fragments provided in the previous step or to selectively amplify and assemble them in order to synthesize target nucleic acid molecules. The barcode sequences may be added to the generic flanking sequences present at the ends of the nucleic acid fragments.


The kinds of the barcode sequences are not particularly limited so long as they can be added to distinguish the nucleic acid fragments from each other. The number of the kinds of the barcode sequences is preferably greater than that of the nucleic acid fragments to distinguish the individual nucleic acid fragments. For example, the barcode sequences may be mixtures of two or more kinds of randomly or intentionally designed oligonucleotides.


According to one embodiment of the present disclosure, poly-N degenerate-barcode sequences among the barcode sequences may use poly-N degenerate DNA or may also use sequences barcoded with two or more different sequences randomly made using a computer program well known in the art.


The tagging with the barcode sequences is not particularly limited and may be performed by a method selected from the group consisting of PCR, emulsion PCR and ligation. For example, assembly of the barcode sequences to shotgun synthesized DNA fragments by PCR or ligation of double-stranded (ds) DNA including poly-N degenerate-barcode sequences may be used for the tagging.



FIG. 5 illustrates two procedures for tagging nucleic acid fragments with barcode sequences according to embodiments of the present disclosure. (a) and (b) of FIG. 5 illustrate barcode tagging procedures by PCR and by ligation, respectively.


In step S130, the sequences of the nucleic acid fragments tagged with the barcode sequences are validated. Parallel sequencing is preferably used to validate the sequences of the tagged nucleic acid fragments. As a result, the sequences of the tagged nucleic acid fragments, together with the tagging barcode sequences, can be validated.


According to one embodiment of the present disclosure, the parallel sequencing or high-throughput sequencing is carried out by a suitable method well known in the art, for example, using a Roche-454 sequencing system or a high-throughput sequencing system with a read length of 100 bp or more.


According to one embodiment of the present disclosure, sequencing adaptor sequences may be further added to the barcode sequences. Sequences containing the barcode sequences added to the nucleic acid fragments are herein referred to as “barcode primers” for convenience.


The term “adaptor sequences” as used herein refers to sequences that enable high-throughput sequencing analysis of the nucleic acid fragments. For example, the adaptor sequences includes all commercially available sequences for 454-sequencing used in the present disclosure. Examples of preferred adaptor sequences include, but are not limited to, adaptor sequences of Roche-454 sequencing platforms and adaptor sequences of other next-generation sequencing technologies.


The term “generic flanking sequences” as used herein refers to base sequences that are added to both ends of the oligonucleotides to selectively amplify particular oligonucleotides among the pool of oligonucleotides. The base sequences added to the 5′-ends of different oligonucleotides necessary for assembly into target nucleic acid molecules are identical to each other, and the base sequences added to the 3′-ends of different oligonucleotides are identical to each other.


According to one embodiment of the present disclosure, an amplification procedure using the primers bound to the adaptor sequences may be performed using the tagged nucleic acid fragments as templates for sequence validation.


The barcode sequences are not limited to particular lengths and are, for example, 5-300 bp, preferably 10-100 bp, more preferably 12-40 bp, even more preferably 15-30 bp in length taking into consideration the sequencing performance on the entire sequences including the nucleic acid fragments. This numerical range may vary with the advance of sequencing technologies. For example, when the poly-N degenerate-barcode sequences are 20 bp long, 420 kinds of the barcode sequences are possible.


The barcode primers may contain, for example, from the 5′ to 3′ direction, 454-adaptor sequences, poly-N degenerate-barcode sequences, restriction enzyme digestion sequences, and generic flanking sequences. The primers for amplification may be designed to bind to the 454-adaptor sequences.


The sequence validation enables identification of error-free nucleic acid fragments among the nucleic acid fragments and the barcode sequences added thereto.


On the other hand, the restriction enzyme digestion sequences contained in the barcode primers serve to remove the sequencing adaptor sequences of the nucleic acid fragments. The reason for this removal is because the presence of the adaptor sequences hinders subsequent assembly of the nucleic acid fragments because of attached beads in sequencing analysis.


In step S140, desired nucleic acid fragments are recovered among the sequence-validated nucleic acid fragments using the barcode sequences. The validation of the sequences of the desired nucleic acid fragments and the tagging barcode sequences by sequencing in the previous step enables recovery of the desired nucleic acid fragments using the barcode sequences. Specifically, the recovery step may be carried out by selectively amplifying the desired nucleic acid fragments with primers corresponding to the barcode sequences and recovering the amplified nucleic acid fragments. Alternatively, the recovery step may be carried out by selectively hybridizing the desired nucleic acid fragments with oligonucleotides corresponding to the barcode sequences and recovering the hybridized nucleic acid fragments. For example, the desired nucleic acid fragments may be error-free nucleic acid fragments.


The desired nucleic acid fragments may be recovered using a computer program. Specifically, the sequences of the nucleic acid fragments are imaginarily assembled using a computer program and are compared with the complete sequence of desired target nucleic acid molecules. Thereafter, primers synthesized based on the most optimized information on sequences flanking DNA fragments or primers hybridizing therewith can be used to recover the desired nucleic acid fragments.


According to one embodiment of the present disclosure, the computer program may be any of those known in the art. Examples of more preferred computer programs include in-house Python programs and programs constructed using Perl, C, C++ or other programming languages.


According to one embodiment of the present disclosure, the computer program is used to synthesize sequences complementary to the selected barcode sequences into oligos. Next, only error-free fragments capable of optimizing the synthesis of target DNA are recovered among the nucleic acid fragments (i.e. mixtures of erroneous fragments and error-free fragments) by amplification (PCR) or hybridization using the synthesized barcode oligos. Examples of methods for the recovery of error-free fragments using the synthesized barcode sequences include, but are not limited to, DNA capture methods using microchips and hybridization methods for recovering desired error-free fragments by attaching desired barcode sequences to biotinylated beads or magnetic beads, in addition to PCR.


According to one embodiment of the present disclosure, when the nucleic acid fragments are provided by shotgun assembly, the length of the error-free barcoded nucleic acid fragments may be 200 bp or more. When a next-generation sequencing system capable of analyzing DNA with 1,000 bp or more is used, the error-free barcoded nucleic acid fragments may be 1,000 bp or more in length. More preferably, the error-free barcoded nucleic acid fragments are from about 200 bp to about 10 kb or more in length.


In step S150, recovered nucleic acid fragments can be assembled to form long nucleic acid molecules.


According to one embodiment of the present disclosure, the target nucleic acid molecules prepared by the present disclosure include, but are not limited to, target genes, target gene clusters, target genomes, and natural or synthetic nucleic acid molecules.


The term “target gene cluster” or “target genome” as used herein refers to a cluster or genome that includes at least two genes encoding a desired target (gene). The cluster or genome may include cluster or genome regions capable of generating two or more gene products (e.g., genome regions including one or more multiple splicing products of the same gene).


According to one embodiment of the present disclosure, a target gene cluster or target genome that can be synthesized by the method of the present disclosure may have a length of about 10 kb or longer. For example, the target gene cluster or target genome may include a penicillin biosynthetic gene cluster DNA sequence (11,376 bp) from Penicillium chrysogenum, and the penicillin biosynthetic gene cluster may include pcbAB, pcbC, and penDE genes.


The term “natural or synthetic nucleic acid molecules” as used herein is intended to include DNA (gDNA and cDNA) and RNA molecules, and nucleotides as basic units of the nucleic acid molecules include not only natural nucleotides but also analogues having modified sugar or base moieties (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).



FIG. 6 illustrates a procedure for recovering the desired nucleic acid fragments from the pool of the barcode-tagged nucleic acid fragments and assembling the recovered nucleic acid fragments to form long nucleic acid molecules. According to one embodiment of the present disclosure, the nucleic acid molecules may be prepared by a method including the following steps.


Nucleic acid fragments constituting at least a portion of the complete sequence of a target nucleic acid are provided (step (a)). The size of the nucleic acid fragments provided in step (a) may be from 20 to 300 bp.


The nucleic acid fragments are assembled to synthesize intermediates having sizes whose sequences can be validated by a parallel sequencing technology (step (b)). The size of the intermediates is not particularly limited and may be, for example, from 50 to 3,000 bp. The intermediates may be increased to a desired size with the advance of parallel sequencing technologies such as next-generation sequencing technology. The intermediates may be synthesized by various synthesis processes, including hierarchical synthesis or random synthesis (shotgun synthesis).


The intermediates are tagged with barcode sequences (step (c)). Preferably, sequencing adaptor sequences are added to the barcode sequences for sequence validation.


The sequences of the intermediates tagged with the barcode sequences are validated (step (d)). The sequence validation of the intermediates tagged in step (d) may be performed by a parallel sequencing technology. The method may further include amplifying the tagged nucleic acid fragments using the sequencing adaptor sequences between steps (c) and (d).


Desired intermediates are recovered among the sequence-validated intermediates using the barcode sequences (step (e)). The desired intermediates may have error-free sequences.


The recovered intermediates are assembled to form long nucleic acid molecules (step (f)). The size of the long nucleic acid molecules may be 1,000 bp or more.



FIG. 7 schematically illustrates simultaneous utilization of a number of oligonucleotides for shotgun synthesis to obtain large target DNA molecules. Shotgun synthesis using about 200 oligonucleotides may cause random fragments with varying sizes of 100 bp (monomeric forms of oligonucleotides) to 1,000 bp. The assembly fragments in the form of intermediates are effectively barcoded by degenerate primers for high-throughput sequencing. The sequence-validated fragments are used in the subsequent assembly process.


Referring to FIG. 7, first, oligonucleotides are prepared from chips. The oligonucleotides are designed to have flanking sequences with Type IIS restriction enzyme sites (EarI or BtsI), and are synthesized on a DNA microarray. After oligonucleotides are cleaved from the chips, PCR amplification is carried out to increase the concentration of the oligonucleotides. The amplified oligonucleotides are cleaved using Type IIS restriction enzymes to remove the flanking sequences. Because the efficiency of the restriction enzymes is less than 100%, there are still uncut flanking sequences. Shotgun DNA assembly PCR using the remaining uncut flanking sequences is carried out to synthesize random fragments of the target genes. The sequences of the synthesized random fragments are analyzed by high-throughput sequencing technology. To this end, the synthesized fragments are tagged with the barcode primers using PCR. The PCR products are sequenced by 454 high-throughput sequencing and analyzed using an in-house Python program to identify error-free gene fragments and connected barcode sequences. To recover the error-free gene fragments, PCR is carried out from the pool of shotgun-assembled target gene fragments using barcode primer sequences. After removing the degenerate barcode sequences and flanking sequences from the recovered fragments by Type IIS restriction enzyme digestion, the error-free shotgun synthesis fragments are finally assembled into the full-length target gene.



FIG. 8 shows PCR products produced in the individual steps. FIG. 8a shows PCR products produced by second round PCR using chip flanking primers. FIG. 8b shows results obtained after electrophoresis of the PCR products cleaved by Type IIS restriction enzyme in 4% agarose gel. The indicated two bands were excised and gel-purified together. FIG. 8c shows smear bands of PCR products assembled randomly using the Pen gene cluster fragments of FIG. 8b, which were amplified by chip flanking primers. The smear bands were excised and gel-purified. FIG. 8d shows PCR products obtained by re-amplification of the bands in the white box of FIG. 8c using chip flanking primers. The bands in the white box were excised and gel-purified. FIG. 8e shows smear bands obtained from PCR using barcode primers. The smear bands in the white box were excised and gel-purified. FIG. 8f shows products obtained by 100-fold dilution of the products obtained from the bands of FIG. 8e and amplification of the diluted products using 454-adaptor primers. If the concentration of the products obtained from the bands of FIG. 8e is excessively high, PCR is not conducted properly. The amplification products were excised, purified, diluted, cloned into TOPO vector, and submitted for Roche-454 sequencing. Daughter fragment 11-d produced by PCR was re-amplified with primers containing degenerate sequences. The resulting PCR amplification products are shown in FIG. 8g.



FIG. 8h shows three bands obtained by excising the bands shown in FIG. 8g with a Type IIS restriction enzyme. FIG. 8i shows Fragment 11 prepared by assembly of the bands shown in FIG. 8h and other daughter fragments. Fragment 11 is indicated by the arrow. FIG. 8j shows a final gene cluster obtained after assembly of 11 fragments.



FIG. 9 shows computational analysis of 454 sequencing data from shotgun synthesis. FIG. 9a shows the number of 454 sequencing reads versus the length of the gene fragments. The upper and lower lines show the number of total 454 sequencing reads (total reads) and the error-free fragment reads (correct reads), respectively. The most abundant and correct reads have a length of 400 bp (they are typically 300 bp without barcode flanking regions). The inset in FIG. 9a shows that the percentage of error-free gene fragments tends to decrease as the length of the gene fragments increases. FIG. 9b shows computational analysis of two independent experiments (first and second experiments), and graphically aligned error-free gene fragments after the removal of the flanking barcode sequences. The first, second and third arrows on top of the figure represent clusters of genes (adipate-activating, cysteine-activating and valine-activating domains, respectively). The y-axis indicates the number of error-free gene fragments corresponding to various parts of the target gene. The scale bars at the bottom left and top right indicate 100 bp fragments and 1,000 bp base pairs, respectively. FIG. 9c shows the results of hierarchical shotgun synthesis. Optimized and selected gene fragments (˜300 bp) were assembled into 1,000 bp gene fragments, which were then continuously assembled to synthesize the target gene (penicillin synthetic gene cluster (N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase); ˜11.4 kb).


The foregoing embodiments of the present disclosure offer the following advantages. The method of the present disclosure enables scalable synthesis of large target nucleic acid molecules in a more economical and efficient manner. According to the method of the present disclosure, amplification products containing the sequence of a target nucleic acid are prepared using an elaborately designed target oligonucleotide pool, 300-500 bp error-free shotgun assembly fragments are selectively recovered from the amplification products using barcode sequences, and larger target nucleic acid molecules (e.g., ≥˜10 kb) are synthesized using the error-free shotgun assembly fragments. In addition, the method of the present disclosure enables gene synthesis at lower cost than conventional methods using resin-based oligonucleotides. Therefore, the present disclosure can be applied as a novel method for the synthesis of large target nucleic acid molecules and thus provides very excellent means that can considerably reduce gene synthesis cost.


The present disclosure will be explained in more detail with reference to the following examples. These examples are provided for illustrative purposes only and it will be obvious to those skilled in the art that are not intended to limit the scope of the present disclosure in accordance with the subject matter of the present disclosure.


EXAMPLES

Materials


AccuPrep™ gel purification kits for DNA purification and AccuPrep™ plasmid extraction kits for plasmid extraction were purchased from Bioneer (Korea). Pfu polymerase pre-mix and Taq polymerase pre-mix were purchased from Solgent (Korea). Phusion polymerase pre-mix, restriction enzymes [Earl (20,000 U/ml) and BtsI (10,000 U/ml)], NEB buffer 4(10) and competent cells (C-2566) were purchased from New England Biolabs (NEB) (USA). TOP Cloner™ Blunt core kits (6 TOP cloner buffer, sterile water, pTop blunt V2) were purchased from Enzynomics (Korea). Microchip oligonucleotides and primers were purchased from Agilent (USA) and Macrogen (Korea), respectively. Sanger sequencing and Roche-454 sequencing were requested to Macrogene (Korea).


Target Penicillin Biosynthetic Gene Cluster and Oligonucleotide Sequence Design


Penicillin biosynthetic gene cluster (N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase) DNA sequence (11,376 bp) from Penicillium chrysogenum was chosen as a synthetic model. A codon-optimized penicillin biosynthetic gene cluster sequence was designed using the web-based program Optimizer (Puigb, P. et al., 2007). Twenty-four nucleotides (5-GCAGAGTAAAGACCGTGCACTTAT-3 SEQ ID NO: 1) were added to the microchip oligonucleotides.


Each Agilent chip oligonucleotide was 150 nucleotides in length and consisted of flanking sequences and target DNA sequences. Oligonucleotides (114 plus and 114 minus strands) for target DNA sequences were designed in such a way that upon annealing, complementary oligonucleotides contained overlapping regions for assembly. These 228 oligonucleotide sequences were flanked by generic PCR primer sequences.


Processing of Sub-Pools of Agilent Microchip Oligonucleotides


Lyophilized Agilent microchip oligonucleotides were suspended in 100 μl water. A higher concentration of the microchip oligonucleotide subpool (228 oligonucleotides targeting the penicillin biosynthetic gene cluster) was prepared using PCR amplification with flanking primers. The components included in each PCR reaction mixture were 8 μl water, 10 μl 2Pfu polymerase pre-mix, 0.5 μl cleaved oligonucleotide pool, and 1 μl 10 μM forward and reverse primers. The first PCR reaction was performed as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 20-cycle PCR step, each cycle consisting of 95° C. for 30 s, 55° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. Thereafter, to amplify the oligos, the second PCR reaction was performed on the PCR products amplified by the first PCR reaction. For the PCR, the following reagents were used: 18 μl water, 25 μl 2 Pfu polymerase pre-mix, 3 μl of the first PCR products, and 2 μl 10 μM orward and reverse primers. The second PCR conditions were the same as for the first PCR reaction with the exception of the number of reaction cycles (i.e. 12). After verification of the desired products by 4% agarose gel electrophoresis, restriction enzyme digestion was carried out as follows: when Earl was used, 2.5 μl Earl, 5 μl NEB buffer, 0.5 μl 100×BSA and 50 μl PCR products were mixed, followed by digestion at 37° C. for 3 h; and when BtsI was used, 2.5 μl BtsI, 5 μl NEB buffer, 0.5 μl 100×BSA and 50 μl PCR products were mixed, followed by digestion at 55° C. for 3 h. The restriction digest products were electrophoresed through 4% agarose gels and gel-purified.


Shotgun Assembly


The gel-purified products were assembled using the first round shotgun assembly PCR. For the PCR, the following reagents were used: 20 μl Pfu polymerase pre-mix and 20 μl purified products (the sub-pool of 228 microchip oligonucleotides). The PCR conditions were as follows: a pre-denaturation step at 95° C. for 3 min; (b) a 36-cycle PCR step, each cycle consisting of 95° C. for 30 s, 60° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. After the PCR products were electrophoresed through an agarose gel (1.5%), gel regions (target size =˜350 bp) of 300-500 bp were excised.


Processing of the Shotgun Assembly Products by Barcoding and 454 Sequencing


The detailed procedure is illustrated in FIG. 7. The gel-purified shotgun assembly fragments were amplified using flanking primers for PCR. For the PCR, the following reagents were used: 10 μl water, 25 μl Pfu polymerase pre-mix, 10 μl of the purified shotgun assembly fragments, and 2.5 μM forward and reverse primers. The PCR conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 18-cycle PCR step, each cycle consisting of 95° C. for 30 s, 55° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. As a result, bands between 300 and 450 bp were excised and purified using an AccuPrep™ DNA purification kit (Bioneer, Korea).


The fragments were barcoded by a primer pair that consisted of, from the 5′ to 3′ direction, a 454 DNA sequencing-adaptor sequence, a 454 high-throughput sequencing key sequence (e.g., 5-TCAG-3), a 20-mer degenerate primer (i.e. made of poly N sites), an EcoP15I Type IIS restriction enzyme site, and the flanking primer sequences. The Earl or BtsI site was located at the 3′ end of the flanking sequence of the chip oligonucleotides. The EcoP15I site was introduced into the PCR amplification procedure for shotgun assembly of the fragments using the barcoded primers. For the PCR, the following reagents were used: 6 μl water, 20 μl 2 Pfu polymerase pre-mix, 10 μl the assembled gene fragment pool, and 2 μl forward and reverse barcode primers. The PCR conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 18-cycle PCR step, each cycle consisting of 95° C. for 30 s, 55° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. After the PCR products were electrophoresed through an agarose gel (1.5%), the gel was excised to purify assembled fragments (450-600 bp). These gel-purified fragments were diluted 100-fold and the diluted products were then used for a final PCR amplification step involving 454 DNA sequencing-adaptor primers (Macrogene, Korea). For the PCR, the following reagents were used: 17.5 μl water, 25 μl Pfu, 2.5 μl of the 100-fold diluted gel-purified products and 2.5 μl forward and reverse primers. Eight replicate 20 μl PCR reaction products. The PCR reaction conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 25-cycle PCR step, each cycle consisting of 95° C. for 30 s, 71° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. Thereafter, the PCR products were electrophoresed through an agarose gel (1.5%), followed by gel purification (450-500 bp). The eight replicates were pooled prior to 454 sequencing.


Prior to 454 sequencing, cloning of the barcoded target gene fragments was performed, and several colonies were selected and submitted for Sanger sequencing evaluation. Gel-purified and barcoded products were cloned into the TOPO vector using the TOP Cloner™ Blunt core kit (Enzynomics, Korea). Competent cells derived from C2566 (New England Biolabs, USA), an Escherichia coli strain, were then transformed with the cloned products. After overnight growth on agar plates at 37° C., several colonies were chosen for colony PCR using M13F-pUC and M13R-pUC universal primer pairs. After confirmation of the presence of inserted DNA, Sanger sequencing was conducted prior to Roche-454 sequencing. Thereafter, the sequences of the gene fragments and the barcode primer sequences were validated using the Lasergene program (DNAstar, Madison, Wis.). After verification of the sequences, the pool of assembly PCR products was selected for Roche-454 high-throughput sequencing. The sequencing data were analyzed using an in-house Python program, and error-free gene fragments were selected.


Algorithm of In-house Python Program to Analyze the 454 High-throughput Sequencing


The primary task of the computer program was to select error-free shotgun assembly samples for subsequent assembly. The 454 sequencing read results (454 reads) were aligned to the target penicillin biosynthetic gene cluster sequence using the in-house Python programming language. DNA fragments with desired restriction enzyme sites (i.e. EcoP15I and either, EarI or BtsI sites) at both ends of the read were selected based on the sequencing data with a high quality score (Phred-like consensus quality >30, which corresponded to a base call accuracy >99.9%). Flanking sequences containing the enzyme site were eliminated from the processed gene fragments, and the flanking sequence-removed internal sequences were aligned to the target penicillin biosynthetic gene cluster sequence. When these internal sequences matched perfectly with the reference sequence, the aligned sequences were graphically listed along with their target gene cluster sequence (FIG. 9b). Subsequently, the program determined the optimal set of internal sequences that overlapped by more than 15 bp with other fragments necessary for subsequent assembly.


These selected gene fragments were recombined into the complete target gene (FIG. 9c). The Python scripts used for the analysis are available upon request.


Synthesis of the Target Gene Cluster from the Target Assembly Products


Amplification of the Desired Shotgun Assembly Products and Elimination of the Flanking Sequences from the Shotgun Assembly Products


As described above, an in-house Python program was used to select optimum sets of shotgun assembly products. These overlapping error-free DNA fragments were selectively amplified from shotgun assembly DNA mixtures using selected barcode primer pairs. For the PCR, the following reagents were used: 8 μl water, 10 μl Phusion polymerase pre-mix, 1 μl forward and reverse barcode primers, and 1 μl of the shotgun assembly DNA mixture.


The PCR conditions were as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 30-cycle PCR step, each cycle consisting of 95° C. for 30 s, 60° C. for 30 s, and 72° C. for 1 min; and (c) a final elongation step at 72° C. for 10 min. The barcode primers are listed in Table 1.









TABLE 1







Sequences of degenerate primers used for PCR recovery of error-free fragments


















Nested
Nested


Frag-




PCR
PCR


ment


Primer
Primer
Primer
Primer


(Daugh-


sequence
sequence
sequence
sequence


ter

Restriction
Forward
Reverse
Forward
Reverse


frag-

enzyme
direction
direction
direction
direction


ment)
CODE
used
(5′ → 3′)
(5′ → 3′)
(5′ → 3′)
(5′ → 3′)





1-a
G2JQR
EcoP15I
CTATTTGATGTTC
AGCCTTTTCAAAGCG





9I07H3
from BtsI
GTAGTTCCAG
AAAG





VM7
reaction
(SEQ ID 
(SEQ ID NO: 3)






pool
NO: 2)








1-b
G2JQR
EcoP15I
ATCTATTAGGTCA
CATGCAGAGGAAAC





9I07H5
from EarI
TAGTAGGCAG
CATAAA





WCJ
reaction
(SEQ ID 
(SEQ ID NO: 5)






pool
NO: 4)








1-c
G2JQR
EarI
TGCTATTCTTTCT
GAATGTTTGTTGCGT





9I07H3

GCCTTTTCAG
TTCCA





8JU

(SEQ ID 
(SEQ ID NO: 7)







NO: 6)








1-d
G2JQR
EcoP15I
TCGAGCTCAATA
TTTATGATTGCATTC





9I07IK
from EarI
GTTTTTTCAG
AGCAGCAG





M12
pool
(SEQ ID 
(SEQ ID NO: 9)







NO: 8)








1-e
G2JQR
EarI
TTACTCCATTTTG
ATTCTTTGGCCTTTGT





9I06HC

CACTCTCAG
TGACAG





8AH

(SEQ ID 
(SEQ ID NO: 11)







NO: 10)








2-a
G2JQR
Nest PCR
TTAGTTTCAACAT
ATGTGTATATTCGAC
GTGAATATCCGT
CAGTTCACGTTCGTCGCA



9I06HC
from BtsI
GTATATACAGCA
ACTTTCAGC
CTAGCAAGC
CACCAC



ZWA
pool
GC
(SEQ ID NO: 13)
(SEQ ID 
(SEQ ID NO: 15)





(SEQ ID

NO: 14)






NO: 12)








2-b
G2JQR
EcoP15I
CTATTTTCAGTGT
TCCTAAGTTGATGAA





9I06GY
from BtsI
GCCTTT
ACTTT





Z2I
pool
(SEQ ID 
(SEQ ID NO: 17)







NO: 16)








2-c
G2JQR
EarI
TATCTGGTAGGA
TAGAACTGGCAATGA





9I06GU

GGGGTT
CGCTG





X19

(SEQ ID 
(SEQ ID NO: 19)







NO: 18)








2-d
G2JQR
EarI
TTCTGTTTGTCTT
TACCGTTTTTAAGAT





9I06G2

AAATGCG
TGCGT





U2M

(SEQ ID 
(SEQ ID NO: 21)







NO: 20)








2-e
G2JQR
EcoP15I
CTGAAATTCATTT
CTATGGGGTACCTTT





9I07IH
from BtsI
ATGTTTG
TTG





5UA
pool
(SEQ ID 
(SEQ ID NO: 23)







NO: 22)








2-f
G2JQR
EcoP15I
ATATTCGAGCGT
AAGTGATTGTTTACA





9I06G0
from EarI
ATGTATTA
GTCTC





1OD
pool
(SEQ ID 
(SEQ ID NO: 25)







NO: 24)








2-g
G2JQR
EcoP15I
TCATTTCGAGAA
GGGTTCTTTCCCTTAT





9I07IK
from EarI
AAGGCCGA
TTTG





Z70
pool
(SEQ ID 
(SEQ ID NO: 27)







NO: 26)








3-a
G2JQR
EarI
AACGAGGATATA
AAGTGTTGAGAGTGG





9I06HH

CAAATATA
TATAT





7SE

(SEQ ID 
(SEQ ID NO: 29)







NO: 28)








3-b
G2JQR
EarI
ATGGAGCTTTTAT
AATTGTCTAGTTTCG





9I07H5

GTGGTTA
TTGTT





FTG

(SEQ ID 
(SEQ ID NO: 31)







NO: 30)








3-c
G2JQR
EcoP15I
TGTTGGTTGTTCA
ATACTTGTTTCAATTT





9I06G
from BtsI
ATGGAGT
TGTCCAGC





WSUY
pool
(SEQ ID 
(SEQ ID NO: 33)







NO: 32)








4-a
G2JQR
Nest PCR
TATTTTTTTCCAA
ATCCTCTGCTATTCT
ACCTGCATCCA
GGGAAAGGGTGGTGTTG



9I06GX
from EarI
TTTTTTACAGC
GTTGC
GCTGATTGCGC
TAA



0BH
pool
(SEQ ID 
(SEQ ID NO: 35)
GTATCCGTCAGC
(SEQ ID NO: 37)





NO: 34)

GTCAGCGTTTGT








CTGTGTCTATCT








CTGTG








(SEQ ID 








NO: 36)






4-b
G2JQR
Nest PCR
CTAATTTGAATGC
ACATTACCTTTGGAA
CATGGAACAAA
TCCAGCAGCTGGAAGACT



9I07H7
from EarI
AGTCCGT
AAAACC
GTGATGCTT
T



Z2P
pool
(SEQ ID 
(SEQ ID NO: 39)
(SEQ ID 
(SEQ ID NO: 41)





NO: 38)

NO: 40)






4-c
G2JQR
Nest PCR
TTAAGTATGATTA
CGATATTGTTCATAA
TCTGCGCTTCTC
GGCGTAAATCTTCCAGTT



9I06HC
from EarI
ATGCTGTCA
TATGTCAG
TTGGGAA
TA



PB7
pool
(SEQ ID 
(SEQ ID NO: 43)
(SEQ ID 
(SEQ ID NO: 45)





NO: 42)

NO: 44)






4-d
G2JQR
Nest PCR
GTGGTATGCACG
TATGTGAGTGATCNC
TGGTGCAGTAG
TTTTTCGAACAGAAGCGG



9I06GS
from EarI
TTGGTC
CGTTTCAG
AAGACCGTA
TA



219
pool
(SEQ ID 
(SEQ ID NO: 47)
(SEQ ID 
(SEQ ID NO: 49)





NO: 46)

NO: 48)






4-e
G2JQR
Nest PCR
ATTACTTAGGGTA
AGACCTTCAGTCTTT
CGTTTACCTGAT
AGCTGCACTTTATAGCGG



9I06HA
from BtsI
TTGCGTTC
GCGAT
CAAACACAGC
(SEQ ID NO: 53)



06O
pool
(SEQ ID 
(SEQ ID NO: 51)
(SEQ ID 






NO: 50)

NO: 52)






4-f
G2JQR
Nest PCR
ATAGCGTTATTAA
ATAGTTATTCGGCTA
TGCTCTGTTAAA
TTGCGACCAGAAATAGTG



9I07IG
from EarI
TTTCTGTCAG
GTCCT
CGAACGCA
GTG



ZCH
pool
(SEQ ID 
(SEQ ID NO: 55)
(SEQ ID 
(SEQ ID NO: 57)





NO: 54)

NO: 56)






5-a
G2JQR
EcoP15I
TCATAGAGGAGG
CGGATCGTTTATTGA





9I07ILS
from BtsI
TGCTATGG
CTGTT





L3
pool
(SEQ ID 
(SEQ ID NO: 59)







NO: 58)








5-b
G2JQR
EcoP15I
GATATTTCGCGGT
AGGTAAAGGTTACTT





9I07IM
from EarI
TCTGTTG
AAACTCAG





J1B
pool
(SEQ ID 
(SEQ ID NO: 61)







NO: 60)








5-c
G2JQR
EcoP15I
TAGTCTTTGCCGG
TTGCAAAGATTCTAC





9I06GZ
from BtsI
TTTATTA
AGA





26W
pool
(SEQ ID 
(SEQ ID NO: 63)







NO: 62)








5-d
G2JQR
EcoP15I
CTAAACTCTTTAC
AGCTCGTTATTATGT





9I07IQ
from EarI
TTCCTAT
GGCTT





TYC
pool
(SEQ ID 
(SEQ ID NO: 65)







NO: 64)








5-e
G2JQR
EcoP15I
TTATGAGAAATG
TAGAACACTATCAAA





9I071BI
from EarI
TTTCACTG
TCTAG





HM
pool
(SEQ ID 
(SEQ ID NO: 67)







NO: 66)








5-f
G2JQR
EarI
TTTGTAATTTGAC
TAGGAATCTTTTGAC





9I07IE

TCTGATGCAG
TTTTCACAG





GMC

(SEQ ID 
(SEQ ID NO: 69)







NO: 68)








6-a
G2JQR
Nest PCR
TACTGGGAGCAA
TTCGTCTGCTGTTTTC
CTAACTACGTTT
TTCACGGATTTTGTCGAA



9I07IQ
from EarI
ACAATTCTCAG
ACTCAG
TCGATCACTTCG
GAC



369
pool
(SEQ ID 
(SEQ ID NO: 71)
(SEQ ID 
(SEQ ID NO: 73)





NO: 70)

NO: 72)






6-b
G2JQR
Nest PCR
GTGGGATGGAAG
TGTATTATGTCCTTTT
GCTTTCAGCGA
CAGGTACAGCTCACCCAC



9I06HB
from EarI
CTCCTC
TGCCAGC
GCCGGTCTTCGA
(SEQ ID NO: 77)



BGB
pool
(SEQ ID 
(SEQ ID NO: 75)
CAAAATCCGTG






NO: 74)

AAACCTTCCAC








GGTTTGGTTATC








(SEQ ID 








NO: 76)






6-c
G2JQR
EcoP15I
TGTTGGATATATA
CATGGGGATGATGTG





9I07H1
from EarI
GGGTTAC
TACTT





GGH
pool
(SEQ ID 
(SEQ ID NO: 79)







NO: 78)








6-d
G2JQR
EcoP15I
AATTCACTCAGA
ATTTAGTTGGAATTA





9I07HZ
from EarI
ATAATTTT
ATCTC





198
pool
(SEQ ID 
(SEQ ID NO: 81)







NO: 80)








6-e
G2JQR
EarI
CTACTGTTCGTTC
TTGGTGTAAAACTGG





9I07IM

CCAATTA
GGGAA





S4O

(SEQ ID 
(SEQ ID NO: 83)







NO: 82)








7-a
G2JQR
EcoP15I
ATGTGTTATAGA
TGACATGTGTTATCC





9I07H0
from EarI
AGTTGTTG
CTGCT





2JG
pool
(SEQ ID 
(SEQ ID NO: 85)







NO: 84)








7-b
G2JQR
EarI
TTTCAGAAACTTA
TTATAAGAAGTAATA





9I06HG

AACTTAC
GGAAT





WSA

(SEQ ID 
(SEQ ID NO: 87)







NO: 86)








7-c
G2JQR
EarI
TATACAATCTATT
TGGAATACTTTAATC





9I07H8

GGTAATC
CTTTC





TE4

(SEQ ID 
(SEQ ID NO: 89)







NO: 88)








7-d
G2JQR
EcoP15I
TTACATGCTTTCG
TGTATAGTGTGAGGA





9I07H7
from BtsI
ACACATA
TCTTT





QRT
pool
(SEQ ID 
(SEQ ID NO: 91)







NO: 90)








7-e
G2JQR
EcoP15I
GTTAATTTCTGGG
TAACTCACGCTTTTT





9I07IE
from BtsI
GATACGT
ATAAG





EEC
pool
(SEQ ID 
(SEQ ID NO: 93)







NO: 92)








7-f
G2JQR
EarI
TTCTTGTCACTCT
TCTATCGGTTTTCGG





9I07IP

CTTTATCCA
GTTT





GUX

(SEQ ID 
(SEQ ID NO: 95)







NO: 94)








8-a
G2JQR
Nest PCR
GAAGCACCTGTC
TGATCTTCCCGGGTA
GGTCGTTCTGCG
CTGCAGCAGTTTCGTAAC



9I06G6
from BtsI
TTATTTAACAG
GGC
TGTAGATAT
TTC



PRN
pool
(SEQ ID 
(SEQ ID NO: 97)
(SEQ ID 
(SEQ ID NO: 99)





NO: 96)

NO: 98)






8-b
G2JQR
EcoP15I
TCATCCTATTACG
GCGTTGGAAGCTTTT





9i07IR
from EarI
ATGCCCG
TATTG





U8F
pool
(SEQ ID 
(SEQ ID NO: 101)







NO: 100)








8-c
G2JQR
EcoP15I
ATTTATAAGGAC
AAACGNTCCCCGTAT





9I07IJA
from EarI
GGGCCAGC
TGGTA





46
pool
(SEQ ID 
(SEQ ID NO: 103)







NO: 102)








8-d
G2JQR
EcoP15I
TAATCTGATCGAT
TTTTGATTCAATCCTC





9I07IB
from BtsI
GCTAGGA
CTAA





AZE
pool
(SEQ ID 
(SEQ ID NO: 105)







NO: 104)








9-a
G2JQR
EarI
TTTCCTATTTCTT
TTGCGATGGTTTACT





9I07IQ

CATTGGCAG
TTGAT





5TF

(SEQ ID 
(SEQ ID NO: 107)







NO: 106)








9-b
G2JQR
EarI
ATCATTGCACTTG
GGAAGGTTTTTTACT





9I07IK

TTGTTCG
GATTT





8X6

(SEQ ID 
(SEQ ID NO: 109)







NO: 108)








9-c
G2JQR
EarI
TTATTCGTGGATT
ATTTTTCTAGGTTCTG





9I06HG

GGTGTTC
ATTA





DLG

(SEQ ID 
(SEQ ID NO: 111)







NO: 110)








9-d
G2JQR
EcoP15I
TGATTTCACCACT
CCTCCTTTATTTCTCG





9I06G8
from EarI
AAGTCT
TGC





AYI
pool
(SEQ ID 
(SEQ ID NO: 113)







NO: 112)








9-e
G2JQR
EarI
TAAAGTTATCATG
TGTAAACCTATATTC





9I07ITP

TGCTACC
ATCTC





M8

(SEQ ID 
(SEQ ID NO: 115)







NO: 114)








9-f
G2JQR
Nest PCR
GTTCATTGCATAA
TTAAAGCCCTTTACA
CTAACCCGTTCT
CGGCTGCTGCTGGCGG



9I06HH
from EarI
TGCTTCTCAG
TCCAGCAGC
GCAAGGAAG
(SEQ ID NO: 119)



6RD
pool
(SEQ ID 
(SEQ ID NO: 117)
(SEQ ID 






NO: 116)

NO: 118)






9-g
G2JQR
EcoP15I
ATTGATATGTAA
AATAGGTACCATTTT





9I071AI
from EarI
GAGATTTC
CGTT





BJ
pool
(SEQ ID 
(SEQ ID NO: 121)







NO: 120)








10-a
G2JQR
Nest PCR
GATTACTACATTT
CTTTTGGGGGGGGTT
CGTTTATGGGA
GCTATCCTTCATGAAAAC



9I06G1
from EarI
TTCTCAACAG
GGGCC
AAGCGC
GTG



9MG
pool
(SEQ ID 
(SEQ ID NO: 123)
(SEQ ID 
(SEQ ID NO: 125)





NO: 122)

NO: 124)






10-b
G2JQR
EarI
AATTGGTTACCTC
CTCATACTGGGATCC





9I07IH

TATCCCC
GATTT





PYZ

(SEQ ID 
(SEQ ID NO: 127)







NO: 126)








10-c
G2JQR
EcoP15I
GCATAAAGCGGG
CTGTGTCATAGAATA





9I07H9
from EarI
AGGCTTCT
GTGC





H15
pool
(SEQ ID 
(SEQ ID NO: 129)







NO: 128)








10-d
G2JQR
EcoP15I
TTTCGACCGATTT
TTTTTTGACGGTAAT





9I07IS7
from BtsI
CAGTCTG
TA





M7
pool
(SEQ ID 
(SEQ ID NO: 131)







NO: 130)








10-e
G2JQR
EarI
CTTCCTGTGGGTT
TTTTACATCATTCGC





9I07H9

TTCTA
GTATT





WDO

(SEQ ID 
(SEQ ID NO: 133)







NO: 132)








10-f
G2JQR
EcoP15I
TTTTTGAGCTACG
TCAATACATTCTACT





9I07IA
from EarI
CTTTCGG
TT





5L7
pool
(SEQ ID 
(SEQ ID NO: 135)







NO: 134)








11-a
G2JQR
EcoP15I
GTCAGTAGTATA
CGATCTAAGATTGCC





9I07IN
from EarI
CCGTTCGT
TTCCT





2PX
pool
(SEQ ID 
(SEQ ID NO: 137)







NO: 136)








11-b
G2JQR
EarI
TCTCATAATTGGG
TTTATGTTTTTGAATT





9I07IE9

AATTGTACAG
AGCAGCA





17

(SEQ ID 
(SEQ ID NO: 139)







NO: 138)








11-c
G2JQR
EarI
ATCTTTTATGTAC
TTTTTCAACACTTTTA





9I07IQ

TTTGTGA
GTGT





TJR

(SEQ ID 
(SEQ ID NO: 141)







NO: 140)








11-d
G2JQR
EarI
TAATTTCCTGTGC
TCTTGTTTATTTCTTT





9I07IM

AACT
GGGT





5CB

(SEQ ID 
(SEQ ID NO: 143)







NO: 142)








11-e
G2JQR
Nest PCR
ATGTATCCTCGCT
CACCCGGTTTGATTA
GGCATTCTGGC
GTCGTAGTACTCATACAG



9I06G5
from BtsI
CTTTAACCAG
TTACTCA
GATGGAGAT
GCG



47R
pool
(SEQ ID 
(SEQ ID NO: 145)
(SEQ ID 
(SEQ ID NO: 147)





NO: 144)

NO: 146)






11-f
G2JQR
Nest PCR
CTAACGCATTGTC
ACTCCGGATACCAGT
GAATCAGAAAA
TTACTTCCAACGACCGAT



9I07HZ
from BtsI
AGGTTTCC
GTAGAAC
CCAGCGTCGCCT
GTACTGAGCCGCC



AYS
pool
(SEQ ID 
(SEQ ID NO: 149)
GTATGAGTACT
(SEQ ID NO: 151)





NO: 148)

ACGACGCGTTA








GATTCCAC








(SEQ ID 








NO: 150)
















TABLE 2







Sequences of daughter fragments obtained after PCR recovery









Frag-




ment




(Daugh-

Ex-


ter

pected


frag-

length


ment)
Sequences (5′ → 3′)
(bp)





1-a
CTATTTGATGTTCGTAGTTCCAGCAGCACCGACTAATGCAGGCTGGCAGTAATGACCCAATTGAAGCCGCC
392



TAACGGGACCACTCCGATCGGCTTCAGCGCCACTACTAGCCTGAACGCTAGCGGCTCTTCCTCGGTTAAGA




ATGGTACCATCAAGCCTTCGAATGGTATCTTCAAACCTTCTACTCGTGACACCATGGACCCGTGCTCGGGC




AACGCCGCTGACGGCTCCATTCGCGTACGTTTTCGCGGTGGCATCGAACGTTGGAAAGAGTGTGTAAACCA




AGTGCCGGAGCGTTGCGACCTGTCTGGTCTGACCACGGACAGCACCCGCTACCAGCTGGCTTCCGAACACA




TGACCCTGCGACCTGCTGAGCCTTTTCAAAGCGAAAG (SEQ ID NO: 152)






1-b
ATCTATTAGGTCATAGTAGGCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTGGCTTCGGCGACGCGAGCGC
402



GGCTTACCAGGAACGTCTGATGACTGTGCCGGTAGATGTTCATGCTGCGCTCCAGGAGCTGTGCCTGGAAC




GCCGCGTCTCTGTGGGTTCTGTGATCAACTTCAGCGTTCACCAGATGCTGAAGGGTTTTGGCAACGGTACT




CACACTATCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTTCCCC




TACTATCGTGACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGTGGAGTCTATCGAGGCTAGA




AGACCACACATGGCACCTTTGCTGCTGCATGCAGAGGAAACCATAAAT (SEQ ID NO: 153)






1-c
TGCTATTCTTTCTGCCTTTTCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTGGCAACGGTACTCACACTATC
402



ACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTTCCCCTACTATCGT




GACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGTGGAGTCTATCGAGGCTGGTCGTGGCTCC




GAAAAGGAATCTGTGACCGCGATTGATTCCGGCTCCTCCCTGGTCAAAATGGGTCTGTTCGATCTGCTGGT




TTCCTTCGTCGATGCGGATGACGCGCGTATCCCTTGCTTCGACTTTCCGCTGGCTGTTATTGTGCGCAGAAG




AGCGACCGCTAAGATGCCCTCTGCTGTGGAAACGCAACAAACATTC (SEQ ID NO: 154)






1-d
TCGAGCTCAATAGTTTTTTCAGCAGCACCGACTAATGCAGGCTGGCGTGATGACGCGCGTATCCCTTGCTT
400



CGACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTCACCCTTCGCTTCTCGGACTG




CCTGTTCAACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCG




GTCGTGTAACTCCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAA




CAACACCGATGGTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACCACTG




CGAACACATGACCCTGCGACCTGCTGCTGCTGAATGCAATCATAAA (SEQ ID NO: 155)






1-e
TTACTCCATTTTGCACTCTCAGCAGCACCGACTAATGCAGGCTGGCATGATGACGCGCGTATCCCTTGCTTC
389



GACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTCACCCTTCGCTTCTCTTCAACG




AGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTGTAACT




CCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACACCGATG




GTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACCACTACGAACACATGA




CCCTGCGACCTGCTGTCAACAAAGGCCAAAGAAT (SEQ ID NO: 156)






2-a
TTAGTTTCAACATGTATATACAGCAGCACCGACTAATGCAGGCTGGAGTGCAACGAGGAAACCATTTGTA
401



ATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTGTAACTCCGGTAGCCGATATC




GAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACACCGATGGTGAATATCCGTCTA




GCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACGTCACGAAGACAAAATCGCTGTGGTGTGCGA




CGAACGTGAACTGACTTACGGTGAACTCAATGCCCACGGCAACTCCCTGGCGCGTTACCTGCACAGCATCA




CTGCGAACACATGACCCTGCGACCTGCTGAAAGTGTCGAATATACACAT (SEQ ID NO: 157)






2-b
CTATTTTCAGTGTGCCTTTCAGCAGCACCGACTAATGCAGGCTGGAGTGGTCACGAAGACAAAATCGCTGT
400



GGTGTGCGACGAACGTGAACTGACTTACGGTGAACTCAATGCCCAGGGCAACTCCCTGGCGCGTTACCTGC




GCAGCATTGGTATTCTGCCTGAACAGCTGGTTGCGCTGTTTCTGGACAAATCCGAAAAATTGATCGTAACC




ATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCCTGACGAACGTGTTCG




TTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACGCCTCCCACTGC




GAACACATGACCCTGCGACCTGCTGAAAGTTTCATCAACTTAGGA (SEQ ID NO: 158)






2-c
TATCTGGTAGGAGGGGTTCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTAATTGATCGTAACCATCCTGGG
400



CGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCCTGACGAACGTGTTCGTTTCGTTCT




GGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACGCCTCCAGCGTGAAGTAATC




GGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCAGGATTCTTCTAAATT




CCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTACTTATACCAAGAAGA




GTGACCGCTAAGATGCCCTCTGCTGCAGCGTCATTGCCAGTTCTA (SEQ ID NO: 159)






2-d
TTCTGTTTGTCTTAAATGCGCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTAGCGTGAAGTAATCGGTGAT
402



CGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCAGGATTCTTCTAAATTCCCTGCC




CACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTACTTATACCAGCGGTACCACCGG




CTTTCCGAAAGGCATTTTCAAACAGCACACTAACGTTGTTAACTCCATCACAGACCTGTCCGCTCGTTACG




GTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGTTTTCGAACCGTTCGTTCAGAAGA




GCCACACATGGCACCTTTGCTGCTGACGCAATCTTAAAAACGGTA (SEQ ID NO: 160)






2-e
CTGAAATTCATTTATGTTTGCAGCAGCACCGACTAATGCAGGCTGGCAGTGGTTAACTCCATCACAGACCT
383



GTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGTTTTCGAACC




GTTCGTTCGTCAGACTCTGATGGCCCTGGTGAACGGTCACCTGCTCGCCGTGATTAACGATGTAGAAAAAT




ATGACGCTGACACCCTCCTCCCATTTATCCGCCGTCACTCTATCACCTATCTGAACGGTACTGCGTCGGTTC




TCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCATCCTCTGCGAACACATCGACCCTGCG




ACCTGCTGCAAAAAGGTACCCCATAG (SEQ ID NO: 161)






2-f
ATATTCGAGCGTATGTATTACAGCAGCACCGACTAATGCAGGCTGGCGTCTCTATCACCTATCTGAACGGT
399



ACTGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCATCCTGGTGGGCGA




GAACCTGACCGAAGCACGTTACCTGGCACTGCGTCAGCGTTTCAAAAATCGTATTCTGAACGAGTACGGTT




TCACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAAAGATACCTCCCTG




GGGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCCAATTGGCATGCG




AACACATGACCCTGCGACCTGCTGGAGACTGTAAACAATCACTT (SEQ ID NO: 162)






2-g
TCATTTCGAGAAAAGGCCGACAGCAGGTCGCAGGGTCATGTGTTCGCAGTGGAACGAGTACGGTTTCACC
402



GAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAAAGATACCTCCCTGGGGCG




TCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCCAATTGGTGCTACAGGTG




AGCTGCATATTGGCGGCCTGGGTATCTCCAAGGGTTACTTGAATCGTCCGGAACTGACGCCGCACCGCTTC




ATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCTGATGTACAAAACCGGCAC




TGTCAGCCTGCATTAGTCGGTGCTGCTGCAAAATAAGGGAAAGAACCC (SEQ ID NO: 163)






3-a
AACGAGGATATACAAATATACAGCAGCAAAGGTGCCATGTGTGGCTCTTCTTGAATCGTCCGGAACTGAC
402



GCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCTGATGT




ACAAAACCGGTGATCTGGCTCGCTGGCTCCCGAACGGTGAAGTTGAATACCTGGGCCGTGCGGATTTCCAG




ATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATCCGCGCGTTCG




TACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCTGGTAGAG




AAGAGCGACCGCTAAGATGCCCTCTGCTGATATACCACTCTCAACACTT (SEQ ID NO: 164)






3-b
ATGGAGCTTTTATGTGGTTACAGCAGAGGACATCTTAGCGGTCGCTCTTCTCGGATTTCCAGATCAAACTG
402



CGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTATCCGCGCGTTCGTACCTCCCT




GGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAACACCTGGTAGGCTACTACGTA




TGCGACTCCGCATCTGTTTCCGAAGCGGATCTGCTGTCCTTCCTGGAGAAGAAGCTGCCGCGTTATATGAT




TCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTAAAGCCGATCTGCGTGCTCAGA




AGAGCCACACATGGCACCTTTGCTGCTGAACAACGAAACTAGACAATT (SEQ ID NO: 165)






3-c
TGATTATGGTGGTTGCGGTGCAGCAGCACCGACTAATGCAGGCTGGCAGTGTTCCTGGAGAAGAAGCTGC
402



CGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTAAAGCCGAT




CTGCGTGCTCTGCCGGCGGTTGATATCTCCAACAGCACCGAAGTTCGTTCTGATCTGCGTGGTGATACCGA




AATTGCCCTCGGCGAAATCTGGGCGGACGTGCTGGGCGCGCGTCAGCGTTCGGTTAGCCGTAACGATAACT




TTTTCCGCCTCGGTGGCCACTCTATCACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGCGTCACT




GCGAACACATGACCCTGCGACCTGCTGCAGAATAACTAAATTAGTAT (SEQ ID NO: 166)






4-a
TATTTTTTTCCAATTTTTTACAGCAGCACCGACTAATGCAGGCTGGCAACCTGCATCCAGCTGATTGCGCGT
399



ATCCGTCAGCGTCAGCGTTTGTCTGTGTCTATCTCTGTGGAAGACGTGTTTGCTACACGCACTCTTGAGCGT




ATGGCCGACCTGTTGCAAAACAAACAGCAAGAGAAATGCGACAAACCACACGAAGCACCGACTGAACTG




CTTGAAGAAAACGCTGCGACTGATAACATCTACCTGGCGAACAGCCTGCAGCAAGGTTTCGTCTACCATTA




CCTGAAAAGCATGGAACAAAGTGATGCTTATGTAATGCAGAGCGTTCTGCGTTACAACACCACCCTTTCCC




GGATCTGTTCCAGCGTGCCTGGAAACACGCGCAGCCTGCGAACACATGACCCTGCGACCTGCTGGCAACA




GAATAGCAGAGGAT (SEQ ID NO: 167)






4-b
CTAATTTGAATGCAGTCCGTCAGCAGCACCGACTAATGCAGGCTGGCAGTAAGCATGGAACAAAGTGATG
413



CTTATGTAATGCAGAGCGTTCTGCGTTACAACACCACCCTTTCCCCGGATCTGTTCCAGCGTGCCTGGAAA




CACGCGCAGCAAAGCTTCCCGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGG




ATCAGGACCCGCCTCTGGACTGGCGTTTCCTCTACTTCACTGATGTGGTGGCAGGTGCAGATCCCCGTTNTC




AGTCGGGCGAACCAGTGACAGCTGGGTATCTTCGTTGATGCCTCAGCGCTCAGTTCGGACAGCTGACGCAG




AAGGTACACTGCGAACACATGACCCTTCGACCTGCTTGGTTTTTTCCAAAGGTAATGT




(SEQ ID NO: 168)






4-c
TTAAGTATGATTAATGCTGTCAGCAGCACCGACTAATGCAGGCTGGCGTGCAAAGCTTCCCGGCTCTGCGT
399



CTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCCTCTGGACTGGCGTTTCCT




CTACTTCACTGATGTGGCGGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCACCAGGACCTC




ACCGAGCGTTTTAAACTGGATGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCGTTT




CACTTGTCTGTTCTCTTGTCACCCGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAACCCTGCG




AACACATGACCCTGCGACCTGCTGACATATTATGAACAATATCG (SEQ ID NO: 169)






4-d
GTGGTATGCACGTTGGTCCTCAGCAGCACCGACTAATGCAGGCTGGCAGTCCAAAGCTTCCCGGCTCTGCG
401



TCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCCTCTGGACTGGCGTTTCC




TCTACTTCACTGATGTGGCGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCGCCAGGACCTCA




CCGAGCGTTTTAAACTGGATGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCGTTTC




ACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAAACNCTGC




GAACACATGACCCTGCGACCTGCTGAAACGGNGATCACTCACATA (SEQ ID NO: 170)






4-e
ATTACTTAGGGTATTGCGTTCAGCAGCACCGACTAATGCAGGCTGGCAGGCGTTTACCTGATCAAACACAG
401



CGAAAACCGTTTCACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTT




CGAAAAAGTACACGAAACATACCTGCAACTGCTGCACGGCGATAACCTGACCTCCTCTATGGATGATCCAT




ACACCCGTACCCAACGCTACCTGCATGCGCACCGCGAAGATCACCTCGACTTTTGGGCTGGCGTGGTGCAG




AAAATCAACGAACGTTGCGATATGAATGCTCTGTTAAACGAACGCAGCCGCTATAAAGTGCAGCTCACTG




CGAACACATGACCCTGCGACCTGCTGATCGCAAAGACTGAAGGTCT (SEQ ID NO: 171)






4-f
ATAGCGTTATTAATTTCTGTCAGCAGAGGGCATCTTAGGGGTCGCTCTTCTAAGATCACCTCGACTTTTGGG
401



CTGGCGTGGTGCAGAAAATCAACGAACGTTGCGATATGATGCTCTGTTAAACGAACGCAGCCGCTATAAA




GTGCAGCTGGCCGACTACGATCAGGTACAGGAACAGCGTCAGCTGACGATCGCTCTGAGCGGTGACGCGT




GGCTGGCGGATCTGCGCCAGACATGCAGTGCGCAGGGCATCACGCTGCACTCTATCCTGCAATTTGTATGG




CATGCAGTTCTGCATGCCTACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCAAGAA




GCGCCACACATGGCACCTTTGCTGCTGAGGACTAGCCGAATAACTAT (SEQ ID NO: 172)






5-a
TCATAGAGGAGGTGCTATGGCAGCAGGTCGCAGGGTCATGTGTTCGCAGTGCTACGGTGGCGGTACTCAC
390



ACTATCACTGGCACCACTATTTCTGGTCGCAACCTCCCGATCCTGGGTATCGAGCGTGCGGTAGGCCCGTA




CATTAACACCCTGCCGTTAGTGTTGGACCATTCTACTTTTAAAGACAAGACGATCATGGAAGCTATTGAAG




ACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGCACAAAACCGA




CCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAATCCAGCCTGC




ATTAGTCGGTGCTGCTGAACAGTCAATAAACGATCCG (SEQ ID NO: 173)






5-b
GATATTTCGCGGTTCTGTTGCAGCAGCACCGACTAATGCAGGCTGGCAGTAGCTATTGAAGACGTCCAAGC
401



GAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGCACAAAACCGACCTGAAACAT




GGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAATCCCGTACTCTGGAGCACCA




AACTGAACTGGGTTACTCCATCGAGGGTGGTACCGAAAAACTGAACTATCCGCTGGCGGTGATTGCTCGTG




AGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAACTGTTTGAAGAGGTGATCACT




GCGAACACATGACCCTGCGACCTGCTGAGTTTAAGTAACCTTTACCT (SEQ ID NO: 174)






5-c
TAGTCTTTGCCGGTTTATTACAGCAGCACCGACTAATGCAGGCTGGCAGTGAACTGAACTATCCGCTGGCG
400



GTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAACTGTTTGA




AGAGGTGATGATCAGCGAGCTTCTCCATATGGTACAGGATACCCTGATGCAGGTTGCACGCGGGCTCAAC




GAACCTGTGGGCTCCCTGGAATACCTGTCTTCCATCCAGTTAGAGCAGCTGGCAGCGTGGAACGCCACCGA




AGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCAAAAGCCGGATAAAACA




CTGCGAACACATGACCCTGCGACCTGCTGTCTGTAGAATCTTTGCAA (SEQ ID NO: 175)






5-d
CTAAACTCTTTACTTCCTATCAGCAGAGGGAATCTTAGCGGTCGCTCTTCTTTAGAGCAGCTGGCAGCGTG
402



GAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCAAAAG




CCGGATAAAATTGCAGTCGTGTACGAAGAAACCTCTCTGACCTATCGCGAGCTGAACGAACGTGCCAATC




GCATGGCGCACCAGCTGCGTTCCGACGTTTCTCCGAACCCGAACGAAGTGATCGCGCTGGTTATGGACAAG




AGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCCGAG




AAGATCCACACATGGCACCTTTGCTGCTGAAGCCACATAATAACGAGCT (SEQ ID NO: 176)






5-e
TTATGAGAAATGTTTCACTGCAGCAGAGGGCATCTTAGCGGTCGCGGACAAGAGTGAACACATGATCGTA
372



AATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCCGGGCTACCCGAATGACCGTAT




TCAGTATATCCTCGAGGACACTCAGGCGTTGGCTGTTATCGCAGATTCTTGTTACCTGCCTCGTATCAAAGG




TATGGCCGCGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCTGTGT




CAAACCCGTCGCCGCTGTCTCGTAGCACCGACCTGGCAGAAGAGCCACACATGGCACCTTTGCTGCTGCTA




GATTTGATAGTGTTCTA (SEQ ID NO: 177)






5-f
TTTGTAATTTGACTCTGATGCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTCGTCTGGTACGCTGCTCTACC
403



CGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCTGTGTCAAACCCGTCGCCGCTGTCTCGTAGCACC




GACCTGGCATACATCATCTACACCTCTGGCACCACCGGCCGCCCGAAAGGCGTGACTGTGGAGCATCACG




GTGTGGTGAACCTGCAGGTATCCCTGAGCAAAGTTTTTGGTCTGCGTGACACCGACGACGAAGTCATCCTG




TCTTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGCAGAAGAA




GAGCCACACAAGGCACCTTTGCTGCTGTGAAAAGTCAAAAGATTCCTA (SEQ ID NO: 178)






6-a
TACTGGGAGCAAACAATTCTCAGCAGCACCGACTAATGCAGGCTGGCAGTAGGTCTGCGTGACACCGACG
400



ACGAAGTCATCCTGTCTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAA




CGGGCAGACGCTGCTGGTTCTGAACGATGGTATGCGTGGTGACAAAGAACGCCTGTACCGCTACATCGAA




AAGAACCGTGTAACTTATCTGTCTGGTACTCCATCTGTGGTGTCTATGTATGAGTTCAGCCGTTTCAAAGAC




CACCTGCGCCGCGTCGATTGCGTCGGTGAAGCTTTCAGCGAGCCGGTCTTCGACAAAATCCGTGAACACTA




CGAACACATGACCCAGCGACCTGCTGAGTGAAAACAGCAGACGAA (SEQ ID NO: 179)






6-b
GTGGGATGGAAGCTCCTCGACAGCAGAGGGCATCTTAGCGGTCGCTCTCTACCTTCCACGGTTTGGTTATC
399



AATGGTTATGGCCCAACTGAAGTTAGCATCACTACCCATAAGCGTTTATACCCTTTCCCAGAGCGCCGCAT




GGATAAGTCGATCGGCCAGCAGGTCCACAACTCTACTAGCTACGTACTGAATGAAGATATGAAGCGTACC




CCGATCGGTGCTGTGGGTGAGCTGTACCTGGGCGGTGAAGGTGTTGTCCGCGGTTATCATAATCGTGCGGT




GTTACCGCCGAGCGCTTCATCCCGAACCCGTTCCAGTCTGAGGAAGATAAACGTGAAGGCCGTAACAGAA




GAACCACACATGGCACCTTTGCTGCTGGCAAAAAGGACATAATACA (SEQ ID NO: 180)






6-c
TTGTTGGATATATAGGGTTACAAAAGAGGGCATCTTAGCGGTCGCTCTTCTCGATCGGCCAGCAGGTCCAC
402



AACTCTACTAGCTACGTACTGAATGAAGATATGAAGCGTACCCCGATCGGTGCTGTGGGTGAGCTGTACCT




GGGCGGTGAAGGTGTTGTCCGCGGTTATCATAATCGTGCGGATGTTACCGCCGAGCGCTTCATCCCGAACC




CGTTCCAGTCTGAGGAAGATAAACGTGAAGGCCGTAACAGTCGCCTGTACAAGACGGGTGATCTGGTTCG




CTGGATCCCGGGTAGCTCCGGCGAAGTCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTCGCGAG




AAGAACCACACATGGCACCTTTGCTGCTGAAGTACACATCATCCCCATG (SEQ ID NO: 181)






6-d
AATTCACTCAGAATAATTTTCAGCAGCAAAGGTGCCTTGTGTGGCTCTCTCGGCGAAGTCGAATACCTGGG
401



TCGCAATGACTTCCAGGTTAAGATTCGCGGCCTCCGTATCGAGCTGGGTGAAATCGAAGCGATCCTGAGCA




GCTACCACGGCATTAAACAGAGCGTAGTGATCGCAAAAGACTGCCGTGAGGGGGCACAGAAATTCCTGGT




CGGCTATTACGTTGCAGACGCTGCCCTGCCGTCCGCAGCGATCCGTCGTTTCATGCAGTCGCGCCTCCCGG




GTTACATGGTTCCGTCCCGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCCGTCCGGGAAGCTGGAAGAAG




AGCGACCGCTAAGATGCCCTCTGCTGGAGATTAATTCCAACTAAAT (SEQ ID NO: 182)






6-e
CTACTGTTCGTTCCCAATTACAGCAGAGGGCATCTTAGCGGTCGCTCTTCTCGTCTGATCCTGGTTTCTAAA
402



TTCCCTGTTACTCCGTCCGGGAAGCTGGACACCAAAGCACTGCCGCCGGCGGAGGAAGAAAGCGAAATCG




ACGTTGTTCCACCGCGCTCCGAAATTGAGCGTTCTCTCTGCGACATCTGGGCTGAACTGCTGGAAATGCAC




CCGGAAGAAATCGGCATTTACTCTGACTTCTTCTCCTTGGGCGGCGACAGCCTGAAATCTACTAAGTTATC




CTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTAGAAG




AGCCACACATGGCACCTTTGCTGCTGTTCCCCCAGTTTTACACCAA (SEQ ID NO: 183)






7-a
ATGTGTTATAGAAGTTGTTGCAGCAGAGGGCATCTTAGCGGTCCTAAGTTATCCTTCATGATCCATGAGTC
371



CTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTGAAGCTCAAACTCACCTGATCTT




GAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACACCCAGATGATCCCGGTTTCC




CGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACGCGGC




TTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTAGAAGAGCCACACATGGCACCTGTGCTGCTGAGCA




GGGATAACACATGTCA (SEQ ID NO: 184)






7-b
TTTCAGAAACTTAAACTTACCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTGAAGCTCAAACTCACCTGAT
402



CTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGACACCCAGATGATCCCGGTTT




CCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACGCG




GCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTCGTGGCAACCTGGCACGTCA




CGAAGCACTGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCTGCAGAAAGTACTGAATAGA




AGAGCCACACATGGCACCTTTGCTGCTGATTCCTATTACTTCTTATAA (SEQ ID NO: 185)






7-c
TATACAATCTATTGGTAATCCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTAGGAACGTCTGCTGTTCATTC
402



ATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACGCGGCTTTCGAACTGCCAGGTTCTGTGGACGCG




AGCCTGCTGGAACAGGCCCTTCGTGGCAACCTGGCACGTCACGAAGCACTGCGCACCCTGCTGGTTAAAG




ATCACGCCACTGGTATTTACCTGCAGAAAGTACTGAGTCCGGACGAAGCGCAAGGTATGTTTTCTGTTAAT




GTAGATACTGCTAAACAGGTTGAACGTCTGGATCAGGAAATTGCTTCTCTGTCTCAGCACGTCTTCCAGAA




GAGCCACACATGGCACCTTTGCTGCTGGAAAGGATTAAAGTATTCCA (SEQ ID NO: 186)






7-d
TTACATGCTTTCGACACATACAGCAGGTCGCAGGGTCATGTGTTCGCAGTGGGTTGAACGTCTGGATCAGG
402



AAATTGCTTCTCTGTCTCAGCACGTCTTCCGCCTGGACGACGAACTGCCGTGGGAGGCGCGCATCCTGAAA




CTGGAATCTGGCGGTCTGTACCTGATCTTGGCCTTCCACCACACCTGCTTCGATGCATGGAGCCTGAAAGT




TTTCGAACAGGAGCTGCGCGCGCTGTACGCAGCGCTTCAGAAAACGAAATCTGCAGCGAACTTACCGGCA




TTAAAAGCACAGTATAAGGAATACGCTCTGTACCACCGCCGCCAGCTTAGCGGCGACCGCATGCGTAACA




CAGCCAGCCTGCATTAGTCGGTGCTGCTGAAAGATCCTCACACTATACA (SEQ ID NO: 187)






7-e
GTTAATTTCTGGGGATACGTCAGCAGAGGGCATCTTAGCGGTCGTTCTTCTGAATACGCTCTGTACCACCG
401



CCGCCAGCTTAGCGGCGACCGCATGCGTAACCTGTCCGATTTCTGGTTACGTAAACTGATCGGTCTGGAAC




CACTGCAGCTGATCACCGATCGTCCGCGTCCGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATCGAA




CTGTCCAAGAAAGAGACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTGTACT




GGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCCAAGAA




GACCACACATGTCACCTTTGCTGCTGCTTATAAAAAGCGTGAGTTA (SEQ ID NO: 188)






7-f
TACCTGTGATCTGCGTCGTACAGCAGAGGGCATCTTAGCGGTCGCTCTTCTTGATCACCGATCGTCCGCGTC
402



CGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATCGAACTGTCCAAGAAAGAGACCGAAAACCTGCG




CGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTGTACTGGTATCTGTTTACTGTGTCATGCTGGCAAG




CTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCCAGTATCACACCGTACGCACCCGCAGTTCCAGTCTG




TTATCGGCTTTTTCGTTAACCTGGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGTTAGAAGA




GCCACACATGGCACCTTTGCTGCTGTCTTCATCGATAAATACAAA (SEQ ID NO: 189)






8-a
GAAGCACCTGTCTTATTTAACAGCAGCACCGACTAATGCAGGCTGGCATGAAAACGTTGTAAGTCTTCCTT
397



ATATGTTCTGGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCACCAGAGCGATGTTAGCGTGGGCAT




CCCAGTATCACACCGTACGCACCCGCAGTTCCAGTCTGTTATCGGCTTTTTCGTTAACCTGGTCGTTCTGCG




TGTAGATATCAGCCAGTCCGCTATTTGCGGTTTAATCCGTCGCGTCATGAAAGAACTGGTTGACGCGCAGC




TGCACCAGGATATGCCGTTCCAGGAAGTTACGAAACTGCTGCAGGTGGATAACGATCCTAGCACTGCGAA




CACATGACCCTGCGACCTGCTGAAGCCTACCCGGGAAGATCA (SEQ ID NO: 190)






8-b
TCATCCTATTACGATGCCCGCAGCAGCAAAGGTGCCATGTGTGGCTCTTTATGCCGTTCCAGGAAGTTACG
400



AAACTGCTGCAGGTGGATAACGATCCTAGCCGTCACCCGTTGGTTCAGAACGTATTTAACTTTGAGTCTCG




CGCGAACGGTGAACACGATGCCCGCTCTGAAGACGAGGGCTCTCTTGCATTCAATCAGTACCGTCCGGTTC




AGCCGGTTGACAGCGTGGCCAAATTCGATCTGAACGCCACCGTCACCGAACTGGAATCCGGTCTGCGTGTT




AATTTCAACTACGCGACCAGCTTATTCAATAAATCCACCATCCAGGGCTTCCTGCACACATATGAAAGAAG




AGGACCGCTAAGATGCCCTCTGCTGCAATAAAAAGCTTCCAACGC (SEQ ID NO: 191)






8-c
ATTTATAAGGACGGGCCAGCCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTCCAGCTTATTCAATAAATCC
400



ACCATCCAGGGCTTCCTGCACACATATGAATACCTTCTGCGTCAGCTGTCCGAACTGAGCGCTGAAGGCAT




CAACGAAGATACCCAGCTGTCACTGGTTCGCCCGACTGAGAACGGGGATCTGCACCTGCCACTGGCCCAG




TCTCCGCTCGCGACCACTGCAGAAGAACAGAAAGTTGCTTCCCTGAACCAGGCTTTCGAACGTGAAGCCTT




CCTGGCGGCGGAAAAAATCGCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACCTGAACGGTCAG




AAACCACACATGGCACCTTTGCTGCTGTACCAATACGGGGANCGTTT (SEQ ID NO: 192)






8-d
TAATCTGATCGATGCTAGGACAGCAGGTCGCAGGGTCATGTGTTCGTAGTGCGCCGTTGTTCAAGGGGACC
402



GCGCTCTGTCGTATGCCGACCTGAACGGTCAGGCTAATCAACTGGCGCGTTATATCCAGTCCGTCTCCTGC




ATCGGTGCCGACGACGGCATCGCCCTGATGCTGGAAAAGAGCATCGATACTATCATCTGCATTCTGGCAAT




CTGGAAAGCAGGCGCCGCGTATGTGCCGCTGGATCCGACCTACCCACCAGGCCGTGTACAACTGATCCTG




GAGGAAATCAAAGCGAAAGCTGTGCTGGTACACTCTTCCCACGCCTCTAAATGTGAACGTCACGGTGCCA




CTGCCAGCCTGCATTAGTCGGTGCTGCTGTTAGGAGGATTGAATCAAAA (SEQ ID NO: 193)






9-a
TAGCCCTTTTCGTATTTGCATCAGCAGCAAAGGTGCCATGTGTGGCTCTTTCCTACCCACCAGGCCGTGTAC
400



AACTGATCCTGGATGAAATCAAAGCGAAACTGTGCTGGTACACTCTTCCACGCCTCTAAATGTGAACGTCA




CGGTGCCAAAGTCATTGCAGTAGACTCTCCGGCTATTGAAACGGCAGTGAGCCAGCAGTCTGCAGCTGATC




TGCCGACCATTGCTAGCCTGGGTAATCTGGCATATATCATCTTTACTAGCGGCACTTCTGGCAAACCGAAA




GGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCGTGAGCGTTACTTCGAGAAGA




GCGACCGCTAAGATGCCCTCTGCTGTAGACTGAGTTGAACAACTA (SEQ ID NO: 194)






9-b
ATCATTGCACTTGTTGTTCGCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTATCATCTTTACTAGCGGCACT
402



TCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCGTGAGC




GTTACTTCGGTCGTGATTGTACCAAACATCACGGTGTTCTGTTCCTGAGCAACTACGTTTTCGACTTCTCCG




TAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGTTTGTGGCGGAT




GACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCTGCTTAGAAGA




GCGACCGCTAAGATGCCCTCTGCTGAAATCAGTAAAAAACCTTCC (SEQ ID NO: 195)






9-c
TTATTCGTGGATTGGTGTTCCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTTTCGACTTCTCCGTAGAACAG
402



CTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGTTTGTGGCGGATGACGAATT




CTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCTGCTTCAAAAAATCGATCT




GGCACGTCTGGATCACCTGCAGGTTGTAACCGCGGCGGGTGAGGAACTCCACGCGACCCAGTACGAAAAA




ATGCGTCGTCGTTTTAACGGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACGGTGTACAACAGAAG




AACCACACATGGCACCTTTGCTGCTGTAATCAGAACCTAGAAAAAT (SEQ ID NO: 196)






9-d
TGATTTCACCACTAAGTCTCAGCAGGTCGCAGGGTCATGTGTTCGCAGTGACGGTCCAATCTACAACGCTT
399



ATGGTGTTACCGAGACAACGGTGTACAACATCATCGCTGAATTCACCACCAACTCCATCTTCGAAAACGCA




TTACGCGAAGTCCTGCCGGGCACCCGTGCGTACGTTCTGAACGCGGCGCTGCAGCCGGTTCCATTCGACGC




TGTGGGTGAACTGTATCTGGCCGGCGATAGCGTAACCCGTGGTTACCTGAACCAGCCGTTGCTGACCGATC




AGCGTTTCATCCCTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGTCACGC




CAGCCTGCATTAGTCGGTGCTGCTGGCACGAGAAATAAAGGAGG (SEQ ID NO: 197)






9-e
TAAAGTTATCATGTGCTACCCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTACAAAACCGGCGACCTGGTT
401



CGCTCTCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGGCGACCTGCAGATTAAAA




TGCGTGGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCCCCGGGCGTACGCGAAGGT




GCGGTTGTGGCTAAATATGAAAACAACGACACGTATAGCCGTACTGCACATTCCTTAGTCGGTTATTATAC




CACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCGCGTCTGCCGACCTATAAGA




AGAGGACCGCTAAGATGCCCTCTGCTGGAGATGAATATAGGTTTACA (SEQ ID NO: 198)






9-f
GTTCATTGCATAATGCTTCTCAGCAGCACCGACTAATGCAGGCTGGAGTGTTCCATTCGACGCTGTGGGTG
399



AACTGTATCTGGCCGGCGATAGCGTAACCCGTGGTTACCTGAACCAGCCGTTGCTGACCGATCAGCGTTTC




ATAACTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGTACAAAACCGGCG




ACCTGGTTCGCTCTCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGGCGACCTGCAG




ATTAAAATGCGTGGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCCCGGGCGCATGC




GAACACATGACCCTGCGACCTGCTGCTGGATGTAAAGGGNTTTAA (SEQ ID NO: 199)






9-g
ATTGATATGTAAGAGATTTCCAGCAGCAAAGGTGCCATGTGTGGCTCTTATCGTACTGCACATTCCTTAGT
401



CGGTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCGCGTCTGC




CGACCTATATGGTGCCTTCTCACCTGTGCTGCCTGGAAGGTGCTCTGCCAGTCACTATTAACGGTAAACTG




GACGTTCGTCGTCTGCCTGAAATTATCAACGACAGTGCGCAATCCTCATATTCCCCGCCGCGCAACATTAT




CGAAGCGAAAATGTGCCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACAGA




AGAGCGACCGCTAAGATGCCCTCTGCTGAACGAAAATGGTACCTATT (SEQ ID NO: 200)






10-a
GATTACTACATTTTTCTCAACAGCAGCACCGACTAATGCAGGCTGGCAGTGAACGGTAAACTGGACGTTCG
398



TCGTCTGCCTGAAATTATCAACGACAGTGCGAATCCTCATATTCCCCGCCGCGCAACATTATCGAAGCGAA




AATGTGCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACCTCTTCAAGCTGGG




GGGGGATTCTATCACCAGTCTGCACCTCGTCGCACAGATTCACAATCAGGTGGGCTGTAAGATTACCGTGC




GCGATATTTTCGAACACCGTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGCGATCATGCG




AACACATGACCCTGCGACCTGCTGGCCCAACCCCCCCCAAAAG (SEQ ID NO: 201)






10-b
AATTGGTTACCTCTATCCCCCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTACCGTACCGCGCGTGCTCTCC
402



ACGATCACGTTTTCATGAAGGATAGCGATCGCTCTAACGTCACCCAGTTCCGTACCGAGCAGGGGCCGGTC




ATTGGCGAAGCTCCGCTGCTGCCGATCCAGGATTGGTTCTTGAGCAAAGCTCTGCAGCACCCTATGTACTG




GAACCACACGTTCTACGTACGTACCCCGGAACTGGACGTTGATTCCCTGAGTGCGGCCGTTCGTGACCTGC




AGCAGTACCACGACGTTTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCTTTGTACAGTCCTTTGAGAAG




AGCGACCGCTAAGATGCCCTCTGCTGAAATCGGATCCCAGTATGAG (SEQ ID NO: 202)






10-c
GCATAAAGCGGGAGGCTTCTCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTTTTCCGCATGCGCCTGAAAC
401



GCGAAGAAGTTGGCTTTGTACAGTCCTTTGCCGAAGACTTTTCCCCGGCGCAGCTGCGTGTACTGAACGTG




AAGGACGTGGATGGTAGCGCGGCGGTTAACGAAATCCTGGACGGTTGGCAAAGCGGCTTCAACCTGGAAA




ACGGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTTTTCTGTA




CACCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGTAAAGA




AGAACCACACATGGCACCTTTGCTGCTGGCACTATTCTATGACACAG (SEQ ID NO: 203)






10-d
TTTCGACCGATTTCAGTCTGCAGCAGGTCGCAGGGTTATGTGTTCGCAGTGCAACCTGGAAAACGGTCCGA
399



TCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTTTTCTGTACACCACATG




GCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGTAACGGTTCCCTGGGT




TCCAAAGGTTCTTCATTTCGCCAATGGGCCGAGGCAATCCAAAACTACAAAGCGAGCGACTCGGAACGTA




ACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTCCACTGGTTCCACT




ACCAGCCTGCATTAGTCGGTGCTGCTGTAATTACCGTCAAAAAA (SEQ ID NO: 204)






10-e
CTTCCTGTGGGTTTTCTACAGCAGCAAAGGTGCCATGTGTGGCTCTTCTTCCAAAACTACAAAGCGAGCGA
400



CTCGGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTCCA




CTGGTTCTCGCGTACGTCTCTCCCGTTCTCTGTCTCCTGAAAAAACTGCTTCTCTGATCCAGGGTGGCATCG




ATCGTCAGGATGTAAGCGTATACGATTCTCTGCTGACTTCTGTTGGCCTGGCTTTGCAACACATCGCGCCG




ACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGACCAGACCCTGGATGAGAAGA




GCGACCGCTAAGATGCCCTCTGCTGAATACGCGAATGATGTAAAA (SEQ ID NO: 205)






10-f
TTTTTGAGCTACGCTTTCGGCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTACTTCTGTTGGCCTGGCTTTG
399



CAACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGACCAGA




CCCTGGATGTTTCTCGTACGATGGGCTGGTTCACTACCATGTATCCGTTCGAAATCCCGCGTCTGTCGACGG




AAAACATCGTGCAGGGTGTTGTTGCTGTAAGTGAACGCTTCCGCCAAGTTCCGGCTCGCGGTGTTGGTTAT




GGTACTCTGTACGGTTACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGCTGAGAAG




GACCGCTAAGATGCCCTCTGCTGCTGAAAGTAGAATGTATTGA (SEQ ID NO: 206)






11-a
GTCAGTAGTATACCGTTCGTCAGCAGAGGGCATCTTAGCGGTCGCTCTTCTACACCCAGCACCCTCTGCCG
401



CAGGTTACTGTTAACTACCTGGGCCAGCTGGCTCGTAAACAGAGCAAGCCGAAAGAATGGGTTCTGGCAG




TTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAAGGACCGTTCGAGCTCCGCAGTG




GATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACTCGGCTTGGTCTTTGGAAGAATC




TGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGACGGTCGTGCATCCCAGCAGAAG




AAAGCCACACATGGCACCTTTGCTGCTGAGGAAGGCAATCTTAGATCG (SEQ ID NO: 207)






11-b
TTCTGCAGAACGTTTTTGTAACAGCAGCAAAGGTGCCATGTGTGGCTCTTCTGCTCGTAAACAGAGCAAGC
403



CGAAAGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAA




GGACCGTTCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACT




CGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGAC




GGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCCATACA




GAAGAGTGACCGCTAAGATGCCCTCTGCTGGATGGGCCATAATACCGTCG (SEQ ID NO: 208)






11-c
ATCTTTTATGTACTTTGTGACAGCAGAGGGCATCTTAGCGGTCGCTCTTCTGATGTGGACTCGGCTTGGTCT
402



TTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGACGGTCGTGCATC




CCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCCATACTTCGAATATCTGG




AACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAATCTTACTTCAAC




AACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCACTCCAAAAGAAG




AGCCACACATGGCACCTTTGCTGCTGACACTAAAAGTGTTGAAAAA (SEQ ID NO: 209)






11-d
TAATTTCCTGTGCAACTCAGCAGCAAAGGTGCCATGTGTGGCTCTTCTTTCGAATATCTGGAACCGCCGCG
398



CCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAATCTTACTTCAACAACATCGTCA




AACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCACTCCAAACGTCTGCGCACCTTC




GAGGAACTGGCTGAAATGTATCTGGACCAGGTACGCGGCATCCAACCGCACGGTCCATACCACTTCATCG




GCTGGAGCTTCGGGGGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTTGCGAGC GACGAAAAAGAAGA




GCGACCGCTAAGATGCCCTCTGCTGACCCAAAGAAATAAACAAGA (SEQ ID NO: 210)






11-e
ATGTATCCTCGCTCTTTAACCAGCATCACCGACTAATGCAGGCTGGCAGTGGCATTCTGGCGATGGAGATG
379



TCCCGTCGTCTGGTTGCGAGCGACGAAAAATTGGTTTCTGGGTATTATCGACACCTATTTCAACGTACGTG




GTGCCACTCGCACCATTGGCCTTGGTGATACTGAAATCCTGGATCCGATCCACCACATCTATAACCCGGAC




CCGGCAAACTTTCAGCGTCTGCCGTCTGCCACCGACCGTATCGTCCTGTTTAAGGCCATGCGTCCGAATAA




TAAATATGAATCAGAAACCAGCGTCGCCTGTATGAGTACTACGACACTGCGAACACATGACCCTGCGACC




TGCTGAGTAATAATCAAACCGGGTG (SEQ ID NO: 211)






11-f
CTAACGCATTGTCAGGTTTCCAGCAGCACCGACTAATGCAGGCTGGCAGTGCGTATCGTCCTGTTTAAGGC
392



CATGCGTCCGAATAATAAATATGAATCAGAAAACCAGCGTCGCCCTACGACGCGTTAGATTCCACGGACT




GGACCGCATGTTACCAGGCGATCCCTACCTCCTCATGGTCGCGCCTGCGCACGATCCACACCTTCCCGGGT




TCGGAAATCCACAACCGCTGGTCCCGTTGCGTTCGTCTGAGCCGTAACACCAGCCTTGCCATCGACCCGTC




TCTGGCAGCTCAGTACATCGGTCGTTGGAAGTAAGCAGAGTAAAGACCGTGCACTTATCACTGGAACACA




TGACCCTGCGACCTGCTGTTCTACACTGGTATCCGGAGT (SEQ ID NO: 212)









The desired PCR amplification products were electrophoresed through an agarose gel to excise bands of the desired size, and DNA was purified using a gel purification kit (AccuPrep™, Bioneer, Korea). For the construction of ˜1,000 bp DNA sequence, 3-8 gel-purified gene fragments were pooled. For each pool, restriction enzyme digestion was carried out as follows: when EarI or EcoP15I was used, 2 μl EarI or EcoP15I, 5 μl NEB buffer, 0.5 μl 100×BSA, 10 μl water, and 30 μl purified (and pooled) DNA fragments were mixed, followed by digestion at 37° C. for 3 h (for EcoP15I, 10 ATP was further added); and when BtsI was used, 2 μl BtsI, 5 μl NEB buffer, 0.5 μl 100×BSA, 10 μl water, and 30 μl PCR products were mixed, followed by digestion at 55° C. for 3 h. The restriction digest products were electrophoresed through 1.5% agarose gels to obtain expected bands (daughter fragments, 300 bp; FIG. 8h). The expected DNA fragment sequences after digestion (products obtained after Type IIS restriction enzyme digestion or error-correction PCR) are listed in Table 3.









TABLE 3







Sequences of daughter fragments obtained after Type IIS


restriction enzyme digestion or nested PCR









Frag-




ment




(Daugh-

Ex-


ter

pected


frag-

length


ment)
Sequence (5′ → 3′)
(bp)





1-a
ATGACCCAATTGAAGCCGCCTAACGGGACCACTCCGATCGGCTTCAGCGCCACTACTAGCCTGAACGCTA
298



GCGGCTCTTCCTCGGTTAAGAATGGTACCATCAAGCCTTCGAATGGTATCTTCAAACCTTCTACTCGTGAC




ACCATGGACCCGTGCTCGGGCAACGCCGCTGACGGCTCCATTCGCGTACGTTTTCGCGGTGGCATCGAAC




GTTGGAAAGAGTGTGTAAACCAAGTGCCGGAGCGTTGCGACCTGTCTGGTCTGACCACGGACAGCACCCG




CTACCAGCTGGCTTCGA (SEQ ID NO: 213)






1-b
CTGTCTGGTCTGACCACGGACAGCACCCGCTACCAGCTGGCTTCGACCGGCTTCGGCGACGCGAGCGCGG
298



CTTACCAGGAACGTCTGATGACTGTGCCGGTAGATGTTCATGCTGCGCTCCAGGAGCTGTGCCTGGAACGC




CGCGTCTCTGTGGGTTCTGTGATCAACTTCAGCGTTCACCAGATGCTGAAGGGTTTTGGCAACGGTACTCA




CACTATCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTTCCCCTA




CTATCGTGACCCATG (SEQ ID NO: 214)






1-c
AACGGTACTCACACTATCACCGCGAGCCTGCACCGCGAACAGAATCTGCAGAACTCCTCTCCGTCTTGGGT
297



CGTTTCCCCTACTATCGTGACCCATGAAAACCGCGATGGCTGGTCAGTGGCGCAGGCAGTGGAGTCTATC




GAGGCTGGTCGTGGCTCCGAAAAGGAATCTGTGACCGCGATTGATTCCGGCTCCTCCCTGGTCAAAATGG




GTCTGTTCGATCTGCTGGTTTCCTTCGTCGATGCGGATGACGCGCGTATCCCTTGCTTCGACTTTCCGCTGG




CTGTTATTGTGCGC (SEQ ID NO: 215)






1-d
TGACGCGCGTATCCCTTGCTTCGACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCT
166



CACCCTTCGCTTCTCGGACTGCCTGTTCAACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCC




TGTTGGCTGAGGCAGTTATCGGT (SEQ ID NO: 216)






1-e
ACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTGGCTGAGGCAGTTATCGGTCGTGTA
178



ACTCCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAACAGCTGGAGGAATGGAACAACACC




GATGGTGAATATCCGTCTAGCAAGCGTCTGCACCACCT (SEQ ID NO: 217)






2-a
GTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACGTCACGAAGACAAAAT
 98



CGCTGTGGTGTGCGACGAACGTGAACTG (SEQ ID NO: 218)






2-b
TCACGAAGACAAAATCGCTGTGGTGTGCGACGAACGTGAACTGACTTACGGTGAACTCAATGCCCAGGGC
297



AACTCCCTGGCGCGTTACCTGCGCAGCATTGGTATTCTGCCTGAACAGCTGGTTGCGCTGTTTCTGGACAA




ATCCGAAAAATTGATCGTAACCATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGA




CCTACCCTGACGAACGTGTTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAG




CATGTTGAACGCCT (SEQ ID NO: 219)






2-c
TGATCGTAACCATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCCTGAC
297



GAACGTGTTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACG




CCTCCAGCGTGAAGTAATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTG




CGCAGGATTCTTCTAAATTCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTAC




GTTACTTATACCA (SEQ ID NO: 220)






2-d
AGCGTGAAGTAATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGCA
297



GGATTCTTCTAAATTCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTTA




CTTATACCAGCGGTACCACCGGCTTTCCGAAAGGCATTTTCAAACAGCACACTAACGTTGTTAACTCCATC




ACAGACCTGTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCGT




TTTCGAACCGTTCG (SEQ ID NO: 221)






2-e
GTTAACTCCATCACAGACCTGTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTT
281



CAGTGCTTGCGTTTTCGAACCGTTCGTTCGTCAGACTCTGATGGCCCTGGTGAACGGTCACCTGCTCGCCG




TGATTAACGATGTAGAAAAATATGACGCTGACACCCTCCTCCCATTTATCCGCCGTCACTCTATCACCTAT




CTGAACGGTACTGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCAT




(SEQ ID NO: 222)






2-f
CTATCACCTATCTGAACGGTACTGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAAC
295



CGTATCATCCTGGTGGGCGAGAACCTGACCGAAGCACGTTACCTGGCACTGCGTCAGCGTTTCAAAAATC




GTATTCTGAACGAGTACGGTTTCACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGC




ACCCGCAAAGATACCTCCCTGGGGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAA




ACGCGTGCCAAT (SEQ ID NO: 223)






2-g
ACGAGTACGGTTTCACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAA
297



AGATACCTCCCTGGGGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGC




CAATTGGTGCTACAGGTGAGCTGCATATTGGCGGCCTGGGTATCTCCAAGGGTTACTTGAATCGTCCGGAA




CTGACGCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCT




GATGTACAAAACCG (SEQ ID NO: 224)






3-a
ATCGTCCGGAACTGACGCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGG
297



TATCAACTCTCTGATGTACAAAACCGGTGATCTGGCTCGCTGGCTCCCGAACGGTGAAGTTGAATACCTGG




GCCGTGCGGATTTCCAGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGC




GATGTATCCGCGCGTTCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACG




AACGAACACCTGGTAG (SEQ ID NO: 225)






3-b
CGGATTTCCAGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGCGATGTA
297



TCCGCGCGTTCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACGAACGAA




CACCTGGTAGGCTACTACGTATGCGACTCCGCATCTGTTTCCGAAGCGGATCTGCTGTCCTTCCTGGAGAA




GAAGCTGCCGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTCAACGGTA




AAGCCGATCTGCGTG (SEQ ID NO: 226)






3-c
TTCCTGGAGAAGAAGCTGCCGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAA
298



CGTCAACGGTAAAGCCGATCTGCGTGCTCTGCCGGCGGTTGATATCTCCAACAGCACCGAAGTTCGTTCTG




ATCTGCGTGGTGATACCGAAATTGCCCTCGGCGAAATCTGGGCGGACGTGCTGGGCGCGCGTCAGCGTTC




GGTTAGCCGTAACGATAACTTTTTCCGCCTCGGTGGCCACTCTATCACCTGCATCCAGCTGATTGCGCGTA




TCCGTCAGCGTCAGC (SEQ ID NO: 227)






4-a
ACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGCGTTTGTCTGTGTCTATCTCTGTGGAAGACGT
307



GTTTGCTACACGCACTCTTGAGCGTATGGCCGACCTGTTGCAAAACAAACAGCAAGAGAAATGCGACAAA




CCACACGAAGCACCGACTGAACTGCTTGAAGAAAACGCTGCGACTGATAACATCTACCTGGCGAACAGCC




TGCAGCAAGGTTTCGTCTACCATTACCTGAAAAGCATGGAACAAAGTGATGCTTATGTAATGCAGAGCGT




TCTGCGTTACAACACCACCCTTTCCC (SEQ ID NO: 228)






4-b
CATGGAACAAAGTGATGCTTATGTAATGCAGAGCGTTCTGCGTTACAACACCACCCTTTCCCCGGATCTGT
159



TCCAGCGTGCCTGGAAACACGCGCAGCAAAGCTTCCCGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGA




AGTCTTCCAGCTGCTGGA (SEQ ID NO: 229)






4-c
AAAGCTTCCCGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCG
150



CCTCTGGACTGGCGTTTCCTCTACTTCACTGATGTGGCGGCTGGTGCAGTAGAAGACCGTAAACTGGAAGA




TTTACGCC (SEQ ID NO: 230)






4-d
CTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCGCCAGGACCTCACCGAGCGTTTTAAACTGGA
188



TGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCGAAAACCGTTTCACTTGTCTGTTCTCTTGTCA




CCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCGAAAAA (SEQ ID NO: 231)






4-e
CGTTTACCTGATCAAACACAGCGAAAACCGTTTCACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACG
300



GCTGGTCCTTACCGCTTCTGTTCGAAAAAGTACACGAAACATACCTGCAACTGCTGCACGGCGATAACCTG




ACCTCCTCTATGGATGATCCATACACCCGTACCCAACGCTACCTGCATGCGCACCGCGAAGATCACCTCGA




CTTTTGGGCTGGCGTGGTGCAGAAAATCAACGAACGTTGCGATATGAATGCTCTGTTAAACGAACGCAGC




CGCTATAAAGTGCAGCT (SEQ ID NO: 232)






4-f
TGCTCTGTTAAACGAACGCAGCCGCTATAAAGTGCAGCTGGCCGACTACGATCAGGTACAGGAACAGCGT
240



CAGCTGACGATCGCTCTGAGCGGTGACGCGTGGCTGGCGGATCTGCGCCAGACATGCAGTGCGCAGGGCA




TCACGCTGCACTCTATCCTGCAATTTGTATGGCATGCAGTTCTGCATGCCTACGGTGGCGGTACTCACACT




ATCACTGGCACCACTATTTCTGGTCGCAA (SEQ ID NO: 233)






5-a
ACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCAACCTCCCGATCCTGGGTATCGAG
282



CGTGCGGTAGGCCCGTACATTAACACCCTGCCGTTAGTGTTGGACCATTCTACTTTTAAAGACAAGACGAT




CATGGAAGCTATTGAAGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGT




CGCCTGCACAAAACCGACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACC




(SEQ ID NO: 234)






5-b
GCTATTGAAGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGTCGCCTGC
298



ACAAAACCGACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCTGGATAAA




TCCCGTACTCTGGAGCACCAAACTGAACTGGGTTACTCCATCGAGGGTGGTACCGAAAAACTGAACTATC




CGCTGGCGGTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGCGAGCGAA




CTGTTTGAAGAGGTGA (SEQ ID NO: 235)






5-c
AACTGAACTATCCGCTGGCGGTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGC
298



TATGCGAGCGAACTGTTTGAAGAGGTGATGATCAGCGAGCTTCTCCATATGGTACAGGATACCCTGATGC




AGGTTGCACGCGGGCTCAACGAACCTGTGGGCTCCCTGGAATACCTGTCTTCCATCCAGTTAGAGCAGCTG




GCAGCGTGGAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCA




TCTCAAAAGCCGGATAA (SEQ ID NO: 236)






5-d
TTAGAGCAGCTGGCAGCGTGGAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCG
298



AGAACGAAGCATCTCAAAAGCCGGATAAAATTGCAGTCGTGTACGAAGAAACCTCTCTGACCTATCGCGA




GCTGAACGAACGTGCCAATCGCATGGCGCACCAGCTGCGTTCCGACGTTTCTCCGAACCCGAACGAAGTG




ATCGCGCTGGTTATGGACAAGAGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCG




CATACGTGCCGATCGATC (SEQ ID NO: 237)






5-e
GAGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGATCCG
268



GGCTACCCGAATGACCGTATTCAGTATATCCTCGAGGACACTCAGGCGTTGGCTGTTATCGCAGATTCTTG




TTACCTGCCTCGTATCAAAGGTATGGCCGCGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACC




CAGACAGCAAATGGTCTGTGTCAAACCCGTCGCCGCTGTCTCGTAGCACCGACCTG




(SEQ ID NO: 238)






5-f
CGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCAAACCCAGACAGCAAATGGTCTGTGTCAAACCCG
297



TCGCCGCTGTCTCGTAGCACCGACCTGGCATACATCATCTACACCTCTGGCACCACCGGCCGCCCGAAAGG




CGTGACTGTGGAGCATCACGGTGTGGTGAACCTGCAGGTATCCCTGAGCAAAGTTTTTGGTCTGCGTGACA




CCGACGACGAAGTCATCCTGTCTTTTTCTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCT




ATCCTGAACGGGC (SEQ ID NO: 239)






6-a
CTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGCAGACGCTGCTGGTT
260



CTGAACGATGGTATGCGTGGTGACAAAGAACGCCTGTACCGCTACATCGAAAAGAACCGTGTAACTTATC




TGTCTGGTACTCCATCTGTGGTGTCTATGTATGAGTTCAGCCGTTTCAAAGACCACCTGCGCCGCGTCGAT




TGCGTCGGTGAAGCTTTCAGCGAGCCGGTCTTCGACAAAATCCGTGAA (SEQ ID NO: 240)






6-b
ACCTTCCACGGTTTGGTTATCAATGGTTATGGCCCAACTGAAGTTAGCATCACTACCCATAAGCGTTTATA
192



CCCTTTCCCAGAGCGCCGCATGGATAAGTCGATCGGCCAGCAGGTCCACAACTCTACTAGCTACGTACTG




AATGAAGATATGAAGCGTACCCCGATCGGTGCTGTGGGTGAGCTGTACCTG (SEQ ID NO: 241)






6-c
TGAATGAAGATATGAAGCGTACCCCGATCGGTGCTGTGGGTGAGCTGTACCTGGGCGGTGAAGGTGTTGT
259



CCGCGGTTATCATAATCGTGCGGATGTTACCGCCGAGCGCTTCATCCCGAACCCGTTCCAGTCTGAGGAAG




ATAAACGTGAAGGCCGTAACAGTCGCCTGTACAAGACGGGTGATCTGGTTCGCTGGATCCCGGGTAGCTC




CGGCGAAGTCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTCG (SEQ ID NO: 242)






6-d
CGAAGTCGAATACCTGGGTCGCAATGACTTCCAGGTTAAGATTCGCGGCCTCCGTATCGAGCTGGGTGAA
297



ATCGAAGCGATCCTGAGCAGCTACCACGGCATTAAACAGAGCGTAGTGATCGCAAAAGACTGCCGTGAG




GGGGCACAGAAATTCCTGGTCGGCTATTACGTTGCAGACGCTGCCCTGCCGTCCGCAGCGATCCGTCGTTT




CATGCAGTCGCGCCTCCCGGGTTACATGGTTCCGTCCCGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCC




GTCCGGGAAGCTGGA (SEQ ID NO: 243)






6-e
CGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCCGTCCGGGAAGCTGGACACCAAAGCACTGCCGCCGGC
297



GGAGGAAGAAAGCGAAATCGACGTTGTTCCACCGCGCTCCGAAATTGAGCGTTCTCTCTGCGACATCTGG




GCTGAACTGCTGGAAATGCACCCGGAAGAAATCGGCATTTACTCTGACTTCTTCTCCTTGGGCGGCGACAG




CCTGAAATCTACTAAGTTATCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATT




CTGCCATCGCACA (SEQ ID NO: 244)






7-a
TCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTGA
150



AGCTCAAACTCACCTGATCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGAC




ACCCAGATG (SEQ ID NO: 245)






7-b
GAAGCTCAAACTCACCTGATCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACG
297



ACACCCAGATGATCCCGGTTTCCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCT




AACGCTTACAACATTGACGCGGCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCC




TTCGTGGCAACCTGGCACGTCACGAAGCACTGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTAC




CTGCAGAAAGTACTG (SEQ ID NO: 246)






7-c
AGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAACGCTTACAACATTGACGCGGCTTTCGAA
297



CTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTCGTGGCAACCTGGCACGTCACGAAGCAC




TGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCTGCAGAAAGTACTGAGTCCGGACGAAGC




GCAAGGTATGTTTTCTGTTAATGTAGATACTGCTAAACAGGTTGAACGTCTGGATCAGGAAATTGCTTCTC




TGTCTCAGCACGTCT (SEQ ID NO: 247)






7-d
TTGAACGTCTGGATCAGGAAATTGCTTCTCTGTCTCAGCACGTCTTCCGCCTGGACGACGAACTGCCGTGG
298



GAGGCGCGCATCCTGAAACTGGAATCTGGCGGTCTGTACCTGATCTTGGCCTTCCACCACACCTGCTTCGA




TGCATGGAGCCTGAAAGTTTTCGAACAGGAGCTGCGCGCGCTGTACGCAGCGCTTCAGAAAACGAAATCT




GCAGCGAACTTACCGGCATTAAAAGCACAGTATAAGGAATACGCTCTGTACCACCGCCGCCAGCTTAGCG




GCGACCGCATGCGTAA (SEQ ID NO: 248)






7-e
AATACGCTCTGTACCACCGCCGCCAGCTTAGCGGCGACCGCATGCGTAACCTGTCCGATTTCTGGTTACGT
295



AAACTGATCGGTCTGGAACCACTGCAGCTGATCACCGATCGTCCGCGTCCGGTTCAGTTCAAATACGACG




GTGACGATCTGAGCATCGAACTGTCCAAGAAAGAGACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAA




GTCTTCCTTATATGTTGTACTGGTATCTGTTTACTGTGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGT




TAGCGTGGGCAT (SEQ ID NO: 249)






7-f
TGATCACCGATCGTCCGCGTCCGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATCGAACTGTCCAA
297



GAAAGAGACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTGTACTGGTATCTG




TTTACTGTGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCCAGTATCACACCGT




ACGCACCCGCAGTTCCAGTCTGTTATCGGCTTTTTCGTTAACCTGGTCGTTCTGCGTGTAGATATCAGCCAG




TCCGCTATTTGCG (SEQ ID NO: 250)






8-a
GGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGTTTAATCCGTCGCGTCATGAAAGAACTGG
127



TTGACGCGCAGCTGCACCAGGATATGCCGTTCCAGGAAGTTACGAAACTGCTGCAG




(SEQ ID NO: 251)






8-b
GCCGTTCCAGGAAGTTACGAAACTGCTGCAGGTGGATAACGATCCTAGCCGTCACCCGTTGGTTCAGAAC
298



GTATTTAACTTTGAGTCTCGCGCGAACGGTGAACACGATGCCCGCTCTGAAGACGAGGGCTCTCTTGCATT




CAATCAGTACCGTCCGGTTCAGCCGGTTGACAGCGTGGCCAAATTCGATCTGAACGCCACCGTCACCGAA




CTGGAATCCGGTCTGCGTGTTAATTTCAACTACGCGACCAGCTTATTCAATAAATCCACCATCCAGGGCTT




CCTGCACACATATGAA (SEQ ID NO: 252)






8-c
CCAGCTTATTCAATAAATCCACCATCCAGGGCTTCCTGCACACATATGAATACCTTCTGCGTCAGCTGTCC
296



GAACTGAGCGCTGAAGGCATCAACGAAGATACCCAGCTGTCACTGGTTCGCCCGACTGAGAACGGGGATC




TGCACCTGCCACTGGCCCAGTCTCCGCTCGCGACCACTGCAGAAGAACAGAAAGTTGCTTCCCTGAACCA




GGCTTTCGAACGTGAAGCCTTCCTGGCGGCGGAAAAAATCGCCGTTGTTCAAGGGGACCGCGCTCTGTCG




TATGCCGACCTGAAC (SEQ ID NO: 253)






8-d
GCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACCTGAACGGTCAGGCTAATCAACTGGCGCGTT
299



ATATCCAGTCCGTCTCCTGCATCGGTGCCGACGACGGCATCGCCCTGATGCTGGAAAAGAGCATCGATAC




TATCATCTGCATTCTGGCAATCTGGAAAGCAGGCGCCGCGTATGTGCCGCTGGATCCGACCTACCCACCAG




GCCGTGTACAACTGATCCTGGAGGAAATCAAAGCGAAAGCTGTGCTGGTACACTCTTCCCACGCCTCTAA




ATGTGAACGTCACGGTGC (SEQ ID NO: 254)






9-a
CCTCTAAATGTGAACGTCACGGTGCCAAAGTCATTGCAGTAGACTCTCCGGCTATTGAAACGGCAGTGAG
225



CCAGCAGTCTGCAGCTGATCTGCCGACCATTGCTAGCCTGGGTAATCTGGCATATATCATCTTTACTAGCG




GCACTTCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCG




TGAGCGTTACTTCG (SEQ ID NO: 255)






9-b
ATCTTTACTAGCGGCACTTCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGC
297



GCGACGCCCTGCGTGAGCGTTACTTCGGTCGTGATTGTACCAAACATCACGGTGTTCTGTTCCTGAGCAAC




TACGTTTTCGACTTCTCCGTAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCG




GCGGAGTTTGTGGCGGATGACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCAC




CCCGAGCCTGCTT (SEQ ID NO: 256)






9-c
TTCGACTTCTCCGTAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGA
297



GTTTGTGGCGGATGACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGA




GCCTGCTTCAAAAAATCGATCTGGCACGTCTGGATCACCTGCAGGTTGTAACCGCGGCGGGTGAGGAACT




CCACGCGACCCAGTACGAAAAAATGCGTCGTCGTTTTAACGGTCCAATCTACAACGCTTATGGTGTTACCG




AGACAACGGTGTAC (SEQ ID NO: 257)






9-d
GGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACGGTGTACAACATCATCGCTGAATTCACCACCA
298



ACTCCATCTTCGAAAACGCATTACGCGAAGTCCTGCCGGGCACCCGTGCGTACGTTCTGAACGCGGCGCT




GCAGCCGGTTCCATTCGACGCTGTGGGTGAACTGTATCTGGCCGGCGATAGCGTAACCCGTGGTTACCTGA




ACCAGCCGTTGCTGACCGATCAGCGTTTCATCCCTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGG




TCGTTTCGCTCGTCTGT (SEQ ID NO: 258)






9-e
AAACCGGCGACCTGGTTCGCTCTCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGG
297



CGACCTGCAGATTAAAATGCGTGGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCC




CCGGGCGTACGCGAAGGTGCGGTTGTGGCTAAATATGAAAACAACGACACGTATAGCCGTACTGCACATT




CCTTAGTCGGTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCG




CGTCTGCCGACCTATA (SEQ ID NO: 259)






9-f
CTAACCCGTTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGTACAAAACCGGCGACCT
104



GGTTCGCTCTCGCTTCAACCGCCAGCAGCAGCCG (SEQ ID NO: 260)






9-g
TACTGCACATTCCTTAGTCGGTTATTATACCACTGATAACGAAACAGTTTCAGAAGCTGATATCCTCACCT
298



TCATGAAAGCGCGTCTGCCGACCTATATGGTGCCTTCTCACCTGTGCTGCCTGGAAGGTGCTCTGCCAGTC




ACTATTAACGGTAAACTGGACGTTCGTCGTCTGCCTGAAATTATCAACGACAGTGCGCAATCCTCATATTC




CCCGCCGCGCAACATTATCGAAGCGAAAATGTGCCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGC




GGTATTGACGATGAC (SEQ ID NO: 261)






10-a
CGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACCTCTTCAAGCTGGGGGGGG
198



ATTCTATCACCAGTCTGCACCTCGTCGCACAGATTCACAATCAGGTGGGCTGTAAGATTACCGTGCGCGAT




ATTTTCGAACACCGTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGC




(SEQ ID NO: 262)






10-b
GTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGCGATCGCTCTAACGTCACCCAGTTCCGT
297



ACCGAGCAGGGGCCGGTCATTGGCGAAGCTCCGCTGCTGCCGATCCAGGATTGGTTCTTGAGCAAAGCTC




TGCAGCACCCTATGTACTGGAACCACACGTTCTACGTACGTACCCCGGAACTGGACGTTGATTCCCTGAGT




GCGGCCGTTCGTGACCTGCAGCAGTACCACGACGTTTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCT




TTGTACAGTCCTTTG (SEQ ID NO: 263)






10-c
TTTCCGCATGCGCCTGAAACGCGAAGAAGTTGGCTTTGTACAGTCCTTTGCCGAAGACTTTTCCCCGGCGC
298



AGCTGCGTGTACTGAACGTGAAGGACGTGGATGGTAGCGCGGCGGTTAACGAAATCCTGGACGGTTGGCA




AAGCGGCTTCAACCTGGAAAACGGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCC




GCACGTGTGTGGTTTTCTGTACACCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTG




CAGACTCTGTACCGT (SEQ ID NO: 264)






10-d
ACCTGGAAAACGGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTG
298



GTTTTCTGTACACCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTA




CCGTAACGGTTCCCTGGGTTCCAAAGGTTCTTCATTTCGCCAATGGGCCGAGGCAATCCAAAACTACAAA




GCGAGCGACTCGGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGC




CGACCTCCACTGGTTC (SEQ ID NO: 265)






10-e
AAAACTACAAAGCGAGCGACTCGGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGAT
297



CAGCGCGCTGCCGACCTCCACTGGTTCTCGCGTACGTCTCTCCCGTTCTCTGTCTCCTGAAAAAACTGCTTC




TCTGATCCAGGGTGGCATCGATCGTCAGGATGTAAGCGTATACGATTCTCTGCTGACTTCTGTTGGCCTGG




CTTTGCAACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGA




CCAGACCCTGGATG (SEQ ID NO: 266)






10-f
TTCTGTTGGCCTGGCTTTGCAACACATCGCGCCGACTGGCCCGTCTATGGTTACAATCGAGGGTCACGGCC
298



GCGAAGAAGTTGACCAGACCCTGGATGTTTCTCGTACGATGGGCTGGTTCACTACCATGTATCCGTTCGAA




ATCCCGCGTCTGTCGACGGAAAACATCGTGCAGGGTGTTGTTGCTGTAAGTGAACGCTTCCGCCAAGTTCC




GGCTCGCGGTGTTGGTTATGGTACTCTGTACGGTTACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACT




ACCTGGGCCAGCTG (SEQ ID NO: 267)






11-a
ACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGCTGGCTCGTAAACAGAGCAAGCC
297



GAAAGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAAG




GACCGTTCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACT




CGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGA




CGGTCGTGCATCCCAGC (SEQ ID NO: 268)






11-b
CGTAAACAGAGCAAGCCGAAAGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGA
297



CCTCCCCGGAGGATAAGGACCGTTCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGAT




GATCATCGATGTGGACTCGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTC




TGAACAAAATCCTGGACGGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGA




GACCTACACCCCATAC (SEQ ID NO: 269)






11-c
GATGTGGACTCGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACA
297



AAATCCTGGACGGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTA




CACCCCATACTTCGAATATCTGGAACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAG




GTGGTGCGGAATCTTACTTCAACAACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAAC




TACTACCTGCACTCC (SEQ ID NO: 270)






11-d
GAATATCTGGAACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGGAAT
296



CTTACTTCAACAACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTGCAC




TCCAAACGTCTGCGCACCTTCGAGGAACTGGCTGAAATGTATCTGGACCAGGTACGCGGCATCCAACCGC




ACGGTCCATACCACTTCATCGGCTGGAGCTTCGGGGGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTT




GCGAGCGACGAAAA (SEQ ID NO: 271)






11-e
GGCATTCTGGCGATGGAGATGTCCCGTCGTCTGGTTGCGAGCGACGAAAAAATTGGTTTTCTGGGTATTAT
282



CGACACCTATTTCAACGTACGTGGTGCCACTCGCACCATTGGCCTTGGTGATACTGAAATCCTGGATCCGA




TCCACCACATCTATAACCCGGACCCGGCAAACTTTCAGCGTCTGCCGTCTGCCACCGACCGTATCGTCCTG




TTTAAGGCCATGCGTCCGAATAATAAATATGAATCAGAAAACCAGCGTCGCCTGTATGAGTACTACGAC




(SEQ ID NO: 272)






11-f
CTACGACGCGTTAGATTCCACGGACTGGACCGCATGTTACCAGGCGATCCCTACCTCCTCATGGTCGCGCC
202



TGCGCACGATCCACACCTTCCCGGGTTCGGAAATCCACAACCGCTGGTCCCGTTGCGTTCGTCTGAGCCGT




AACACCAGCCTTGCCATCGACCCGTCTCTGGCGGCTCAGTACATCGGTCGTTGGAAGTAA




(SEQ ID NO: 273)









Nested PCR for 1 kb DNA Synthesis Using Flanking Sequence Removed Shotgun Assembly Products


The flanking sequence removed shotgun assembly products were assembled to make 11 gene cluster fragments (645-1,325 bp). The target DNA sequences are listed in Table 4.









TABLE 4







Sequences of 11 gene cluster fragments prepared by the


methods of the present disclosure











Ex-




pected


Frag-
Targeted sequence after restriction enzyme or nested PCR
length


ment
(5′ → 3′)
(bp)





 1
ATGACCCAATTGAAGCCGCCTAACGGGACCACTCCGATCGGCTTCAGCGCCACTACTAGCCTGAACGCTA
 980



GCGGCTCTTCCTCGGTTAAGAATGGTACCATCAAGCCTTCGAATGGTATCTTCAAACCTTCTACTCGTGAC




ACCATGGACCCGTGCTCGGGCAACGCCGCTGACGGCTCCATTCGCGTACGTTTTCGCGGTGGCATCGAAC




GTTGGAAAGAGTGTGTAAACCAAGTGCCGGAGCGTTGCGACCTGTCTGGTCTGACCACGGACAGCACCCG




CTACCAGCTGGCTTCGACCGGCTTCGGCGACGCGAGCGCGGCTTACCAGGAACGTCTGATGACTGTGCCG




GTAGATGTTCATGCTGCGCTCCAGGAGCTGTGCCTGGAACGCCGCGTCTCTGTGGGTTCTGTGATCAACTT




CAGCGTTCACCAGATGCTGAAGGGTTTTGGCAACGGTACTCACACTATCACCGCGAGCCTGCACCGCGAA




CAGAATCTGCAGAACTCCTCTCCGTCTTGGGTCGTTTCCCCTACTATCGTGACCCATGAAAACCGCGATGG




CTGGTCAGTGGCGCAGGCAGTGGAGTCTATCGAGGCTGGTCGTGGCTCCGAAAAGGAATCTGTGACCGCG




ATTGATTCCGGCTCCTCCCTGGTCAAAATGGGTCTGTTCGATCTGCTGGTTTCCTTCGTCGATGCGGATGAC




GCGCGTATCCCTTGCTTCGACTTTCCGCTGGCTGTTATTGTGCGCGAGTGCGATGCAAACCTGTCTCTCACC




CTTCGCTTCTCGGACTGCCTGTTCAACGAGGAAACCATTTGTAATTTCACGGATGCCCTCAATATCCTGTTG




GCTGAGGCAGTTATCGGTCGTGTAACTCCGGTAGCCGATATCGAGCTGCTGTCTGCAGAGCAGAAACAAC




AGCTGGAGGAATGGAACAACACCGATGGTGAATATCCGTCTAGCAAGCGTCTGCACCACCT




(SEQ ID NO: 274)






 2
GTGAATATCCGTCTAGCAAGCGTCTGCACCACCTGATTGAAGAGGTGGTGGAACGTCACGAAGACAAAAT
1203



CGCTGTGGTGTGCGACGAACGTGAACTGACTTACGGTGAACTCAATGCCCAGGGCAACTCCCTGGCGCGT




TACCTGCGCAGCATTGGTATTCTGCCTGAACAGCTGGTTGCGCTGTTTCTGGACAAATCCGAAAAATTGAT




CGTAACCATCCTGGGCGTCTGGAAATCCGGTGCTGCTTACGTGCCAATTGACCCGACCTACCCTGACGAAC




GTGTTCGTTTCGTTCTGGACGACACGAAAGCCCGTGCGATTATCGCTTCCAATCAGCATGTTGAACGCCTC




CAGCGTGAAGTAATCGGTGATCGCAACCTGTGCATCATCCGTCTCGAACCACTGCTGGCGAGCCTTGCGC




AGGATTCTTCTAAATTCCCTGCCCACAACCTGGATGATTTGCCGCTGACCAGCCAGCAGCTGGCGTACGTT




ACTTATACCAGCGGTACCACCGGCTTTCCGAAAGGCATTTTCAAACAGCACACTAACGTTGTTAACTCCAT




CACAGACCTGTCCGCTCGTTACGGTGTTGCAGGTCAACACCATGAAGCTATCCTGCTCTTCAGTGCTTGCG




TTTTCGAACCGTTCGTTCGTCAGACTCTGATGGCCCTGGTGAACGGTCACCTGCTCGCCGTGATTAACGAT




GTAGAAAAATATGACGCTGACACCCTCCTCCCATTTATCCGCCGTCACTCTATCACCTATCTGAACGGTAC




TGCGTCGGTTCTCCAAGAGTATGACTTCTCTGACTGTCCGAGCCTGAACCGTATCATCCTGGTGGGCGAGA




ACCTGACCGAAGCACGTTACCTGGCACTGCGTCAGCGTTTCAAAAATCGTATTCTGAACGAGTACGGTTTC




ACCGAGTCTGCGTTCGTGACTGCGCTGAAAATTTTCGATCCGGAAAGCACCCGCAAAGATACCTCCCTGG




GGCGTCCGGTGCGCAATGTTAAATGCTATATCTTGAACCCTAGCCTGAAACGCGTGCCAATTGGTGCTACA




GGTGAGCTGCATATTGGCGGCCTGGGTATCTCCAAGGGTTACTTGAATCGTCCGGAACTGACGCCGCACC




GCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGGTATCAACTCTCTGATGTACAAAACC




G (SEQ ID NO: 275)






 3
ATCGTCCGGAACTGACGCCGCACCGCTTCATCCCGAACCCGTTTCAGACCGATTGCGAAAAACAGCTGGG
 645



TATCAACTCTCTGATGTACAAAACCGGTGATCTGGCTCGCTGGCTCCCGAACGGTGAAGTTGAATACCTGG




GCCGTGCGGATTTCCAGATCAAACTGCGCGGTATTCGTATTGAGCCGGGCGAAATCGAGACTATGCTGGC




GATGTATCCGCGCGTTCGTACCTCCCTGGTGGTTTCCAAGAAATTACGTAACGGTCCTGAAGAAACAACG




AACGAACACCTGGTAGGCTACTACGTATGCGACTCCGCATCTGTTTCCGAAGCGGATCTGCTGTCCTTCCT




GGAGAAGAAGCTGCCGCGTTATATGATTCCGACTCGTCTGGTACAGCTGAGCCAGATCCCGGTTAACGTC




AACGGTAAAGCCGATCTGCGTGCTCTGCCGGCGGTTGATATCTCCAACAGCACCGAAGTTCGTTCTGATCT




GCGTGGTGATACCGAAATTGCCCTCGGCGAAATCTGGGCGGACGTGCTGGGCGCGCGTCAGCGTTCGGTT




AGCCGTAACGATAACTTTTTCCGCCTCGGTGGCCACTCTATCACCTGCATCCAGCTGATTGCGCGTATCCG




TCAGCGTCAGC (SEQ ID NO: 276)






 4
ACCTGCATCCAGCTGATTGCGCGTATCCGTCAGCGTCAGCGTTTGTCTGTGTCTATCTCTGTGGAAGACGT
1043



GTTTGCTACACGCACTCTTGAGCGTATGGCCGACCTGTTGCAAAACAAACAGCAAGAGAAATGCGACAAA




CCACACGAAGCACCGACTGAACTGCTTGAAGAAAACGCTGCGACTGATAACATCTACCTGGCGAACAGCC




TGCAGCAAGGTTTCGTCTACCATTACCTGAAAAGCATGGAACAAAGTGATGCTTATGTAATGCAGAGCGT




TCTGCGTTACAACACCACCCTTTCCCCGGATCTGTTCCAGCGTGCCTGGAAACACGCGCAGCAAAGCTTCC




CGGCTCTGCGTCTGCGCTTCTCTTGGGAAAAAGAAGTCTTCCAGCTGCTGGATCAGGACCCGCCTCTGGAC




TGGCGTTTCCTCTACTTCACTGATGTGGCGGCTGGTGCAGTAGAAGACCGTAAACTGGAAGATTTACGCCG




CCAGGACCTCACCGAGCGTTTTAAACTGGATGTGGGCCGTCTGTTTCGCGTTTACCTGATCAAACACAGCG




AAAACCGTTTCACTTGTCTGTTCTCTTGTCACCACGCTATCCTGGACGGCTGGTCCTTACCGCTTCTGTTCG




AAAAAGTACACGAAACATACCTGCAACTGCTGCACGGCGATAACCTGACCTCCTCTATGGATGATCCATA




CACCCGTACCCAACGCTACCTGCATGCGCACCGCGAAGATCACCTCGACTTTTGGGCTGGCGTGGTGCAG




AAAATCAACGAACGTTGCGATATGAATGCTCTGTTAAACGAACGCAGCCGCTATAAAGTGCAGCTGGCCG




ACTACGATCAGGTACAGGAACAGCGTCAGCTGACGATCGCTCTGAGCGGTGACGCGTGGCTGGCGGATCT




GCGCCAGACATGCAGTGCGCAGGGCATCACGCTGCACTCTATCCTGCAATTTGTATGGCATGCAGTTCTGC




ATGCCTACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCAA




(SEQ ID NO: 277)






 5
ACGGTGGCGGTACTCACACTATCACTGGCACCACTATTTCTGGTCGCAACCTCCCGATCCTGGGTATCGAG
1245



CGTGCGGTAGGCCCGTACATTAACACCCTGCCGTTAGTGTTGGACCATTCTACTTTTAAAGACAAGACGAT




CATGGAAGCTATTGAAGACGTCCAAGCGAAGGTGAATGTTATGAACTCCCGTGGTAATGTAGAACTGGGT




CGCCTGCACAAAACCGACCTGAAACATGGCCTGTTCGATTCTCTGTTTGTGCTGGAAAACTATCCAAACCT




GGATAAATCCCGTACTCTGGAGCACCAAACTGAACTGGGTTACTCCATCGAGGGTGGTACCGAAAAACTG




AACTATCCGCTGGCGGTGATTGCTCGTGAGGTTGAGACCACTGGCGGCTTTACTGTTAGCATCTGCTATGC




GAGCGAACTGTTTGAAGAGGTGATGATCAGCGAGCTTCTCCATATGGTACAGGATACCCTGATGCAGGTT




GCACGCGGGCTCAACGAACCTGTGGGCTCCCTGGAATACCTGTCTTCCATCCAGTTAGAGCAGCTGGCAG




CGTGGAACGCCACCGAAGCGGAGTTCCCGGACACGACCCTGCATGAAATGTTCGAGAACGAAGCATCTCA




AAAGCCGGATAAAATTGCAGTCGTGTACGAAGAAACCTCTCTGACCTATCGCGAGCTGAACGAACGTGCC




AATCGCATGGCGCACCAGCTGCGTTCCGACGTTTCTCCGAACCCGAACGAAGTGATCGCGCTGGTTATGG




ACAAGAGTGAACACATGATCGTAAATATCTTGGCTGTGTGGAAATCTGGTGGCGCATACGTGCCGATCGA




TCCGGGCTACCCGAATGACCGTATTCAGTATATCCTCGAGGACACTCAGGCGTTGGCTGTTATCGCAGATT




CTTGTTACCTGCCTCGTATCAAAGGTATGGCCGCGTCTGGTACGCTGCTCTACCCGTCTGTCCTGCCGGCA




AACCCAGACAGCAAATGGTCTGTGTCAAACCCGTCGCCGCTGTCTCGTAGCACCGACCTGGCATACATCA




TCTACACCTCTGGCACCACCGGCCGCCCGAAAGGCGTGACTGTGGAGCATCACGGTGTGGTGAACCTGCA




GGTATCCCTGAGCAAAGTTTTTGGTCTGCGTGACACCGACGACGAAGTCATCCTGTCTTTTTCTAACTACG




TTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGC (SEQ ID NO: 278)






 6
CTAACTACGTTTTCGATCACTTCGTAGAACAGATGACTGATGCTATCCTGAACGGGCAGACGCTGCTGGTT
1157



CTGAACGATGGTATGCGTGGTGACAAAGAACGCCTGTACCGCTACATCGAAAAGAACCGTGTAACTTATC




TGTCTGGTACTCCATCTGTGGTGTCTATGTATGAGTTCAGCCGTTTCAAAGACCACCTGCGCCGCGTCGAT




TGCGTCGGTGAAGCTTTCAGCGAGCCGGTCTTCGACAAAATCCGTGAAACCTTCCACGGTTTGGTTATCAA




TGGTTATGGCCCAACTGAAGTTAGCATCACTACCCATAAGCGTTTATACCCTTTCCCAGAGCGCCGCATGG




ATAAGTCGATCGGCCAGCAGGTCCACAACTCTACTAGCTACGTACTGAATGAAGATATGAAGCGTACCCC




GATCGGTGCTGTGGGTGAGCTGTACCTGGGCGGTGAAGGTGTTGTCCGCGGTTATCATAATCGTGCGGAT




GTTACCGCCGAGCGCTTCATCCCGAACCCGTTCCAGTCTGAGGAAGATAAACGTGAAGGCCGTAACAGTC




GCCTGTACAAGACGGGTGATCTGGTTCGCTGGATCCCGGGTAGCTCCGGCGAAGTCGAATACCTGGGTCG




CAATGACTTCCAGGTTAAGATTCGCGGCCTCCGTATCGAGCTGGGTGAAATCGAAGCGATCCTGAGCAGC




TACCACGGCATTAAACAGAGCGTAGTGATCGCAAAAGACTGCCGTGAGGGGGCACAGAAATTCCTGGTCG




GCTATTACGTTGCAGACGCTGCCCTGCCGTCCGCAGCGATCCGTCGTTTCATGCAGTCGCGCCTCCCGGGT




TACATGGTTCCGTCCCGTCTGATCCTGGTTTCTAAATTCCCTGTTACTCCGTCCGGGAAGCTGGACACCAA




AGCACTGCCGCCGGCGGAGGAAGAAAGCGAAATCGACGTTGTTCCACCGCGCTCCGAAATTGAGCGTTCT




CTCTGCGACATCTGGGCTGAACTGCTGGAAATGCACCCGGAAGAAATCGGCATTTACTCTGACTTCTTCTC




CTTGGGCGGCGACAGCCTGAAATCTACTAAGTTATCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGA




GCGTTAGCGCGTTATTCTGCCATCGCACA (SEQ ID NO: 279)






 7
TCCTTCATGATCCATGAGTCCTTTAACCGTGCTGTGAGCGTTAGCGCGTTATTCTGCCATCGCACAGTTGA
1066



AGCTCAAACTCACCTGATCTTGAACGACGCAGCAGATGTACACGAAATTACCCCGATCGATTGCAACGAC




ACCCAGATGATCCCGGTTTCCCGTGCACAGGAACGTCTGCTGTTCATTCATGAATTCGAAAACGGTTCTAA




CGCTTACAACATTGACGCGGCTTTCGAACTGCCAGGTTCTGTGGACGCGAGCCTGCTGGAACAGGCCCTTC




GTGGCAACCTGGCACGTCACGAAGCACTGCGCACCCTGCTGGTTAAAGATCACGCCACTGGTATTTACCT




GCAGAAAGTACTGAGTCCGGACGAAGCGCAAGGTATGTTTTCTGTTAATGTAGATACTGCTAAACAGGTT




GAACGTCTGGATCAGGAAATTGCTTCTCTGTCTCAGCACGTCTTCCGCCTGGACGACGAACTGCCGTGGGA




GGCGCGCATCCTGAAACTGGAATCTGGCGGTCTGTACCTGATCTTGGCCTTCCACCACACCTGCTTCGATG




CATGGAGCCTGAAAGTTTTCGAACAGGAGCTGCGCGCGCTGTACGCAGCGCTTCAGAAAACGAAATCTGC




AGCGAACTTACCGGCATTAAAAGCACAGTATAAGGAATACGCTCTGTACCACCGCCGCCAGCTTAGCGGC




GACCGCATGCGTAACCTGTCCGATTTCTGGTTACGTAAACTGATCGGTCTGGAACCACTGCAGCTGATCAC




CGATCGTCCGCGTCCGGTTCAGTTCAAATACGACGGTGACGATCTGAGCATCGAACTGTCCAAGAAAGAG




ACCGAAAACCTGCGCGGCGTTGCAAAACGTTGTAAGTCTTCCTTATATGTTGTACTGGTATCTGTTTACTG




TGTCATGCTGGCAAGCTACGCCAACCAGAGCGATGTTAGCGTGGGCATCCCAGTATCACACCGTACGCAC




CCGCAGTTCCAGTCTGTTATCGGCTTTTTCGTTAACCTGGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCT




ATTTGCG (SEQ ID NO: 280)






 8
GGTCGTTCTGCGTGTAGATATCAGCCAGTCCGCTATTTGCGGTTTAATCCGTCGCGTCATGAAAGAACTGG
 894



TTGACGCGCAGCTGCACCAGGATATGCCGTTCCAGGAAGTTACGAAACTGCTGCAGGTGGATAACGATCC




TAGCCGTCACCCGTTGGTTCAGAACGTATTTAACTTTGAGTCTCGCGCGAACGGTGAACACGATGCCCGCT




CTGAAGACGAGGGCTCTCTTGCATTCAATCAGTACCGTCCGGTTCAGCCGGTTGACAGCGTGGCCAAATTC




GATCTGAACGCCACCGTCACCGAACTGGAATCCGGTCTGCGTGTTAATTTCAACTACGCGACCAGCTTATT




CAATAAATCCACCATCCAGGGCTTCCTGCACACATATGAATACCTTCTGCGTCAGCTGTCCGAACTGAGCG




CTGAAGGCATCAACGAAGATACCCAGCTGTCACTGGTTCGCCCGACTGAGAACGGGGATCTGCACCTGCC




ACTGGCCCAGTCTCCGCTCGCGACCACTGCAGAAGAACAGAAAGTTGCTTCCCTGAACCAGGCTTTCGAA




CGTGAAGCCTTCCTGGCGGCGGAAAAAATCGCCGTTGTTCAAGGGGACCGCGCTCTGTCGTATGCCGACC




TGAACGGTCAGGCTAATCAACTGGCGCGTTATATCCAGTCCGTCTCCTGCATCGGTGCCGACGACGGCATC




GCCCTGATGCTGGAAAAGAGCATCGATACTATCATCTGCATTCTGGCAATCTGGAAAGCAGGCGCCGCGT




ATGTGCCGCTGGATCCGACCTACCCACCAGGCCGTGTACAACTGATCCTGGAGGAAATCAAAGCGAAAGC




TGTGCTGGTACACTCTTCCCACGCCTCTAAATGTGAACGTCACGGTGC (SEQ ID NO: 281)






 9
CCTCTAAATGTGAACGTCACGGTGCCAAAGTCATTGCAGTAGACTCTCCGGCTATTGAAACGGCAGTGAG
1325



CCAGCAGTCTGCAGCTGATCTGCCGACCATTGCTAGCCTGGGTAATCTGGCATATATCATCTTTACTAGCG




GCACTTCTGGCAAACCGAAAGGCGTTCTGGTAGAGCAAAAAGCCGTTCTGCTGCTGCGCGACGCCCTGCG




TGAGCGTTACTTCGGTCGTGATTGTACCAAACATCACGGTGTTCTGTTCCTGAGCAACTACGTTTTCGACTT




CTCCGTAGAACAGCTGGTTCTGTCTGTACTCTCAGGCCACAAACTGATTGTCCCGCCGGCGGAGTTTGTGG




CGGATGACGAATTCTATCGTATGGCCTCTACCCACGGTCTTTCTTACCTGTCTGGCACCCCGAGCCTGCTTC




AAAAAATCGATCTGGCACGTCTGGATCACCTGCAGGTTGTAACCGCGGCGGGTGAGGAACTCCACGCGAC




CCAGTACGAAAAAATGCGTCGTCGTTTTAACGGTCCAATCTACAACGCTTATGGTGTTACCGAGACAACG




GTGTACAACATCATCGCTGAATTCACCACCAACTCCATCTTCGAAAACGCATTACGCGAAGTCCTGCCGGG




CACCCGTGCGTACGTTCTGAACGCGGCGCTGCAGCCGGTTCCATTCGACGCTGTGGGTGAACTGTATCTGG




CCGGCGATAGCGTAACCCGTGGTTACCTGAACCAGCCGTTGCTGACCGATCAGCGTTTCATCCCTAACCCG




TTCTGCAAGGAAGAAGACATCGCGATGGGTCGTTTCGCTCGTCTGTACAAAACCGGCGACCTGGTTCGCTC




TCGCTTCAACCGCCAGCAGCAGCCGCAGCTGGAATACCTGGGCCGTGGCGACCTGCAGATTAAAATGCGT




GGTTACCGCATTGAAATTAGCGAAGTACAGAACGTGCTGACCTCCTCCCCGGGCGTACGCGAAGGTGCGG




TTGTGGCTAAATATGAAAACAACGACACGTATAGCCGTACTGCACATTCCTTAGTCGGTTATTATACCACT




GATAACGAAACAGTTTCAGAAGCTGATATCCTCACCTTCATGAAAGCGCGTCTGCCGACCTATATGGTGCC




TTCTCACCTGTGCTGCCTGGAAGGTGCTCTGCCAGTCACTATTAACGGTAAACTGGACGTTCGTCGTCTGC




CTGAAATTATCAACGACAGTGCGCAATCCTCATATTCCCCGCCGCGCAACATTATCGAAGCGAAAATGTG




CCGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGAC (SEQ ID NO: 282)






10
CGTTTATGGGAAAGCGCGCTGGGTATGGAACGCTGCGGTATTGACGATGACCTCTTCAAGCTGGGGGGGG
1251



ATTCTATCACCAGTCTGCACCTCGTCGCACAGATTCACAATCAGGTGGGCTGTAAGATTACCGTGCGCGAT




ATTTTCGAACACCGTACCGCGCGTGCTCTCCACGATCACGTTTTCATGAAGGATAGCGATCGCTCTAACGT




CACCCAGTTCCGTACCGAGCAGGGGCCGGTCATTGGCGAAGCTCCGCTGCTGCCGATCCAGGATTGGTTCT




TGAGCAAAGCTCTGCAGCACCCTATGTACTGGAACCACACGTTCTACGTACGTACCCCGGAACTGGACGT




TGATTCCCTGAGTGCGGCCGTTCGTGACCTGCAGCAGTACCACGACGTTTTCCGCATGCGCCTGAAACGCG




AAGAAGTTGGCTTTGTACAGTCCTTTGCCGAAGACTTTTCCCCGGCGCAGCTGCGTGTACTGAACGTGAAG




GACGTGGATGGTAGCGCGGCGGTTAACGAAATCCTGGACGGTTGGCAAAGCGGCTTCAACCTGGAAAAC




GGTCCGATCGGCTCGATCGGTTATCTGCATGGCTATGAAGACCGCTCCGCACGTGTGTGGTTTTCTGTACA




CCACATGGCCATTGACACTGTTTCCTGGCAGATCCTGGTTCGTGATCTGCAGACTCTGTACCGTAACGGTT




CCCTGGGTTCCAAAGGTTCTTCATTTCGCCAATGGGCCGAGGCAATCCAAAACTACAAAGCGAGCGACTC




GGAACGTAACCATTGGAACAAGCTGGTTATGGAAACTGCATCGTCGATCAGCGCGCTGCCGACCTCCACT




GGTTCTCGCGTACGTCTCTCCCGTTCTCTGTCTCCTGAAAAAACTGCTTCTCTGATCCAGGGTGGCATCGAT




CGTCAGGATGTAAGCGTATACGATTCTCTGCTGACTTCTGTTGGCCTGGCTTTGCAACACATCGCGCCGAC




TGGCCCGTCTATGGTTACAATCGAGGGTCACGGCCGCGAAGAAGTTGACCAGACCCTGGATGTTTCTCGT




ACGATGGGCTGGTTCACTACCATGTATCCGTTCGAAATCCCGCGTCTGTCGACGGAAAACATCGTGCAGG




GTGTTGTTGCTGTAAGTGAACGCTTCCGCCAAGTTCCGGCTCGCGGTGTTGGTTATGGTACTCTGTACGGT




TACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGCTG (SEQ ID NO: 283)






11
ACACCCAGCACCCTCTGCCGCAGGTTACTGTTAACTACCTGGGCCAGCTGGCTCGTAAACAGAGCAAGCC
1076



GAAAGAATGGGTTCTGGCAGTTGGTGATAACGAGTTCGAGTACGGTCTGATGACCTCCCCGGAGGATAAG




GACCGTTCGAGCTCCGCAGTGGATGTTACGGCCGTCTGCATCGACGGGACGATGATCATCGATGTGGACT




CGGCTTGGTCTTTGGAAGAATCTGAACAGTTCATCTCGTCAATTGAAGAAGGTCTGAACAAAATCCTGGA




CGGTCGTGCATCCCAGCAGACTAGCCGCTTTCCGGATGTGCCGCAGCCAGCAGAGACCTACACCCCATAC




TTCGAATATCTGGAACCGCCGCGCCAGGGCCCGACCCTGTTTCTGCTGCCACCGGGTGAAGGTGGTGCGG




AATCTTACTTCAACAACATCGTCAAACGCTTGCGTCAAACTAACATGGTTGTCTTTAACAACTACTACCTG




CACTCCAAACGTCTGCGCACCTTCGAGGAACTGGCTGAAATGTATCTGGACCAGGTACGCGGCATCCAAC




CGCACGGTCCATACCACTTCATCGGCTGGAGCTTCGGGGGCATTCTGGCGATGGAGATGTCCCGTCGTCTG




GTTGCGAGCGACGAAAAAATTGGTTTTCTGGGTATTATCGACACCTATTTCAACGTACGTGGTGCCACTCG




CACCATTGGCCTTGGTGATACTGAAATCCTGGATCCGATCCACCACATCTATAACCCGGACCCGGCAAACT




TTCAGCGTCTGCCGTCTGCCACCGACCGTATCGTCCTGTTTAAGGCCATGCGTCCGAATAATAAATATGAA




TCAGAAAACCAGCGTCGCCTGTATGAGTACTACGACGCGTTAGATTCCACGGACTGGACCGCATGTTACC




AGGCGATCCCTACCTCCTCATGGTCGCGCCTGCGCACGATCCACACCTTCCCGGGTTCGGAAATCCACAAC




CGCTGGTCCCGTTGCGTTCGTCTGAGCCGTAACACCAGCCTTGCCATCGACCCGTCTCTGGCGGCTCAGTA




CATCGGTCGTTGGAAGTAA (SEQ ID NO: 284)









The 11 gene cluster fragments were constructed using 3 μl water, 10 μl Phusion polymerase pre-mix (NEB, MA), 1 μl forward and reverse primers, and 5 μl of flanking sequence-cleaved shotgun assembly DNA fragments (FIG. 8i). The ˜1 kb DNA fragments were cloned into the TOPO vector using the TOP Cloner™0 Blunt core kit (Enzynomics, Korea) and submitted for Sanger sequencing. A few colonies were chosen for colony PCR using M13 primer pairs (M13F-pUC and M13R-pUC universal primer pair). The Lasergene program (DNAstar, Madison, Wis.) was used to analyze the DNA sequence data.


Nested PCR Assembly of an 11.4 kb Gene Cluster Using Flanking Sequence Removed Shotgun Assembly Products


A nested PCR method was used to assemble eleven ˜1 kb fragments into the full-length target penicillin biosynthetic gene cluster.


The PCR was performed using eleven ˜1 kb fragments (each 1 μl) and 15 μl of Phusion polymerase pre-mix (NEB, MA) in the absence of primers as follows: (a) a pre-denaturation step at 95° C. for 3 min; (b) a 10-cycle PCR step, each cycle consisting of 95° C. for 30 s, 70° C. for 30 s, and 72° C. for 3 min 30 s; and (c) a final elongation step at 72° C. for 5 min.


1 μl primer pairs containing restriction enzyme sites (BglII or NotI) were added to the mixture (˜1 kb fragments (each 1 μl) and 15 μl of Phusion polymerase pre-mix) and 25 more PCR cycles were performed. The PCR products were used for cloning.


After gel-electrophoresis, bands of the desired size were excised and DNA was purified. The products were cloned into a pBK3 vector (Kim, H., et al., 2010) using BglII and NotI restriction enzymes, and C2566 E. coli competent cells were transformed with the vector. After overnight growth at 37° C., a few colonies were screened for pBK3 vector containing the desired DNA insert size using colony PCR. Several colonies were grown in LB media for plasmid extraction using an AccuPrep™ plasmid extraction kit (Bioneer, Korea). The extracted plasmid was submitted for sequencing. Sequencing data were analyzed using the Lasergene program (DNAstar, Madison, Wis., USA).


Results and Discussion


The shotgun DNA synthesis technology was developed to overcome the challenges of high-throughput DNA construction. 228 oligonucleotides were designed to construct a penicillin biosynthetic gene cluster [N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase, 11,376 bp]. Chip oligonucleotides were designed to contain generic flanking sequences and cleaved from a 55K Agilent DNA microchip. Selective amplification was carried out using flanking sequences and amplification primer sequences were removed using the Type IIS restriction enzymes to obtain a sub-pool of chip oligonucleotides (FIGS. 8a and 8b).


The key point for the success of the method of the present disclosure is based on the hypothesis that a pool of oligonucleotides can be shotgun assembled in one pot to produce heterogeneous assembly products, and that each one of these products can be identified by high-throughput sequencing. Thus, oligonucleotides, at least one end of which had been cleaved, were used for shotgun DNA synthesis. As expected, highly heterogeneous DNA fragments ranging in size from 100 bp to 1,000 bp were produced (FIG. 8c). DNA corresponding to the 300-500 bp region were isolated from the highly heterogeneous DNA fragments by agarose gel electrophoresis. The sizes of the DNA fragments were determined taking into consideration the limit (400-500 bp) of current 454 high-throughput sequencing read length.


The present inventors then focused on developing a method to identify random fragment compositions using high-throughput sequencing technology, as well as a method to obtain sequence-validated error-free fragments from the pool of DNA fragments (FIG. 7). In the attainment of the object stated above, DNA fragments tagged with barcodes were gel-purified through amplification with barcode primer sequences (FIG. 8). The present inventors assumed that the DNA fragments would contain generic flanking sequences at both ends of the fragments for the following reasons. The efficiency of the flanking sequence cleavage of the amplified chip oligonucleotides never reaches 100%. As a consequence, flanking sequences remaining uncut at both ends of chip oligonucleotides cause termination of the DNA assembly process. This termination creates intermediates containing generic flanking sequences at both ends. This pre-termination has been considered a critical drawback in developing chip DNA synthesis technology. However, the present inventors expected that the flanking sequences contained in the fragments could be greatly helpful in tagging the randomly assembled products with the sequence containing degenerate barcode sequences by PCR amplification using primers (connecting the flanking sequences contained in the fragments and the degenerate barcode sequences).


The tagging barcode primer sequences consisted of three parts containing the original primer sequences used for the amplification of DNA chip: (a) generic primer sequences used in designing oligonucleotides, (b) 20 bp degenerate-barcode sequences, and (c) 454 primer sequences. The barcode sequence-attached shotgun assembly fragments were further amplified using the 454 primer sequences to increase the concentration of the barcoded assembly products.


It was found that through 454 sequencing analysis of the shotgun assembly fragments, 3% of the DNA fragments (˜400 bp) were error-free (FIG. 9a). An in-house Python computer program was developed to determine error-free sequences for use in the subsequent assembly process (FIGS. 9a and 9b). Briefly, the program scans the flanking sequences containing Type IIS enzyme regions in the sequencing data to align the internal sequences to the target reference sequence. When the internal sequences (<300 bp) match perfectly with the reference sequence, the program determines the optimal set of internal sequences that overlap by 20-50 bp with other fragments, which is then applied to the next round of the assembly process (FIG. 8g).


This analysis using the Python program resulted in error-free shotgun assembled DNA fragments (˜300 bp) covering 88% of the 11,376 bp target sequence. For the remaining ˜12% DNA sequences, the error containing sequences were analyzed to determine which sequences could be re-amplified using primers. 61 pairs of PCR barcode primers were selected from a pool of random assembly products.


The desired shotgun assembly fragments were selectively amplified from the DNA mixtures using degenerate-barcode primer sequences. Based on the gel data (˜400 bp), 77% (47 out of 61) of selective amplification reactions resulted in the desired sequences. The non-amplified target sequences were re-evaluated through the Python program. As a result, alternative oligonucleotide sequences were ordered. The alternative primer sequences could be utilized to obtain 100% sequences, which could be used for target DNA synthesis. The sequences (˜10%) were TOPO cloned for Sanger DNA sequencing to evaluate their effectiveness. About 99.98% of the Sanger sequencing-evaluated sequences matched with the target reference sequence.


Amplicons using selected DNA include flanking sequences containing Type IIS restriction enzyme recognition sequences used in the processing procedure of chip oligonucleotides. Accordingly, prior to assembly of the amplified error-free fragments into the target DNA, the barcode sequences of the amplified fragments were cleaved with Type II restriction enzymes (Type IIS restriction enzyme, EarI, BtsI or EcoP15I) (FIG. 7). For the second round of DNA assembly, 3-7 flanking sequence-cleaved fragments (each ˜300 bp) were pooled and 11 fragments (each ˜1 kb long) were constructed by nested PCR (FIG. 8i). As illustrated in FIG. 7, 5-end and 3-end primer sets of the 11 gene fragments, each of which contained the same base sequence as the target gene fragment, were used for DNA assembly. The chemically synthesized 1 kb DNA fragments were TOPO cloned and submitted for Sanger sequencing to validate their sequences. In summary, 1-3 colonies were chosen from each of the 11 constructs for sequencing, and as a result, nine of the constructs were confirmed to contain at least one desired DNA sequence (16 out of 21 colonies were error-free with an error rate of 0.022% (i.e. 5 errors per 22,903 bp). Final nested PCR assembly was performed using the 11 sequence-validated DNA fragments (FIG. 8j) to construct the penicillin biosynthetic gene cluster, and the products were cloned for sequencing. As a result of the sequencing, the desired penicillin gene cluster was successfully obtained (no error per 11,400 bp).


It is worth to further discuss various points in order to illustrate the creative features of the present disclosure. First, the shotgun synthesis of the present disclosure can provide a solution to the intrinsic challenges associated with low DNA assembly efficiency. DNA assembly processes occur less efficiently due to the increased number of oligonucleotides in a sub-pool (causing a low oligonucleotide concentration) and the presence of partially cleaved flanking sequences in the oligonucleotides. For example, highly heterogeneous by-products of ˜100-500 bp corresponding to small-sized DNA fragments were observed continuously during assembly of target gene clusters. In contrast, the shotgun DNA synthesis of the present disclosure enables the use of highly heterogeneous by-products in subsequent DNA assembly processes and therefore has advantages over conventional gene synthesis methods.


Second, a method of identifying and isolating error-free DNA fragments from a number of random shotgun assembly products was successfully developed. Barcoded primer sequences of the synthetic DNA sequence were validated by high-throughput sequencing. The barcode sequences could be utilized in selective PCR amplification of desired DNA molecules from a pool of the DNA molecules. After removal of the amplification primer sequences from the selectively amplified target DNA fragments, the fragments were hierarchically used in the assembly of the target sequence. In addition, it is evident that when the size of the target DNA molecules is sufficient to be sequenced at one time by the next-generation sequencing technology, the products obtained in the first round of the shotgun synthesis can be directly used.


Third, a cost estimate for DNA synthesis using Agilent chip-oligonucleotides and high-throughput sequencing is provided below. The two major costs associated with synthesis of large DNA are the costs of oligonucleotides and sequencing. The synthesis cost of chip oligonucleotides is expected to be $0.00085/nt, which is 100 times cheaper than resin-based oligonucleotides (Kim et al., 2011). In addition, 454 sequencing reads were computationally analyzed for sequencing cost-analysis. As a result, it was confirmed that 3% of the 300 bp DNA fragments produced in the first round of shotgun synthesis were error-free. The sequencing reading was performed using ⅛ lane of Roche-454 sequencing, which costs about $ 1,500. That is, the cost of synthesizing the 10 kb gene cluster was close to $ 3,000 (the cost of synthesizing oligonucleotides=$0.00085/nt*2*228*150 nt=$60; and the cost of various primers=$0.1/nt*200*20 nt=$400; the cost of Sanger sequencing=$3*100 reaction=$300; Roche-454 sequencing cost=$1,500; the cost of various purification kits and enzymes=$800). The cost of DNA synthesis by the synthesis method of the present disclosure is at least five times lower than the current price ($0.5/bp) charged by DNA synthesis companies. The concern that the present inventors have with this approach is the uneven coverage of the DNA assembly fragments. From the repeated assembly experiments, the present inventors found that the coverage of certain regions from the DNA assembly processes was dependent on the DNA sequences. It would be ideal to develop a shotgun assembly process that provides more uniform coverage.


Although the particulars of the present disclosure has been described in detail, it will be obvious to those skilled in the art that such particulars are merely preferred embodiments and are not intended to limit the scope of the present disclosure. Therefore, the true scope of the present disclosure is defined by the appended claims and their equivalents.

Claims
  • 1. A method of preparing nucleic acid molecules, comprising; (a) providing a pool of oligonucleotides, each of the oligonucleotides containing restriction enzyme digestion sequences and generic flanking sequences,(b) cleaving the restriction enzyme digestion sequences adjacent to the generic flanking sequences to form a pool of cleaved oligonucleotides such that the pool of the cleaved oligonucleotides consists of a first group of oligonucleotides and a second group of oligonucleotides, wherein each oligonucleotide in the first group contains the generic flanking sequences only at one end, and each oligonucleotide in the second group does not contain the generic flanking sequence at either end,(c) assembling the cleaved oligonucleotides using the generic flanking sequences to randomly synthesize nucleic acid fragments,(d) tagging the nucleic acid fragments by adding barcode sequences to the generic flanking sequences present at an end of the nucleic acid fragments,(e) validating sequences of the tagged nucleic acid fragments, and(f) recovering desired nucleic acid fragments from the validated nucleic acid fragments.
  • 2. The method according to claim 1, wherein the nucleic acid fragments randomly synthesized in step (c) comprise nucleic acid fragments having 1,000 bp or more and containing the generic flanking sequences at least one end.
  • 3. The method according to claim 1, further comprising amplifying the oligonucleotides provided in step (a) wherein the oligonucleotides are derived from a DNA microarray.
  • 4. The method according to claim 1, wherein the oligonucleotides provided in step (a) have a size of 20 to 300 bp.
  • 5. The method according to claim 1, further comprising amplifying the nucleic acid fragments provided in step (c).
  • 6. The method according to claim 1, wherein the nucleic acid fragments provided in step (c) have a size of 50 to 3,000 bp.
Priority Claims (1)
Number Date Country Kind
10-2011-0076408 Aug 2011 KR national
CROSS REFERENCE TO PRIOR APPLICATIONS

This application is Continuation of U.S. patent application Ser. No. 14/235,799 filed on Jan. 29, 2014, which is a National Stage Application of PCT International Patent Application No. PCT/KR2012/006147 filed on Aug. 1, 2012, under 35 U.S.C. § 371, which claims priority to Korean Patent Application No. 10-2011-0076408 filed on Aug. 1, 2011, which are all hereby incorporated by reference in their entirety.

US Referenced Citations (4)
Number Name Date Kind
20070269870 Church Nov 2007 A1
20100016178 Sussman et al. Jan 2010 A1
20100069263 Shendure et al. Mar 2010 A1
20140045728 Church Feb 2014 A1
Non-Patent Literature Citations (21)
Entry
Kosuri et al. (Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips, Nature Biotechnology vol. 28, pp. 1295-1299 (2010), Nov. 28, 2010).
Kim et al. (Hierarchical gene synthesis using DNA microchip oligonucleotides, J Biotechnol. Feb. 20, 2011;151(4):319-24. Epub Jan. 13, 2011).
Yehezkel et al. (De novo DNA synthesis using single molecule PCR, Nucleic Acids Res. Oct. 2008; 36(17): e107. Published online Jul. 30, 2008.
Matzas et al. (High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing, Nature Biotechnology 28, 1291-1294 (2010), Published online Nov. 28, 2010.
Kim, H. et al. “‘shotgun DNA synthesis’ for the high-throughput construction of large DNA molecules”, Nucleic Acids Res., Oct. 2012, Vo1. 40, No. 18, e140 (Epub. Jun. 16, 2012).
Maeda, N. et al., “Development of a DNA barcode tagging method for monitoring dynamic changes in gene expression by using an ultra high-throughput sequencer”, Biotechniques, Jul. 2008, Vo1. 45, No. 1, pp. 95-97.
Carr, I. M. et al., “Illuminator, a desktop program for mutation detection using short-read clonal sequencing”, Genomics, Oct. 2011, Vo1. 98, No. 4, pp. 302-309 (Epub. May 19, 2011).
Sakiyama, T. et al., “An automated system for genome analysis to support microbial whole-genome shotgun sequencing”, Biosci. Biotechnol. Biochem., Mar. 2000, Vo1. 64; No. 3, pp. 670-673.
Jingdong Tian et al., “Accurate multiplex gene synthesis from programmable DNA microchips”, Nature, vol. 432, Dec. 23/30, 2004, pp. 1050-1054.
Hutchison et al., “Cell-free cloning usingΦ29 DNA polymerase”, PNAS, Nov. 29, 2005, vol. 102, No. 48, pp. 17332-17336.
Kun Zhang et al., “Sequencing genomes from single cells by polymerase cloning”, Nature Biotechnology, vol. 24, No. 6, Jun. 2006, pp. 680-686.
Pere Puigbo et al., “Optimizer: a web server for optimizing the codon usage of DNA sequences”, Nucleic Acids Research, 2007, vol. 35, Web Server issue.
Tuval Ben Yehezkel et al., “De novo DNA synthesis using single molecule PCR, Nucleic Acids Research”, 2008, vol. 36, No. 17.
John Eid et al., “Real-Time DNA Sequencing from Single Polymerase Molecules”, Science. vol. 323, Jan. 2, 2009, pp. 133-138.
Alex Y. Borovkov et al., “High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides”, Nucleic Acids Research, 2010, vol. 38, No. 19.
Kim et al., “A Fluorescence Selection Method for Accurate Large-Gene Synthesis”, ChemBioChem 2010, 11, pp. 2448-2452.
Sriram Kosuri et al., “Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips”, Nature Biotechnology, vol. 28, No. 12, Dec. 2010, pp. 1295-1299.
Mark Matzas et al., “High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing”, Nature Biotechnology, vol. 28, No. 12, Dec. 2010, pp. 1291-1294.
Kim et al., “Hierarchial gene synthesis using DNA microchip oligonucleotides”, Journal of Biotechnology, 151 (2011), pp. 319-324.
Kim et al., (Hierarchial gene synthesis using DNA microchip oligonucleotides, J Biotechnol. Feb. 20, 2011;151(4):319-24. Epub Jan. 13, 2011.
Kosuri et al., (Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips, Nature Biotechnology 28, 1295-1299 (2010), Published online Nov. 28, 2010).
Related Publications (1)
Number Date Country
20160222380 A1 Aug 2016 US
Continuations (1)
Number Date Country
Parent 14235799 US
Child 15132245 US